research communications
trans-(ethane-1,2-diamine-κ2N,N′)bis(thiocyanato-κN)chromium(III)] tetrachloridozincate from synchrotron data
of bis[aPohang Accelerator Laboratory, POSTECH, Pohang 790-784, Republic of Korea, and bDepartment of Chemistry, Andong National University, Andong 760-749, Republic of Korea
*Correspondence e-mail: jhchoi@anu.ac.kr
The structure of the title compound, [Cr(NCS)2(C2H8N2)2]2[ZnCl4], has been determined from synchrotron data. In the there are four independent halves of the CrIII complex cations, each of which lies on an inversion centre, and one tetrachloridozincate anion in a general position. The CrIII atoms are coordinated by the four N atoms of two ethane-1,2-diamine (en) ligands in the equatorial plane and two N-bound NCS− anions in a trans arrangement, displaying a slightly distorted octahedral geometry with crystallographic inversion symmetry. The Cr—N(en) and Cr—N(NCS) bond lengths range from 2.0653 (10) to 2.0837 (10) Å and from 1.9811 (10) to 1.9890 (10) Å, respectively. The five-membered metalla-rings are in stable gauche conformations. The [ZnCl4]2− anion has a distorted tetrahedral geometry. The is stabilized by intermolecular hydrogen bonds involving the en NH2 or CH2 groups as donors and chloride ligands of the anion and S atoms of NCS− ligands as acceptors.
Keywords: Crystal structure; ethane-1,2-diamine; thiocyanate; trans isomer; chromium(III) complex; synchrotron data; hydrogen bonds.
CCDC reference: 1039747
1. Chemical context
The study of geometrical isomers in octahedral transition metal complexes with bidentate 2L2]+ (where L is a monodentate ligand) cation can form either trans or cis geometric isomers. Infrared, electronic absorption and emission spectral properties are useful in determining the geometric isomers of chromium(III) complexes with mixed ligands (Choi, 2000a,b; Choi et al., 2002, 2004a,b; Choi & Moon, 2014). However, it should be noted that the geometric assignments based on spectroscopic studies are much less conclusive. In addition, NCS− is an ambidentate ligand because it can coordinate to a transition metal through the nitrogen (M—NCS), or the sulfur (M—SCN), or both (M–-NCS—M). In general, hard metals such as chromium, nickel and cobalt tend to form metal–NCS bonds, whereas the soft metals such as mercury, rhodium, iridium, palladium and platinum tend to bind through the S atom. The of the metal, the nature of other ligands and steric factors also influence the mode of coordination.
has been an area of intense activity and has provided much basic structural information and insights into their spectroscopic properties. Ethane-1,2-diamine (en) can act as a bidentate ligand to a central metal ion through its two nitrogen atoms, forming a five-membered ring. The [Cr(en)Here, we report on the synthesis and structure of [Cr(en)2(NCS)2]2[ZnCl4] in order to determine the bonding mode of the thiocyanate group and the geometric features of the two en ligands, the two NCS groups and the [ZnCl4]2− anion.
2. Structural commentary
Structural analysis shows that there are four crystallographically independent CrIII complex cations in which the four nitrogen atoms of the two en ligands occupy the equatorial sites and the two thiocyanate anions coordinate to the CrIII atom through their N atoms in a trans configuration. Fig. 1 shows an ellipsoid plot of two independent complex cations and one anion in trans-[Cr(en)2(NCS)2]2[ZnCl4], with the atom-numbering scheme.
The 2(NCS)2]+ complex cations and one [ZnCl4]2− anion. The four CrIII atoms are located on crystallographic centers of symmetry, so these complex cations have molecular Ci symmetry. The spatial configuration of the bidentate en ring is a stable gauche form, which has been observed in other compounds (Brencic & Leban, 1981; Choi et al., 2010). The carbon atoms in the en ring are arranged symmetrically above and below the plane defined by the chromium and the en nitrogen atoms. The two Cr–en rings are in δ and λ conformations as the CrIII atom occupies a special position with inversion symmetry. The Cr—N bond lengths for the en ligand range from 2.0653 (10) to 2.0837 (10) Å, in good agreement with those observed in trans-[Cr(en)2F2]ClO4 (Brencic & Leban, 1981), trans-[Cr(en)2Br2]ClO4 (Choi et al., 2010), trans-[Cr(Me2tn)2Cl2]2ZnCl4 (Me2tn = 2,2-dimethylpropane-1,3-diamine) (Choi et al., 2011) and trans-[Cr(2,2,3-tet)F2]ClO4 (2,2,3-tet = 1,4,7,11-tetraazaundecane) (Choi & Moon, 2014). The Cr—N(CS) distances lie in the range 1.9811 (10) to 1.9890 (10) Å and are similar to the average values of 1.9826 (15) and 1.996 (15) Å found in trans-[Cr(Me2tn)2(NCS)2]NCS (Choi & Lee, 2009) and cis-[Cr(cyclam)(NCS)2]NCS (cyclam = 1,4,8,11-tetraazacyclotetradecane) (Moon et al., 2013), respectively. The N-coordinating thiocyanato groups are almost linear with N—C—S angles ranging from 177.11 (8) to 179.15 (9)°. The [ZnCl4]2− counter-anion has a distorted tetrahedral geometry due to the influence of hydrogen bonding on the Zn—Cl bond lengths and the Cl—Zn—Cl angles. Zn—Cl bond lengths range from 2.2518 (8) to 2.2923 (8) Å and the Cl—Zn—Cl angles are in the range 106.71 (2)–112.49 (2)°.
