organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of 1-(4-meth­­oxy­phen­yl)-4-(4-nitro­phen­yl)-3-phen­­oxy­azetidin-2-one

aDepartment of Physics, Faculty of Sciences, Erciyes University, 38039 Kayseri, Turkey, bDepartment of Chemistry, College of Sciences, Shiraz University, 71454 Shiraz, Iran, cDepartment of Physics, Faculty of Education, Dicle University, 21280, Diyarbakir, Turkey, and dScience and Technology Application and Research Center, Dicle University, 21280, Diyarbakir, Turkey
*Correspondence e-mail: akkurt@erciyes.edu.tr

Edited by H. Stoeckli-Evans, University of Neuchâtel, Switzerland (Received 19 November 2014; accepted 26 November 2014; online 1 January 2015)

In the title compound, C22H18N2O5, the central β-lactam ring (r.m.s. deviation = 0.002 Å) makes dihedral angles of 64.21 (14), 82.35 (12) and 20.66 (13)° with the phenyl ring and the nitro- and meth­oxy­benzene rings, respectively. The mol­ecular structure is stabilized by an intra­molecular C—H⋯O hydrogen bond. In the crystal, mol­ecules are linked via C—H⋯O hydrogen bonds, forming slabs lying parallel to (111). The slabs are linked via C—H⋯π inter­actions, forming a three-dimensional network.

1. Related literature

For general properties and applications in medicinal chemistry of four-membered monocyclic aza-heterocycles, see: Bode et al. (1989[Bode, W., Meyer, E. Jr & Powers, J. C. (1989). Biochemistry, 28, 1951-1963.]); Gerona-Navarro et al. (2004[Gerona-Navarro, G., Pérez de Vega, M. J., García-López, M. T., Andrei, G., Snoeck, R., Balzarini, J., De Clercq, E. & González-Muñiz, R. (2004). Bioorg. Med. Chem. Lett. 14, 2253-2256.]); Grafe (1992[Grafe, U. (1992). Biochemie der Antibiotika, p. 359. Heidelberg: Spektrum Akademischer Verlag.]); Gérard et al. (2004[Gérard, S., Galleni, M., Dive, G. & Marchand-Brynaert, J. (2004). Bioorg. Med. Chem. 12, 129-138.]); Mehta et al. (2010[Mehta, P. D., Sengar, N. P. S. & Pathak, A. K. (2010). Eur. J. Med. Chem. 45, 5541-5560.]); Setti et al. (2005[Setti, E. L., Davis, D., Janc, J. M., Jeffery, D. A., Cheung, H. & Yu, W. (2005). Bioorg. Med. Chem. Lett. 15, 1529-1534.]); Singh et al. (2008[Singh, G. S., D'hooghe, M. & De Kimpe, N. (2008). Azetidines, Azetines and Azetes: Monocyclic, in Comprehensive Heterocyclic Chemistry III, edited by C. V. Stevens, Vol. 2, ch. 2.01, p. 1. Oxford: Elsevier.]); Southgate (1994[Southgate, R. (1994). Contemp. Org. Synth. 1, 417-494.]); Sutton et al. (2004[Sutton, J. C., Bolton, S. A., Davis, M. E., Hartl, K. S., Jacobson, B., Mathur, A., Ogletree, M. L., Slusarchyk, W. A., Zahler, R., Seiler, S. M. & Bisacchi, G. S. (2004). Bioorg. Med. Chem. Lett. 14, 2233-2239.]); Sperka et al. (2005[Sperka, T., Pitlik, J., Bagossi, P. & Tözsér, J. (2005). Bioorg. Med. Chem. Lett. 15, 3086-3090.]). For related structures, see: Akkurt et al. (2011[Akkurt, M., Dağdemir, Y., Jarrahpour, A., Rostami, M. & Büyükgüngör, O. (2011). Acta Cryst. E67, o326-o327.]); Butcher et al. (2011[Butcher, R. J., Akkurt, M., Jarrahpour, A. & Badrabady, S. A. T. (2011). Acta Cryst. E67, o1101-o1102.]).