contains four halves of the [Cr(en)3. Supramolecular features
In the , Table 1). An extensive array of additional, similar contacts generate a three-dimensional network of molecules stacked along the a-axis direction.
a series of N—H⋯Cl and C—H⋯Cl hydrogen bonds link each anion to the four neighbouring cations, while N—H⋯S and C—H⋯S contacts interconnect the complex cations (Fig. 24. Database survey
A search of the Cambridge Structural Database (Version 5.35, May 2014 with one update; Groom & Allen, 2014) indicates a total of 13 hits for CrIII complexes with a [Cr(en)2L2]+ unit. The crystal structures of trans-[Cr(en)2Cl2]Cl·HCl·2H2O (Ooi et al., 1960), trans-[Cr(en)2F2]X (X = ClO4, Cl, Br) (Brencic & Leban, 1981), cis-[Cr(en)2F2]ClO4 (Brencic et al., 1987), trans-[Cr(en)2Br2]ClO4 (Choi et al., 2010) have been reported previously. However, no structures of salts of [Cr(en)2(NCS)2]+ with any anions were found.
5. Synthesis and crystallization
All chemicals were reagent-grade materials and were used without further purification. The starting material, trans-[Cr(en)2(NCS)2]ClO4 was prepared according to the literature (Sandrini et al., 1978). The crude perchlorate salt (0.10 g) was dissolved in 5 mL of 0.1 M HCl at 333 K and added to 2 mL of 6 M HCl containing 0.3 g of solid ZnCl2. The resulting solution was filtered and allowed to stand at room temperature for two days to give red crystals of the tetrachloridozincate salt suitable for X-ray structural analysis.
6. Refinement
Crystal data, data collection and structure . Hydrogen atoms bound to carbon or nitrogen were placed in calculated positions (C—H = 0.95, N—H = 0.91 Å), and were included in the using the riding-model approximation with Uiso(H) set to 1.2Ueq(C, N).
details are summarized in Table 2
|
Supporting information
CCDC reference: 1039747
https://doi.org/10.1107/S2056989014027479/sj5433sup1.cif
contains datablock I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2056989014027479/sj5433Isup2.hkl
Data collection: PAL ADSC Quantum-210 ADX (Arvai & Nielsen, 1983); cell
HKL3000sm (Otwinowski & Minor, 1997); data reduction: HKL3000sm (Otwinowski & Minor, 1997); program(s) used to solve structure: SHELXT2014 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 2007); software used to prepare material for publication: WinGX (Farrugia, 2012) and publCIF (Westrip, 2010).[Cr(NCS)2(C2H8N2)2]2[ZnCl4] | Z = 2 |
Mr = 783.90 | F(000) = 796 |
Triclinic, P1 | Dx = 1.683 Mg m−3 |
a = 7.6870 (15) Å | Synchrotron radiation, λ = 0.62998 Å |
b = 13.853 (3) Å | Cell parameters from 94806 reflections |
c = 14.560 (3) Å | θ = 0.4–33.6° |
α = 92.74 (3)° | µ = 1.50 mm−1 |
β = 92.76 (3)° | T = 100 K |
γ = 90.21 (3)° | Needle, red |
V = 1546.9 (5) Å3 | 0.10 × 0.03 × 0.03 mm |
ADSC Q210 CCD area-detector diffractometer | 8434 reflections with I > 2σ(I) |
Radiation source: PLSII 2D bending magnet | Rint = 0.014 |
ω scans | θmax = 26.0°, θmin = 2.4° |
Absorption correction: empirical (using intensity measurements) (HKL3000sm SCALEPACK; Otwinowski & Minor, 1997) | h = −10→10 |
Tmin = 0.865, Tmax = 0.956 | k = −19→19 |
17036 measured reflections | l = −20→20 |
8546 independent reflections |
Refinement on F2 | 0 restraints |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.018 | H-atom parameters constrained |
wR(F2) = 0.049 | w = 1/[σ2(Fo2) + (0.027P)2 + 0.6367P] where P = (Fo2 + 2Fc2)/3 |
S = 1.03 | (Δ/σ)max = 0.001 |
8546 reflections | Δρmax = 0.48 e Å−3 |
322 parameters | Δρmin = −0.60 e Å−3 |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
Cr1A | 1.0000 | 0.0000 | 0.5000 | 0.00585 (4) | |
S1A | 1.34965 (3) | 0.21259 (2) | 0.69613 (2) | 0.01282 (5) | |
N1A | 0.83989 (11) | 0.00710 (6) | 0.61105 (6) | 0.01133 (14) | |
H1A1 | 0.7841 | −0.0505 | 0.6151 | 0.014* | |
H1A2 | 0.9052 | 0.0192 | 0.6642 | 0.014* | |
N2A | 0.86680 (11) | 0.12458 (6) | 0.46494 (6) | 0.01130 (14) | |
H2A1 | 0.9409 | 0.1676 | 0.4417 | 0.014* | |
H2A2 | 0.7803 | 0.1099 | 0.4216 | 0.014* | |
N3A | 1.17486 (11) | 0.08052 (6) | 0.57360 (6) | 0.01110 (14) | |
C1A | 0.70956 (13) | 0.08539 (8) | 0.59868 (7) | 0.01647 (18) | |
H1A3 | 0.6706 | 0.1094 | 0.6594 | 0.020* | |
H1A4 | 0.6066 | 0.0600 | 0.5616 | 0.020* | |
C2A | 0.79203 (13) | 0.16675 (7) | 0.55045 (7) | 0.01477 (18) | |
H2A3 | 0.7036 | 0.2159 | 0.5349 | 0.018* | |
H2A4 | 0.8849 | 0.1982 | 0.5909 | 0.018* | |
C3A | 1.24862 (12) | 0.13654 (6) | 0.62427 (6) | 0.00895 (15) | |
Cr2B | 0.5000 | 0.5000 | 0.5000 | 0.00494 (4) | |
S1B | 0.15226 (4) | 0.64435 (2) | 0.26918 (2) | 0.01492 (5) | |
N1B | 0.33365 (10) | 0.38801 (6) | 0.52696 (5) | 0.00894 (13) | |
H1B1 | 0.2819 | 0.3630 | 0.4735 | 0.011* | |
H1B2 | 0.3944 | 0.3402 | 0.5545 | 0.011* | |
N2B | 0.38490 (10) | 0.56908 (6) | 0.61174 (5) | 0.00906 (13) | |
H2B1 | 0.4679 | 0.5980 | 0.6505 | 0.011* | |
H2B2 | 0.3100 | 0.6152 | 0.5919 | 0.011* | |
N3B | 0.32168 (11) | 0.55205 (6) | 0.41316 (6) | 0.01046 (14) | |
C1B | 0.19944 (12) | 0.42703 (7) | 0.58878 (7) | 0.01159 (16) | |
H1B3 | 0.1421 | 0.3736 | 0.6188 | 0.014* | |
H1B4 | 0.1094 | 0.4622 | 0.5529 | 0.014* | |
C2B | 0.28916 (13) | 0.49470 (7) | 0.66051 (6) | 0.01178 (16) | |
H2B3 | 0.2022 | 0.5261 | 0.6999 | 0.014* | |
H2B4 | 0.3714 | 0.4584 | 0.7001 | 0.014* | |
C3B | 0.24999 (11) | 0.58858 (6) | 0.35161 (6) | 0.00807 (15) | |
Cr3C | 0.0000 | 0.5000 | 0.0000 | 0.00436 (4) | |
S1C | 0.47203 (3) | 0.29853 (2) | −0.07639 (2) | 0.01296 (5) | |
N1C | 0.00397 (10) | 0.44890 (5) | 0.13158 (5) | 0.00792 (13) | |
H1C1 | 0.1118 | 0.4263 | 0.1474 | 0.010* | |
H1C2 | −0.0225 | 0.4973 | 0.1729 | 0.010* | |
N2C | −0.12263 (11) | 0.36953 (6) | −0.03474 (5) | 0.00961 (14) | |
H2C1 | −0.2372 | 0.3795 | −0.0499 | 0.012* | |
H2C2 | −0.0729 | 0.3404 | −0.0842 | 0.012* | |
N3C | 0.22291 (11) | 0.43406 (6) | −0.02527 (6) | 0.01166 (14) | |
C1C | −0.12726 (13) | 0.36960 (7) | 0.13185 (6) | 0.01083 (16) | |
H1C3 | −0.2464 | 0.3965 | 0.1322 | 0.013* | |
H1C4 | −0.1076 | 0.3314 | 0.1871 | 0.013* | |
C2C | −0.10560 (14) | 0.30666 (7) | 0.04542 (6) | 0.01285 (17) | |
H2C3 | 0.0102 | 0.2756 | 0.0476 | 0.015* | |
H2C4 | −0.1961 | 0.2554 | 0.0399 | 0.015* | |