[Scheme 1]

2. Experimental

2.1. Crystal data

  • C22H18N2O5

  • Mr = 390.38

  • Triclinic, [P \overline 1]

  • a = 9.8044 (3) Å

  • b = 10.6483 (3) Å

  • c = 11.1573 (3) Å

  • α = 66.957 (1)°

  • β = 70.105 (1)°

  • γ = 65.973 (1)°

  • V = 956.06 (5) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 296 K

  • 0.30 × 0.20 × 0.15 mm

2.2. Data collection

  • Bruker APEXII CCD diffractometer

  • 16870 measured reflections

  • 3586 independent reflections

  • 2860 reflections with I > 2σ(I)

  • Rint = 0.027

2.3. Refinement

  • R[F2 > 2σ(F2)] = 0.046

  • wR(F2) = 0.125

  • S = 1.09

  • 3586 reflections

  • 257 parameters

  • H-atom parameters constrained

  • Δρmax = 0.22 e Å−3

  • Δρmin = −0.17 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg4 is the centroid of the meth­oxy­phenyl ring (C16–C21).

D—H⋯A D—H H⋯A DA D—H⋯A
C17—H17⋯O1 0.93 2.60 3.172 (3) 120
C12—H12⋯O1i 0.93 2.37 3.103 (2) 135
C21—H21⋯O4ii 0.93 2.43 3.127 (3) 132
C15—H15⋯Cg4iii 0.93 2.75 3.674 (2) 173
Symmetry codes: (i) -x+1, -y+2, -z+1; (ii) -x+2, -y+2, -z; (iii) -x+1, -y+2, -z.

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS2014 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]); software used to prepare material for publication: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Four-membered monocyclic aza-heterocycles (Singh, et al., 2008), even more than 70 years after the discovery of penicillin, β-lactam antibiotics remain as one of the most important contributions of science to humanity (Southgate, 1994). β-Lactam antibiotics have been successfully used in the treatment of infectious diseases for many years (Grafe, 1992). Literature survey reveals that 2-azetidinones show to possess other relevant biological activities (Gerona-Navarro et al., 2004). which include human cytomegalovirus (HCMV) inhibitor, (Mehta et al., 2010), human leukocyte elastase (HLE) inhibitor, (Gérard et al., 2004), thrombin inhibitor, (Sutton et al., 2004), porcine pancreatic elastase (PPE) inhibitor, (Bode et al., 1989), HIV-1 protease inhibitor (Sperka et al., 2005), cysteine protease inhibitor (Setti et al., 2005).

In the title compound (Fig. 1), the β-lactam ring (N1/C1–C3) is nearly planar [r.m.s. deviation = 0.002 Å]. It makes dihedral angles of 64.21 (14), 82.35 (12) and 20.66 (13)° with the phenyl ring (C4–C9) and the nitro- and methoxybenzene rings (C10–C15 and C16–C21), respectively.

The bond lengths and bond angles are normal and are similar to the corresponding bond distances and angles reported for similar compound, viz. 1-(4-methoxyphenyl)-4-(4-methylphenyl)-3-phenoxyazetidin-2-one (Akkurt et al., 2011) and 3-(4-chlorophenoxy)-1-(4-methoxyphenyl)-4-(4-nitrophenyl)azetidin-2-one (Butcher et al., 2011).

A weak intramolecular C—H···O hydrogen bond stabilizes the molecular conformation (Table 1).

In the crystal, molecules are linked by C—H···O hydrogen bonds forming slabs lying parallel to (111). The slabs are linked via C—H···π interactions forming a three dimensional network (Table 1 and Fig. 2).

Related literature top

For general properties and applications in medicinal chemistry of four-membered monocyclic aza-heterocycles, see: Bode et al. (1989); Gerona-Navarro et al. (2004); Grafe (1992); Gérard et al. (2004); Mehta et al. (2010); Setti et al. (2005); Singh et al. (2008); Southgate (1994); Sutton et al. (2004); Sperka et al. (2005). For related structures, see: Akkurt et al. (2011); Butcher et al. (2011).