C3C | 0.32768 (12) | 0.37725 (7) | −0.04576 (6) | 0.00935 (15) | |
Cr4D | 0.5000 | 0.0000 | 0.0000 | 0.00523 (4) | |
S1D | 0.95604 (3) | 0.14416 (2) | −0.15730 (2) | 0.01195 (5) | |
N1D | 0.46882 (10) | 0.12154 (5) | 0.08662 (5) | 0.00860 (13) | |
H1D1 | 0.4761 | 0.1760 | 0.0545 | 0.010* | |
H1D2 | 0.3627 | 0.1200 | 0.1116 | 0.010* | |
N2D | 0.65239 (10) | −0.04648 (6) | 0.11111 (6) | 0.01038 (14) | |
H2D1 | 0.6223 | −0.1080 | 0.1232 | 0.012* | |
H2D2 | 0.7668 | −0.0458 | 0.0976 | 0.012* | |
N3D | 0.70324 (10) | 0.06281 (6) | −0.05272 (6) | 0.01025 (14) | |
C1D | 0.60962 (13) | 0.12127 (7) | 0.16052 (6) | 0.01106 (16) | |
H1D3 | 0.5810 | 0.1665 | 0.2123 | 0.013* | |
H1D4 | 0.7213 | 0.1420 | 0.1364 | 0.013* | |
C2D | 0.62447 (13) | 0.01935 (7) | 0.19298 (6) | 0.01289 (17) | |
H2D3 | 0.7235 | 0.0150 | 0.2386 | 0.015* | |
H2D4 | 0.5166 | 0.0009 | 0.2225 | 0.015* | |
C3D | 0.80965 (12) | 0.09622 (6) | −0.09656 (6) | 0.00862 (15) | |
Zn1E | 0.22955 (2) | 0.24635 (2) | 0.28844 (2) | 0.00695 (3) | |
Cl1E | 0.02321 (3) | 0.32263 (2) | 0.37380 (2) | 0.01053 (4) | |
Cl2E | 0.09386 (3) | 0.12821 (2) | 0.20032 (2) | 0.01134 (4) | |
Cl3E | 0.43186 (3) | 0.18443 (2) | 0.38989 (2) | 0.01078 (4) | |
Cl4E | 0.37370 (3) | 0.34934 (2) | 0.20252 (2) | 0.01048 (4) |
U11 | U22 | U33 | U12 | U13 | U23 | |
Cr1A | 0.00661 (9) | 0.00475 (8) | 0.00601 (8) | −0.00088 (6) | −0.00137 (6) | 0.00022 (6) |
S1A | 0.01664 (11) | 0.00822 (9) | 0.01275 (10) | −0.00177 (8) | −0.00551 (8) | −0.00184 (7) |
N1A | 0.0113 (3) | 0.0130 (4) | 0.0098 (3) | −0.0010 (3) | 0.0011 (3) | 0.0008 (3) |
N2A | 0.0132 (4) | 0.0082 (3) | 0.0123 (3) | 0.0008 (3) | −0.0029 (3) | 0.0013 (3) |
N3A | 0.0104 (3) | 0.0111 (3) | 0.0116 (3) | −0.0023 (3) | −0.0021 (3) | 0.0001 (3) |
C1A | 0.0114 (4) | 0.0213 (5) | 0.0167 (4) | 0.0046 (4) | 0.0025 (3) | −0.0014 (4) |
C2A | 0.0159 (4) | 0.0108 (4) | 0.0168 (4) | 0.0051 (3) | −0.0028 (3) | −0.0038 (3) |
C3A | 0.0089 (4) | 0.0083 (4) | 0.0098 (4) | 0.0012 (3) | 0.0002 (3) | 0.0031 (3) |
Cr2B | 0.00588 (8) | 0.00513 (8) | 0.00366 (8) | 0.00158 (6) | −0.00107 (6) | −0.00018 (6) |
S1B | 0.02450 (12) | 0.01331 (10) | 0.00660 (9) | 0.00362 (9) | −0.00526 (8) | 0.00280 (8) |
N1B | 0.0101 (3) | 0.0080 (3) | 0.0085 (3) | 0.0000 (3) | 0.0000 (3) | −0.0010 (3) |
N2B | 0.0108 (3) | 0.0089 (3) | 0.0073 (3) | 0.0019 (3) | 0.0004 (3) | −0.0017 (2) |
N3B | 0.0097 (3) | 0.0120 (3) | 0.0096 (3) | 0.0020 (3) | −0.0020 (3) | 0.0010 (3) |
C1B | 0.0096 (4) | 0.0123 (4) | 0.0131 (4) | 0.0000 (3) | 0.0029 (3) | 0.0006 (3) |
C2B | 0.0149 (4) | 0.0130 (4) | 0.0078 (4) | 0.0015 (3) | 0.0036 (3) | 0.0005 (3) |
C3B | 0.0088 (4) | 0.0081 (3) | 0.0072 (3) | −0.0002 (3) | 0.0009 (3) | −0.0011 (3) |
Cr3C | 0.00541 (8) | 0.00389 (8) | 0.00375 (8) | 0.00058 (6) | −0.00073 (6) | 0.00083 (6) |
S1C | 0.01002 (10) | 0.01022 (10) | 0.01841 (11) | 0.00200 (7) | 0.00200 (8) | −0.00320 (8) |
N1C | 0.0104 (3) | 0.0082 (3) | 0.0051 (3) | −0.0003 (3) | −0.0013 (2) | 0.0009 (2) |
N2C | 0.0148 (4) | 0.0081 (3) | 0.0059 (3) | −0.0035 (3) | −0.0017 (3) | 0.0012 (2) |