Experimental top

A solution of (E)-4-methoxy-N-(4-nitrobenzylidene)aniline (1.00 mmol) was stirred with the phenoxy acetic acid (1.50 mmol), p-toluenesulfonyl chloride (1.50 mmol) and triethylamine (5.0 mmol) in dry CH2Cl2 at room temperature overnight. Then it was washed with HCl 1 N (20 ml), saturated NaHCO3 (20 ml), brine (20 ml), dried over Na2SO4 and the solvent was evaporated under reduced pressure to give the crude product. It was then recrystallized from hexan/EtOAc (2:6) to give colourless prisms (yield 75%; m.p: 413–415 K). IR (KBr, cm-1): 1744 (CO, β-lactam). 1H-NMR (250 MHz CDCl3), δ (p.p.m.): 3.69 (OMe, s, 3H), 5.01 (H-4, d, 1H, J = 4.7 HZ), 5.40 (H-3, d, 1H, J = 4.7 HZ), 6.69–8.10 (ArH, m, 13H). 13C-NMR (62.9 MHz, CDCl3), δ (p.p.m.): 54.3 (OMe), 63.7 (C-4), 83.1 (C-3), 114.5–157.2 (aromatic carbons), 162.8 (CO, β-lactam). GC—MS m/z = 391 [M+]. Analysis calculated for C22H18N2O5: C, 67.69; H, 4.65; N, 7.18%. Found: C, 67.65; H, 4.70; N, 7.20%.

Refinement top

All H atoms were placed in calculated positions, with C—H = 0.93 - 0.98 Å, and refined using a riding model with Uiso(H) = 1.5Ueq(C) for methyl H atoms and = 1.2Ueq(C) for other H atoms. The crystal was of very low quality and in the final cycles of refinement 45 reflections were omitted owing to very bad agreement [reflections (-6 7 5), (-6 7 3), (-5 8 5), (-6 7 2), (-5 8 4), (-5 8 2), (-5 8 3), (-4 9 3), (-4 8 3), (-5 7 1), (-5 7 2), (-6 6 2), (-4 8 5), (-5 8 1), (-4 8 2), (-5 7 4), (-4 9 4), (-5 7 0), (-6 7 4), (-5 7 3), (-4 9 2), (-6 5 1), (-6 6 3), (-4 8 1), (-5 6 3), (-5 6 2), (-4 8 4), (0 10 2), (-5 6 0), (-6 6 1), (-4 7 4), (-6 6 0), (-4 7 0), (-4 7 3), (-4 7 1), (-3 8 4), (-3 8 3), (-4 7 2), (6 - 5 1), (-5 6 1), (-6 4 0), (6 - 6 1), (0 - 4 2), (5 - 6 1), (1 1 1)].

Structure description top

Four-membered monocyclic aza-heterocycles (Singh, et al., 2008), even more than 70 years after the discovery of penicillin, β-lactam antibiotics remain as one of the most important contributions of science to humanity (Southgate, 1994). β-Lactam antibiotics have been successfully used in the treatment of infectious diseases for many years (Grafe, 1992). Literature survey reveals that 2-azetidinones show to possess other relevant biological activities (Gerona-Navarro et al., 2004). which include human cytomegalovirus (HCMV) inhibitor, (Mehta et al., 2010), human leukocyte elastase (HLE) inhibitor, (Gérard et al., 2004), thrombin inhibitor, (Sutton et al., 2004), porcine pancreatic elastase (PPE) inhibitor, (Bode et al., 1989), HIV-1 protease inhibitor (Sperka et al., 2005), cysteine protease inhibitor (Setti et al., 2005).

In the title compound (Fig. 1), the β-lactam ring (N1/C1–C3) is nearly planar [r.m.s. deviation = 0.002 Å]. It makes dihedral angles of 64.21 (14), 82.35 (12) and 20.66 (13)° with the phenyl ring (C4–C9) and the nitro- and methoxybenzene rings (C10–C15 and C16–C21), respectively.

The bond lengths and bond angles are normal and are similar to the corresponding bond distances and angles reported for similar compound, viz. 1-(4-methoxyphenyl)-4-(4-methylphenyl)-3-phenoxyazetidin-2-one (Akkurt et al., 2011) and 3-(4-chlorophenoxy)-1-(4-methoxyphenyl)-4-(4-nitrophenyl)azetidin-2-one (Butcher et al., 2011).

A weak intramolecular C—H···O hydrogen bond stabilizes the molecular conformation (Table 1).

In the crystal, molecules are linked by C—H···O hydrogen bonds forming slabs lying parallel to (111). The slabs are linked via C—H···π interactions forming a three dimensional network (Table 1 and Fig. 2).

For general properties and applications in medicinal chemistry of four-membered monocyclic aza-heterocycles, see: Bode et al. (1989); Gerona-Navarro et al. (2004); Grafe (1992); Gérard et al. (2004); Mehta et al. (2010); Setti et al. (2005); Singh et al. (2008); Southgate (1994); Sutton et al. (2004); Sperka et al. (2005). For related structures, see: Akkurt et al. (2011); Butcher et al. (2011).

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS2014 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. Perspective view of the molecular structure of the title compound, with atom labelling. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 2] Fig. 2. View of the hydrogen bonding and molecular packing of the title compound along a axis (only H atoms involved in hydrogen bonding are shown; see Table 1 for details).
1-(4-methoxyphenyl)-4-(4-nitrophenyl)-3-phenoxyazetidin-2-one top
Crystal data top
C22H18N2O5Z = 2
Mr = 390.38F(000) = 408
Triclinic, P1Dx = 1.356 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 9.8044 (3) ÅCell parameters from 8412 reflections
b = 10.6483 (3) Åθ = 2.2–31.2°
c = 11.1573 (3) ŵ = 0.10 mm1
α = 66.957 (1)°T = 296 K
β = 70.105 (1)°Prism, colourless
γ = 65.973 (1)°0.30 × 0.20 × 0.15 mm
V = 956.06 (5) Å3
Data collection top
Bruker APEXII CCD
diffractometer
2860 reflections with I > 2σ(I)
Radiation source: sealed tubeRint = 0.027
Graphite monochromatorθmax = 26.4°, θmin = 2.0°
φ and ω scansh = 1212
16870 measured reflectionsk = 1313
3586 independent reflectionsl = 1313
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.046H-atom parameters constrained
wR(F2) = 0.125 w = 1/[σ2(Fo2) + (0.054P)2 + 0.2069P]
where P = (Fo2 + 2Fc2)/3
S = 1.09(Δ/σ)max < 0.001
3586 reflectionsΔρmax = 0.22 e Å3
257 parametersΔρmin = 0.17 e Å3
Crystal data top
C22H18N2O5γ = 65.973 (1)°
Mr = 390.38V = 956.06 (5) Å3
Triclinic, P1Z = 2
a = 9.8044 (3) ÅMo Kα radiation
b = 10.6483 (3) ŵ = 0.10 mm1
c = 11.1573 (3) ÅT = 296 K
α = 66.957 (1)°0.30 × 0.20 × 0.15 mm
β = 70.105 (1)°
Data collection top
Bruker APEXII CCD
diffractometer
2860 reflections with I > 2σ(I)
16870 measured reflectionsRint = 0.027
3586 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0460 restraints
wR(F2) = 0.125H-atom parameters constrained
S = 1.09Δρmax = 0.22 e Å3
3586 reflectionsΔρmin = 0.17 e Å3
257 parameters
Special details top