N3C | 0.0102 (3) | 0.0136 (4) | 0.0116 (3) | 0.0033 (3) | 0.0015 (3) | 0.0032 (3) |
C1C | 0.0145 (4) | 0.0110 (4) | 0.0071 (4) | −0.0040 (3) | 0.0001 (3) | 0.0028 (3) |
C2C | 0.0226 (5) | 0.0071 (4) | 0.0088 (4) | −0.0038 (3) | −0.0014 (3) | 0.0024 (3) |
C3C | 0.0092 (4) | 0.0105 (4) | 0.0085 (4) | −0.0013 (3) | −0.0004 (3) | 0.0023 (3) |
Cr4D | 0.00413 (8) | 0.00421 (8) | 0.00761 (8) | 0.00135 (6) | 0.00197 (6) | 0.00099 (6) |
S1D | 0.01028 (10) | 0.00953 (10) | 0.01695 (11) | 0.00014 (7) | 0.00598 (8) | 0.00466 (8) |
N1D | 0.0086 (3) | 0.0064 (3) | 0.0109 (3) | 0.0017 (2) | 0.0022 (3) | 0.0002 (3) |
N2D | 0.0099 (3) | 0.0084 (3) | 0.0129 (3) | 0.0023 (3) | −0.0004 (3) | 0.0025 (3) |
N3D | 0.0084 (3) | 0.0091 (3) | 0.0134 (3) | −0.0004 (3) | 0.0031 (3) | −0.0002 (3) |
C1D | 0.0138 (4) | 0.0092 (4) | 0.0101 (4) | −0.0006 (3) | −0.0003 (3) | 0.0002 (3) |
C2D | 0.0175 (4) | 0.0120 (4) | 0.0094 (4) | 0.0001 (3) | 0.0001 (3) | 0.0029 (3) |
C3D | 0.0081 (4) | 0.0063 (3) | 0.0114 (4) | 0.0018 (3) | −0.0001 (3) | −0.0002 (3) |
Zn1E | 0.00724 (5) | 0.00672 (5) | 0.00674 (5) | 0.00094 (3) | −0.00074 (3) | −0.00012 (3) |
Cl1E | 0.00871 (9) | 0.01205 (9) | 0.01064 (9) | 0.00290 (7) | 0.00053 (7) | −0.00174 (7) |
Cl2E | 0.01069 (9) | 0.00975 (9) | 0.01296 (9) | −0.00072 (7) | −0.00204 (7) | −0.00320 (7) |
Cl3E | 0.00939 (9) | 0.01256 (9) | 0.01027 (9) | 0.00166 (7) | −0.00291 (7) | 0.00272 (7) |
Cl4E | 0.01084 (9) | 0.01095 (9) | 0.00978 (9) | −0.00068 (7) | −0.00084 (7) | 0.00329 (7) |
Cr1A—N3Ai | 1.9838 (11) | Cr3C—N2C | 2.0653 (10) |
Cr1A—N3A | 1.9838 (11) | Cr3C—N2Ciii | 2.0653 (10) |
Cr1A—N1Ai | 2.0775 (10) | Cr3C—N1Ciii | 2.0727 (9) |
Cr1A—N1A | 2.0776 (10) | Cr3C—N1C | 2.0727 (9) |
Cr1A—N2A | 2.0818 (10) | S1C—C3C | 1.6215 (11) |
Cr1A—N2Ai | 2.0818 (10) | N1C—C1C | 1.4891 (12) |
S1A—C3A | 1.6181 (11) | N1C—H1C1 | 0.9100 |
N1A—C1A | 1.4905 (14) | N1C—H1C2 | 0.9100 |
N1A—H1A1 | 0.9100 | N2C—C2C | 1.4903 (12) |
N1A—H1A2 | 0.9100 | N2C—H2C1 | 0.9100 |
N2A—C2A | 1.4912 (13) | N2C—H2C2 | 0.9100 |
N2A—H2A1 | 0.9100 | N3C—C3C | 1.1672 (13) |
N2A—H2A2 | 0.9100 | C1C—C2C | 1.5125 (14) |
N3A—C3A | 1.1704 (13) | C1C—H1C3 | 0.9900 |
C1A—C2A | 1.5094 (16) | C1C—H1C4 | 0.9900 |
C1A—H1A3 | 0.9900 | C2C—H2C3 | 0.9900 |
C1A—H1A4 | 0.9900 | C2C—H2C4 | 0.9900 |
C2A—H2A3 | 0.9900 | Cr4D—N3Div | 1.9890 (10) |
C2A—H2A4 | 0.9900 | Cr4D—N3D | 1.9890 (10) |
Cr2B—N3B | 1.9811 (10) | Cr4D—N1Div | 2.0765 (10) |
Cr2B—N3Bii | 1.9811 (10) | Cr4D—N1D | 2.0766 (10) |
Cr2B—N1Bii | 2.0707 (10) | Cr4D—N2D | 2.0799 (10) |
Cr2B—N1B | 2.0708 (10) | Cr4D—N2Div | 2.0799 (10) |
Cr2B—N2B | 2.0837 (10) | S1D—C3D | 1.6237 (11) |
Cr2B—N2Bii | 2.0837 (10) | N1D—C1D | 1.4891 (13) |
S1B—C3B | 1.6148 (10) | N1D—H1D1 | 0.9100 |
N1B—C1B | 1.4879 (13) | N1D—H1D2 | 0.9100 |
N1B—H1B1 | 0.9100 | N2D—C2D | 1.4903 (13) |
N1B—H1B2 | 0.9100 | N2D—H2D1 | 0.9100 |
N2B—C2B | 1.4907 (13) | N2D—H2D2 | 0.9100 |
N2B—H2B1 | 0.9100 | N3D—C3D | 1.1690 (13) |
N2B—H2B2 | 0.9100 | C1D—C2D | 1.5131 (13) |
N3B—C3B | 1.1665 (13) | C1D—H1D3 | 0.9900 |