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement on F2 for ALL reflections except those flagged by the user for potential systematic errors. Weighted R-factors wR and all goodnesses of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The observed criterion of F2 > σ(F2) is used only for calculating -R-factor-obs etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.19496 (17)1.0034 (2)0.46300 (14)0.0891 (6)
O20.50869 (15)0.76274 (16)0.48302 (11)0.0619 (5)
O31.15569 (17)0.9287 (2)0.20735 (17)0.0938 (7)
O41.22134 (17)0.7927 (2)0.08655 (19)0.1013 (8)
O50.20258 (17)1.58682 (16)0.07766 (16)0.0783 (6)
N10.38058 (14)1.03204 (17)0.26380 (13)0.0488 (5)
N21.12538 (18)0.86578 (19)0.15529 (16)0.0629 (6)
C10.3090 (2)0.9617 (2)0.38519 (16)0.0569 (5)
C20.42887 (19)0.8176 (2)0.37976 (16)0.0569 (5)
C30.50356 (17)0.90236 (19)0.23890 (14)0.0450 (5)
C40.6280 (2)0.6349 (2)0.48961 (17)0.0575 (7)
C50.7040 (3)0.5907 (3)0.5903 (2)0.0768 (9)
C60.8249 (3)0.4657 (3)0.6043 (3)0.0928 (10)
C70.8714 (3)0.3834 (3)0.5201 (3)0.0896 (10)
C80.7957 (3)0.4277 (3)0.4207 (2)0.0775 (8)
C90.6737 (2)0.5537 (2)0.40422 (19)0.0663 (7)
C100.66584 (17)0.89768 (17)0.21679 (14)0.0394 (5)
C110.70598 (18)0.95456 (19)0.28763 (15)0.0459 (5)
C120.85691 (19)0.94417 (19)0.26790 (15)0.0477 (5)
C130.96466 (17)0.87828 (18)0.17624 (15)0.0448 (5)
C140.92900 (19)0.82065 (19)0.10398 (16)0.0491 (5)
C150.77834 (18)0.83228 (18)0.12446 (15)0.0452 (5)
C160.33669 (17)1.1729 (2)0.17642 (16)0.0473 (6)
C170.1869 (2)1.2640 (2)0.1967 (2)0.0628 (7)
C180.1477 (2)1.4003 (2)0.1106 (2)0.0687 (8)
C190.2549 (2)1.4496 (2)0.0030 (2)0.0569 (7)
C200.4030 (2)1.3594 (2)0.01778 (18)0.0540 (6)
C210.44279 (18)1.2218 (2)0.06850 (17)0.0505 (6)
C220.3131 (3)1.6499 (3)0.1745 (3)0.0853 (10)
H20.388700.748900.376200.0680*
H30.491200.878200.167800.0540*
H50.673400.645400.648200.0920*
H60.876200.436200.672000.1120*
H70.953300.298600.530500.1070*
H80.826600.372500.363400.0930*
H90.623100.583200.336100.0800*
H110.631000.999900.348700.0550*
H120.884600.981100.315800.0570*
H141.004600.775300.043200.0590*
H150.751500.795700.075600.0540*
H170.113501.232600.268400.0750*
H180.047301.460600.124700.0820*
H200.476101.390900.089800.0650*
H210.542901.161200.053500.0610*
H22A0.381201.651600.130900.1280*
H22B0.262301.746400.222000.1280*
H22C0.370301.594300.236000.1280*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0574 (9)0.1347 (15)0.0630 (8)0.0226 (9)0.0108 (7)0.0452 (9)
O20.0622 (8)0.0815 (10)0.0467 (6)0.0293 (8)0.0155 (6)0.0135 (6)
O30.0683 (10)0.1387 (16)0.1022 (11)0.0573 (11)0.0252 (8)0.0319 (11)
O40.0394 (8)0.1325 (16)0.1246 (14)0.0241 (10)0.0052 (9)0.0532 (13)
O50.0615 (9)0.0556 (10)0.1099 (11)0.0048 (8)0.0253 (8)0.0250 (8)
N10.0310 (7)0.0673 (11)0.0485 (7)0.0124 (7)0.0042 (5)0.0244 (7)
N20.0428 (9)0.0751 (12)0.0627 (9)0.0265 (9)0.0142 (7)0.0017 (8)
C10.0444 (7)0.0846 (10)0.0485 (6)0.0267 (6)0.0063 (5)0.0231 (7)
C20.0444 (7)0.0846 (10)0.0485 (6)0.0267 (6)0.0063 (5)0.0231 (7)
C30.0373 (8)0.0606 (12)0.0440 (8)0.0166 (8)0.0094 (6)0.0207 (7)
C40.0511 (11)0.0701 (14)0.0490 (9)0.0322 (11)0.0124 (8)0.0003 (9)
C50.0813 (15)0.0930 (18)0.0630 (11)0.0416 (15)0.0289 (11)0.0038 (11)
C60.0886 (18)0.101 (2)0.0842 (16)0.0368 (17)0.0482 (14)0.0097 (15)
C70.0692 (15)0.0826 (18)0.0955 (17)0.0272 (14)0.0310 (13)0.0099 (14)
C80.0671 (14)0.0733 (16)0.0806 (14)0.0245 (13)0.0168 (11)0.0079 (11)
C90.0632 (12)0.0766 (15)0.0600 (11)0.0293 (12)0.0187 (9)0.0090 (10)
C100.0349 (8)0.0431 (10)0.0399 (7)0.0114 (7)0.0105 (6)0.0109 (6)
C110.0400 (9)0.0550 (11)0.0461 (8)0.0132 (8)0.0083 (7)0.0211 (7)
C120.0481 (9)0.0544 (11)0.0488 (8)0.0215 (9)0.0169 (7)0.0123 (7)
C130.0349 (8)0.0463 (10)0.0471 (8)0.0154 (8)0.0127 (6)0.0017 (7)
C140.0397 (9)0.0520 (11)0.0502 (8)0.0119 (8)0.0041 (7)0.0170 (8)
C150.0420 (9)0.0516 (11)0.0470 (8)0.0158 (8)0.0082 (7)0.0197 (7)
C160.0325 (8)0.0626 (12)0.0554 (9)0.0097 (8)0.0105 (7)0.0308 (8)
C170.0358 (9)0.0778 (15)0.0706 (11)0.0106 (10)0.0028 (8)0.0327 (11)
C180.0370 (10)0.0707 (15)0.0918 (14)0.0017 (10)0.0103 (9)0.0401 (12)
C190.0453 (10)0.0519 (13)0.0806 (12)0.0058 (9)0.0210 (9)0.0303 (10)
C200.0401 (9)0.0593 (13)0.0666 (10)0.0137 (9)0.0116 (8)0.0247 (9)
C210.0304 (8)0.0616 (13)0.0609 (9)0.0083 (8)0.0098 (7)0.0261 (9)
C220.0902 (17)0.0591 (15)0.1103 (18)0.0270 (13)0.0321 (14)0.0162 (13)
Geometric parameters (Å, º) top
O1—C11.199 (3)C14—C151.376 (3)
O2—C21.413 (2)C16—C171.391 (3)
O2—C41.382 (3)C16—C211.379 (3)
O3—N21.208 (3)C17—C181.372 (3)
O4—N21.208 (3)C18—C191.385 (3)
O5—C191.372 (3)C19—C201.376 (3)
O5—C221.421 (4)C20—C211.383 (3)
N1—C11.369 (2)C2—H20.9800
N1—C31.468 (3)C3—H30.9800
N1—C161.414 (2)C5—H50.9300
N2—C131.469 (3)C6—H60.9300
C1—C21.515 (3)C7—H70.9300
C2—C31.570 (2)C8—H80.9300
C3—C101.508 (3)C9—H90.9300
C4—C51.382 (3)C11—H110.9300
C4—C91.377 (3)C12—H120.9300
C5—C61.371 (4)C14—H140.9300
C6—C71.373 (4)C15—H150.9300
C7—C81.367 (4)C17—H170.9300
C8—C91.384 (4)C18—H180.9300
C10—C111.388 (3)C20—H200.9300
C10—C151.388 (2)C21—H210.9300
C11—C121.384 (3)C22—H22A0.9600
C12—C131.370 (2)C22—H22B0.9600
C13—C141.379 (3)C22—H22C0.9600
C2—O2—C4118.48 (15)C18—C19—C20119.10 (19)
C19—O5—C22117.6 (2)C19—C20—C21119.87 (19)
C1—N1—C395.42 (14)C16—C21—C20121.16 (19)
C1—N1—C16133.12 (17)O2—C2—H2113.00
C3—N1—C16130.07 (13)C1—C2—H2113.00
O3—N2—O4123.0 (2)C3—C2—H2113.00
O3—N2—C13118.75 (18)N1—C3—H3111.00
O4—N2—C13118.26 (19)C2—C3—H3111.00
O1—C1—N1132.1 (2)C10—C3—H3111.00
O1—C1—C2135.63 (18)C4—C5—H5120.00
N1—C1—C292.29 (15)C6—C5—H5120.00
O2—C2—C1110.35 (15)C5—C6—H6119.00
O2—C2—C3117.28 (17)C7—C6—H6120.00
C1—C2—C385.76 (13)C6—C7—H7120.00
N1—C3—C286.47 (13)C8—C7—H7120.00
N1—C3—C10117.56 (16)C7—C8—H8120.00
C2—C3—C10117.93 (14)C9—C8—H8120.00
O2—C4—C5115.15 (19)C4—C9—H9120.00
O2—C4—C9124.79 (18)C8—C9—H9120.00
C5—C4—C9120.1 (2)C10—C11—H11120.00