C1B—C2B | 1.5092 (14) | C1D—H1D4 | 0.9900 |
C1B—H1B3 | 0.9900 | C2D—H2D3 | 0.9900 |
C1B—H1B4 | 0.9900 | C2D—H2D4 | 0.9900 |
C2B—H2B3 | 0.9900 | Zn1E—Cl2E | 2.2518 (8) |
C2B—H2B4 | 0.9900 | Zn1E—Cl4E | 2.2630 (7) |
Cr3C—N3C | 1.9864 (10) | Zn1E—Cl3E | 2.2903 (8) |
Cr3C—N3Ciii | 1.9864 (10) | Zn1E—Cl1E | 2.2923 (8) |
N3Ai—Cr1A—N3A | 180.0 | N3C—Cr3C—N2Ciii | 92.81 (4) |
N3Ai—Cr1A—N1Ai | 89.16 (4) | N3Ciii—Cr3C—N2Ciii | 87.19 (4) |
N3A—Cr1A—N1Ai | 90.84 (4) | N2C—Cr3C—N2Ciii | 180.0 |
N3Ai—Cr1A—N1A | 90.84 (4) | N3C—Cr3C—N1Ciii | 88.78 (4) |
N3A—Cr1A—N1A | 89.16 (4) | N3Ciii—Cr3C—N1Ciii | 91.22 (4) |
N1Ai—Cr1A—N1A | 180.0 | N2C—Cr3C—N1Ciii | 96.91 (4) |
N3Ai—Cr1A—N2A | 90.31 (4) | N2Ciii—Cr3C—N1Ciii | 83.09 (4) |
N3A—Cr1A—N2A | 89.69 (4) | N3C—Cr3C—N1C | 91.22 (4) |
N1Ai—Cr1A—N2A | 97.06 (4) | N3Ciii—Cr3C—N1C | 88.78 (4) |
N1A—Cr1A—N2A | 82.94 (4) | N2C—Cr3C—N1C | 83.09 (4) |
N3Ai—Cr1A—N2Ai | 89.69 (4) | N2Ciii—Cr3C—N1C | 96.91 (4) |
N3A—Cr1A—N2Ai | 90.31 (4) | N1Ciii—Cr3C—N1C | 180.0 |
N1Ai—Cr1A—N2Ai | 82.94 (4) | C1C—N1C—Cr3C | 107.84 (6) |
N1A—Cr1A—N2Ai | 97.06 (4) | C1C—N1C—H1C1 | 110.1 |
N2A—Cr1A—N2Ai | 180.0 | Cr3C—N1C—H1C1 | 110.1 |
C1A—N1A—Cr1A | 109.59 (6) | C1C—N1C—H1C2 | 110.1 |
C1A—N1A—H1A1 | 109.8 | Cr3C—N1C—H1C2 | 110.1 |
Cr1A—N1A—H1A1 | 109.8 | H1C1—N1C—H1C2 | 108.5 |
C1A—N1A—H1A2 | 109.8 | C2C—N2C—Cr3C | 108.84 (6) |
Cr1A—N1A—H1A2 | 109.8 | C2C—N2C—H2C1 | 109.9 |
H1A1—N1A—H1A2 | 108.2 | Cr3C—N2C—H2C1 | 109.9 |
C2A—N2A—Cr1A | 107.35 (6) | C2C—N2C—H2C2 | 109.9 |
C2A—N2A—H2A1 | 110.2 | Cr3C—N2C—H2C2 | 109.9 |
Cr1A—N2A—H2A1 | 110.2 | H2C1—N2C—H2C2 | 108.3 |
C2A—N2A—H2A2 | 110.2 | C3C—N3C—Cr3C | 163.96 (8) |
Cr1A—N2A—H2A2 | 110.2 | N1C—C1C—C2C | 106.92 (8) |
H2A1—N2A—H2A2 | 108.5 | N1C—C1C—H1C3 | 110.3 |
C3A—N3A—Cr1A | 166.35 (8) | C2C—C1C—H1C3 | 110.3 |
N1A—C1A—C2A | 109.01 (8) | N1C—C1C—H1C4 | 110.3 |
N1A—C1A—H1A3 | 109.9 | C2C—C1C—H1C4 | 110.3 |
C2A—C1A—H1A3 | 109.9 | H1C3—C1C—H1C4 | 108.6 |
N1A—C1A—H1A4 | 109.9 | N2C—C2C—C1C | 107.87 (7) |
C2A—C1A—H1A4 | 109.9 | N2C—C2C—H2C3 | 110.1 |
H1A3—C1A—H1A4 | 108.3 | C1C—C2C—H2C3 | 110.1 |
N2A—C2A—C1A | 107.69 (8) | N2C—C2C—H2C4 | 110.1 |
N2A—C2A—H2A3 | 110.2 | C1C—C2C—H2C4 | 110.1 |
C1A—C2A—H2A3 | 110.2 | H2C3—C2C—H2C4 | 108.4 |
N2A—C2A—H2A4 | 110.2 | N3C—C3C—S1C | 178.85 (9) |
C1A—C2A—H2A4 | 110.2 | N3Div—Cr4D—N3D | 180.0 |
H2A3—C2A—H2A4 | 108.5 | N3Div—Cr4D—N1Div | 89.74 (4) |
N3A—C3A—S1A | 178.78 (9) | N3D—Cr4D—N1Div | 90.26 (4) |
N3B—Cr2B—N3Bii | 180.0 | N3Div—Cr4D—N1D | 90.26 (4) |
N3B—Cr2B—N1Bii | 89.64 (4) | N3D—Cr4D—N1D | 89.74 (4) |
N3Bii—Cr2B—N1Bii | 90.36 (4) | N1Div—Cr4D—N1D | 180.00 (3) |
N3B—Cr2B—N1B | 90.36 (4) | N3Div—Cr4D—N2D | 88.05 (4) |
N3Bii—Cr2B—N1B | 89.64 (4) | N3D—Cr4D—N2D | 91.95 (4) |
N1Bii—Cr2B—N1B | 180.0 | N1Div—Cr4D—N2D | 96.97 (4) |
N3B—Cr2B—N2B | 91.27 (4) | N1D—Cr4D—N2D | 83.03 (4) |
N3Bii—Cr2B—N2B | 88.73 (4) | N3Div—Cr4D—N2Div | 91.95 (4) |
N1Bii—Cr2B—N2B | 96.72 (4) | N3D—Cr4D—N2Div | 88.05 (4) |
N1B—Cr2B—N2B | 83.28 (4) | N1Div—Cr4D—N2Div | 83.03 (4) |
N3B—Cr2B—N2Bii | 88.73 (4) | N1D—Cr4D—N2Div | 96.97 (4) |