C4—C5—C6119.5 (2)C12—C11—H11120.00
C5—C6—C7121.1 (3)C11—C12—H12121.00
C6—C7—C8119.2 (3)C13—C12—H12121.00
C7—C8—C9120.9 (2)C13—C14—H14121.00
C4—C9—C8119.3 (2)C15—C14—H14121.00
C3—C10—C11121.92 (15)C10—C15—H15119.00
C3—C10—C15118.78 (16)C14—C15—H15119.00
C11—C10—C15119.29 (18)C16—C17—H17120.00
C10—C11—C12120.36 (16)C18—C17—H17120.00
C11—C12—C13118.56 (17)C17—C18—H18119.00
N2—C13—C12118.97 (17)C19—C18—H18119.00
N2—C13—C14118.34 (16)C19—C20—H20120.00
C12—C13—C14122.69 (18)C21—C20—H20120.00
C13—C14—C15118.03 (17)C16—C21—H21119.00
C10—C15—C14121.06 (17)C20—C21—H21119.00
N1—C16—C17121.10 (16)O5—C22—H22A109.00
N1—C16—C21120.06 (18)O5—C22—H22B109.00
C17—C16—C21118.83 (18)O5—C22—H22C109.00
C16—C17—C18119.84 (19)H22A—C22—H22B109.00
C17—C18—C19121.2 (2)H22A—C22—H22C110.00
O5—C19—C18116.24 (19)H22B—C22—H22C109.00
O5—C19—C20124.65 (19)
C2—O2—C4—C5177.80 (19)C2—C3—C10—C15115.35 (17)
C4—O2—C2—C1176.84 (16)N1—C3—C10—C1137.9 (2)
C4—O2—C2—C381.0 (2)C2—C3—C10—C1163.5 (2)
C2—O2—C4—C91.7 (3)O2—C4—C5—C6179.5 (2)
C22—O5—C19—C18169.3 (2)O2—C4—C9—C8179.7 (2)
C22—O5—C19—C2012.1 (3)C9—C4—C5—C60.0 (4)
C16—N1—C1—C2169.0 (2)C5—C4—C9—C80.2 (3)
C3—N1—C1—O1178.4 (2)C4—C5—C6—C70.2 (5)
C16—N1—C1—O111.3 (4)C5—C6—C7—C80.2 (5)
C1—N1—C16—C21170.0 (2)C6—C7—C8—C90.0 (5)
C16—N1—C3—C1070.7 (2)C7—C8—C9—C40.2 (4)
C3—N1—C16—C2126.9 (3)C3—C10—C11—C12177.87 (15)
C16—N1—C3—C2169.53 (19)C11—C10—C15—C141.2 (2)
C3—N1—C1—C21.90 (16)C15—C10—C11—C121.0 (2)
C1—N1—C3—C21.84 (15)C3—C10—C15—C14177.68 (15)
C3—N1—C16—C17152.68 (19)C10—C11—C12—C130.7 (3)
C1—N1—C16—C1710.4 (3)C11—C12—C13—C140.7 (3)
C1—N1—C3—C10121.65 (15)C11—C12—C13—N2179.56 (16)
O4—N2—C13—C147.7 (3)N2—C13—C14—C15179.77 (16)
O3—N2—C13—C14172.35 (18)C12—C13—C14—C150.9 (3)
O4—N2—C13—C12171.23 (18)C13—C14—C15—C101.2 (3)
O3—N2—C13—C128.8 (3)N1—C16—C21—C20179.51 (18)
N1—C1—C2—O2115.78 (16)C17—C16—C21—C200.9 (3)
O1—C1—C2—C3178.6 (3)N1—C16—C17—C18179.76 (18)
N1—C1—C2—C31.78 (15)C21—C16—C17—C180.6 (3)
O1—C1—C2—O263.9 (3)C16—C17—C18—C190.0 (3)
O2—C2—C3—C1010.4 (2)C17—C18—C19—C200.4 (3)
O2—C2—C3—N1109.09 (17)C17—C18—C19—O5179.1 (2)
C1—C2—C3—C10121.13 (17)O5—C19—C20—C21178.7 (2)
C1—C2—C3—N11.66 (14)C18—C19—C20—C210.1 (3)
N1—C3—C10—C15143.22 (15)C19—C20—C21—C160.5 (3)
Hydrogen-bond geometry (Å, º) top
Cg4 is the centroid of the methoxyphenyl ring (C16–C21).
D—H···AD—HH···AD···AD—H···A
C17—H17···O10.932.603.172 (3)120
C12—H12···O1i0.932.373.103 (2)135
C21—H21···O4ii0.932.433.127 (3)132
C15—H15···Cg4iii0.932.753.674 (2)173
Symmetry codes: (i) x+1, y+2, z+1; (ii) x+2, y+2, z; (iii) x+1, y+2, z.
Hydrogen-bond geometry (Å, º) top
Cg4 is the centroid of the methoxyphenyl ring (C16–C21).
D—H···AD—HH···AD···AD—H···A
C17—H17···O10.932.603.172 (3)120
C12—H12···O1i0.932.373.103 (2)135
C21—H21···O4ii0.932.433.127 (3)132
C15—H15···Cg4iii0.932.753.674 (2)173
Symmetry codes: (i) x+1, y+2, z+1; (ii) x+2, y+2, z; (iii) x+1, y+2, z.
 