N3Bii—Cr2B—N2Bii | 91.27 (4) | N2D—Cr4D—N2Div | 180.0 |
N1Bii—Cr2B—N2Bii | 83.28 (4) | C1D—N1D—Cr4D | 107.80 (6) |
N1B—Cr2B—N2Bii | 96.72 (4) | C1D—N1D—H1D1 | 110.1 |
N2B—Cr2B—N2Bii | 180.0 | Cr4D—N1D—H1D1 | 110.1 |
C1B—N1B—Cr2B | 108.20 (6) | C1D—N1D—H1D2 | 110.1 |
C1B—N1B—H1B1 | 110.1 | Cr4D—N1D—H1D2 | 110.1 |
Cr2B—N1B—H1B1 | 110.1 | H1D1—N1D—H1D2 | 108.5 |
C1B—N1B—H1B2 | 110.1 | C2D—N2D—Cr4D | 108.84 (6) |
Cr2B—N1B—H1B2 | 110.1 | C2D—N2D—H2D1 | 109.9 |
H1B1—N1B—H1B2 | 108.4 | Cr4D—N2D—H2D1 | 109.9 |
C2B—N2B—Cr2B | 107.91 (6) | C2D—N2D—H2D2 | 109.9 |
C2B—N2B—H2B1 | 110.1 | Cr4D—N2D—H2D2 | 109.9 |
Cr2B—N2B—H2B1 | 110.1 | H2D1—N2D—H2D2 | 108.3 |
C2B—N2B—H2B2 | 110.1 | C3D—N3D—Cr4D | 169.62 (8) |
Cr2B—N2B—H2B2 | 110.1 | N1D—C1D—C2D | 107.70 (8) |
H2B1—N2B—H2B2 | 108.4 | N1D—C1D—H1D3 | 110.2 |
C3B—N3B—Cr2B | 164.42 (8) | C2D—C1D—H1D3 | 110.2 |
N1B—C1B—C2B | 107.95 (8) | N1D—C1D—H1D4 | 110.2 |
N1B—C1B—H1B3 | 110.1 | C2D—C1D—H1D4 | 110.2 |
C2B—C1B—H1B3 | 110.1 | H1D3—C1D—H1D4 | 108.5 |
N1B—C1B—H1B4 | 110.1 | N2D—C2D—C1D | 107.87 (8) |
C2B—C1B—H1B4 | 110.1 | N2D—C2D—H2D3 | 110.1 |
H1B3—C1B—H1B4 | 108.4 | C1D—C2D—H2D3 | 110.1 |
N2B—C2B—C1B | 107.96 (7) | N2D—C2D—H2D4 | 110.1 |
N2B—C2B—H2B3 | 110.1 | C1D—C2D—H2D4 | 110.1 |
C1B—C2B—H2B3 | 110.1 | H2D3—C2D—H2D4 | 108.4 |
N2B—C2B—H2B4 | 110.1 | N3D—C3D—S1D | 179.15 (9) |
C1B—C2B—H2B4 | 110.1 | Cl2E—Zn1E—Cl4E | 111.63 (2) |
H2B3—C2B—H2B4 | 108.4 | Cl2E—Zn1E—Cl3E | 111.31 (2) |
N3B—C3B—S1B | 177.11 (8) | Cl4E—Zn1E—Cl3E | 106.71 (2) |
N3C—Cr3C—N3Ciii | 180.0 | Cl2E—Zn1E—Cl1E | 107.46 (2) |
N3C—Cr3C—N2C | 87.19 (4) | Cl4E—Zn1E—Cl1E | 112.49 (2) |
N3Ciii—Cr3C—N2C | 92.81 (4) | Cl3E—Zn1E—Cl1E | 107.20 (2) |
Cr1A—N1A—C1A—C2A | −33.94 (9) | Cr3C—N1C—C1C—C2C | 44.29 (8) |
Cr1A—N2A—C2A—C1A | −45.42 (9) | Cr3C—N2C—C2C—C1C | 39.21 (9) |
N1A—C1A—C2A—N2A | 52.98 (10) | N1C—C1C—C2C—N2C | −55.56 (10) |
Cr2B—N1B—C1B—C2B | −41.73 (8) | Cr4D—N1D—C1D—C2D | −43.80 (8) |
Cr2B—N2B—C2B—C1B | −40.80 (8) | Cr4D—N2D—C2D—C1D | −38.66 (9) |
N1B—C1B—C2B—N2B | 55.28 (10) | N1D—C1D—C2D—N2D | 55.05 (10) |
Symmetry codes: (i) −x+2, −y, −z+1; (ii) −x+1, −y+1, −z+1; (iii) −x, −y+1, −z; (iv) −x+1, −y, −z. |
D—H···A | D—H | H···A | D···A | D—H···A |
N1A—H1A1···Cl3Ev | 0.91 | 2.48 | 3.3700 (13) | 165 |
N2A—H2A1···Cl1Evi | 0.91 | 2.50 | 3.3483 (13) | 155 |
N2A—H2A2···Cl3E | 0.91 | 2.90 | 3.5797 (12) | 133 |
C1A—H1A3···S1Avii | 0.99 | 2.91 | 3.5983 (15) | 127 |
C2A—H2A3···Cl3E | 0.99 | 2.91 | 3.5533 (15) | 123 |
C2A—H2A4···S1Bii | 0.99 | 2.94 | 3.6270 (15) | 128 |
N1B—H1B1···Cl1E | 0.91 | 2.45 | 3.2813 (13) | 152 |
N1B—H1B2···S1Avii | 0.91 | 2.81 | 3.5401 (13) | 138 |
N2B—H2B1···Cl4Eii | 0.91 | 2.49 | 3.3532 (13) | 159 |
N2B—H2B2···Cl1Eviii | 0.91 | 2.77 | 3.4934 (12) | 138 |
C1B—H1B3···S1Avii | 0.99 | 2.98 | 3.5910 (14) | 121 |
C1B—H1B3···S1Bviii | 0.99 | 2.87 | 3.6440 (14) | 136 |
C2B—H2B3···Cl1Eviii | 0.99 | 2.93 | 3.5309 (14) | 120 |
N1C—H1C1···Cl4E | 0.91 | 2.40 | 3.3058 (12) | 171 |
N1C—H1C2···S1B | 0.91 | 2.73 | 3.4473 (14) | 137 |
N2C—H2C1···S1Cvii | 0.91 | 2.50 | 3.2836 (12) | 144 |
N2C—H2C2···S1Biii | 0.91 | 2.75 | 3.4063 (11) | 130 |
N2C—H2C2···S1Dvii | 0.91 | 2.88 | 3.5893 (13) | 135 |
C1C—H1C4···Cl1E | 0.99 | 2.86 | 3.7421 (13) | 149 |
N1D—H1D1···S1C | 0.91 | 2.61 | 3.4937 (13) | 164 |
N1D—H1D2···Cl2E | 0.91 | 2.49 | 3.3919 (12) | 172 |
N2D—H2D1···S1Civ | 0.91 | 2.78 | 3.6225 (12) | 155 |
N2D—H2D2···S1Dix | 0.91 | 2.67 | 3.3564 (12) | 133 |
C1D—H1D3···Cl3E | 0.99 | 2.88 | 3.7357 (14) | 145 |
C1D—H1D4···Cl2Evi | 0.99 | 2.98 | 3.7397 (12) | 135 |
Symmetry codes: (ii) −x+1, −y+1, −z+1; (iii) −x, −y+1, −z; (iv) −x+1, −y, −z; (v) −x+1, −y, −z+1; (vi) x+1, y, z; (vii) x−1, y, z; (viii) −x, −y+1, −z+1; (ix) −x+2, −y, −z. |
Acknowledgements
The X-ray crystallography experiment at PLS-II 2D-SMC beamline was supported in part by MISP and POSTECH.
References
Arvai, A. J. & Nielsen, C. (1983). ADSC Quantum-210 ADX. Area Detector System Corporation, Poway, CA, USA. Google Scholar
Brandenburg, K. (2007). DIAMOND. Crystal Impact GbR, Bonn, Germany. Google Scholar
Brencic, J. V. & Leban, I. (1981). Z. Anorg. Allg. Chem. 480, 213–219. CAS Google Scholar
Brenčič, J. V., Leban, I. & Polanc, I. (1987). Acta Cryst. C43, 885–887. CSD CrossRef Web of Science IUCr Journals Google Scholar
Choi, J.-H. (2000a). Chem. Phys. 256, 29–35. CrossRef CAS Google Scholar
Choi, J.-H. (2000b). Spectrochim. Acta Part A, 58, 1599–1606. CrossRef Google Scholar
Choi, J.-H., Hong, Y. P. & Park, Y. C. (2002). Spectrochim. Acta Part A, 56, 1653–1660. Web of Science CrossRef Google Scholar
Choi, J.-H., Clegg, W., Harrington, R. W. & Lee, S. H. (2010). J. Chem. Crystallogr. 40, 567–571. Web of Science CSD CrossRef CAS Google Scholar
Choi, J.-H., Joshi, T. & Spiccia, L. (2011). Z. Anorg. Allg. Chem. 637, 1194–1198. Web of Science CSD CrossRef CAS Google Scholar
Choi, J.-H. & Lee, S. H. (2009). J. Mol. Struct. 932, 84–89. Web of Science CSD CrossRef CAS Google Scholar
Choi, J.-H. & Moon, D. (2014). J. Mol. Struct. 1059, 325–331. Web of Science CSD CrossRef CAS Google Scholar
Choi, J.-H., Oh, I.-G., Linder, R. & Schönherr, T. (2004a). Chem. Phys. 297, 7–12. Web of Science CrossRef CAS Google Scholar
Choi, J.-H., Oh, I. G., Suzuki, T. & Kaizaki, S. (2004b). J. Mol. Struct. 694, 39–44. CSD CrossRef CAS Google Scholar
Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854. Web of Science CrossRef CAS IUCr Journals Google Scholar
Groom, C. R. & Allen, F. H. (2014). Angew. Chem. Int. Ed. 53, 662–671. Web of Science CSD CrossRef CAS Google Scholar
Moon, D., Choi, J.-H., Ryoo, K. S. & Hong, Y. P. (2013). Acta Cryst. E69, m376–m377. CSD CrossRef IUCr Journals Google Scholar
Ooi, S., Komiyama, Y. & Kuroya, H. (1960). Bull. Chem. Soc. Jpn, 33, 354–357. CrossRef Web of Science Google Scholar
Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press. Google Scholar
Sandrini, D., Gandolfi, M. T., Moggi, L. & Balzani, V. (1978). J. Am. Chem. Soc. 100, 1463–1468. CrossRef CAS Web of Science Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925. Web of Science CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.