Acknowledgements

The authors are indebted to the X-ray laboratory of Dicle University Scientific and Technological Applied and Research Center, Diyarbakir, Turkey, for use of the X-ray diffractometer. AJ and HAS thank the Shiraz University Research Council for financial support.

References

First citationAkkurt, M., Dağdemir, Y., Jarrahpour, A., Rostami, M. & Büyükgüngör, O. (2011). Acta Cryst. E67, o326–o327.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBode, W., Meyer, E. Jr & Powers, J. C. (1989). Biochemistry, 28, 1951–1963.  CrossRef CAS PubMed Web of Science Google Scholar
First citationBruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationButcher, R. J., Akkurt, M., Jarrahpour, A. & Badrabady, S. A. T. (2011). Acta Cryst. E67, o1101–o1102.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGérard, S., Galleni, M., Dive, G. & Marchand-Brynaert, J. (2004). Bioorg. Med. Chem. 12, 129–138.  Web of Science PubMed Google Scholar
First citationGerona-Navarro, G., Pérez de Vega, M. J., García-López, M. T., Andrei, G., Snoeck, R., Balzarini, J., De Clercq, E. & González-Muñiz, R. (2004). Bioorg. Med. Chem. Lett. 14, 2253–2256.  Web of Science PubMed CAS Google Scholar
First citationGrafe, U. (1992). Biochemie der Antibiotika, p. 359. Heidelberg: Spektrum Akademischer Verlag.  Google Scholar
First citationMehta, P. D., Sengar, N. P. S. & Pathak, A. K. (2010). Eur. J. Med. Chem. 45, 5541–5560.  Web of Science CrossRef CAS PubMed Google Scholar
First citationSetti, E. L., Davis, D., Janc, J. M., Jeffery, D. A., Cheung, H. & Yu, W. (2005). Bioorg. Med. Chem. Lett. 15, 1529–1534.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSingh, G. S., D'hooghe, M. & De Kimpe, N. (2008). Azetidines, Azetines and Azetes: Monocyclic, in Comprehensive Heterocyclic Chemistry III, edited by C. V. Stevens, Vol. 2, ch. 2.01, p. 1. Oxford: Elsevier.  Google Scholar
First citationSouthgate, R. (1994). Contemp. Org. Synth. 1, 417–494.  CrossRef CAS Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSperka, T., Pitlik, J., Bagossi, P. & Tözsér, J. (2005). Bioorg. Med. Chem. Lett. 15, 3086–3090.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSutton, J. C., Bolton, S. A., Davis, M. E., Hartl, K. S., Jacobson, B., Mathur, A., Ogletree, M. L., Slusarchyk, W. A., Zahler, R., Seiler, S. M. & Bisacchi, G. S. (2004). Bioorg. Med. Chem. Lett. 14, 2233–2239.  Web of Science CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds