research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structures of 2-benzyl­amino-4-(4-bromo­phen­yl)-6,7,8,9-tetra­hydro-5H-cyclo­hepta­[b]pyridine-3-carbo­nitrile and 2-benzyl­amino-4-(4-chloro­phen­yl)-6,7,8,9-tetra­hydro-5H-cyclo­hepta[b]pyridine-3-carbo­nitrile

aDepartment of Physics, The Madura College, Madurai 625 011, India, bDepartment of Organic Chemistry, School of Chemistry, Madurai Kamaraj University, Madurai 625 021, India, and cDepartment of Food Science and Technology, University of Ruhuna, Mapalana, Kamburupitiya 81100, Sri Lanka
*Correspondence e-mail: plakshmannilantha@ymail.com

Edited by H. Stoeckli-Evans, University of Neuchâtel, Switzerland (Received 19 November 2014; accepted 26 November 2014; online 1 January 2015)

In the title compounds, C24H22BrN3, (I), and C24H22ClN3, (II), the 2-amino­pyridine ring is fused with a cyclo­heptane ring, which adopts a half-chair conformation. The planes of the phenyl and benzene rings are inclined to that of the central pyridine ring [r.m.s. deviations = 0.0083 (1) and 0.0093 (1) Å for (I) and (II), respectively] by 62.47 (17) and 72.51 (14)°, respectively, in (I), and by 71.44 (9) and 54.90 (8)°, respectively, in (II). The planes of the aromatic rings are inclined to one another by 53.82 (17)° in (I) and by 58.04 (9)° in (II). In the crystals of both (I) and (II), pairs of N—H⋯Nnitrile hydrogen bonds link the mol­ecules, forming inversion dimers with R22(12) ring motifs. In (I), the resulting dimers are connected through C—H⋯Br hydrogen bonds, forming sheets parallel to (10-1), and ππ inter­actions [inter-centroid distance = 3.7821 (16) Å] involving inversion-related pyridine rings, forming a three-dimensional network. In (II), the resulting dimers are connected through ππ inter­actions [inter-centroid distance = 3.771 (2) Å] involving inversion-related pyridine rings, forming a two-dimensional network lying parallel to (001).

1. Chemical context

The heterocyclic skeleton containing a nitro­gen atom is the basis of many essential pharmaceuticals and of many physiologically active natural products. Mol­ecules containing heterocyclic substructures continue to be attractive targets for synthesis since they often exhibit diverse and important biological properties. Pyridine is used in the pharmaceutical industry as a raw material for various drugs, vitamins and fungicides, and as a solvent (Shinkai et al., 2000[Shinkai, H., Ito, T., Iida, T., Kitao, Y., Yamada, H. & Uchida, I. (2000). J. Med. Chem. 43, 4667-4677.]; Jansen et al., 2001[Jansen, B. A. J., van der Zwan, J., den Dulk, H., Brouwer, J. & Reedijk, J. (2001). J. Med. Chem. 44, 245-249.]; Amr et al., 2006[Amr, A. G., Mohamed, A. M., Mohamed, S. F., Abdel-Hafez, N. A. & Hammam, A. G. (2006). Bioorg. Med. Chem. 14, 5481-5488.]). Pyridines are also omnipresent in medicaments and in agrochemicals (Tomlin, 1994[Tomlin, C. (1994). The Pesticide Manual, 10th ed. Cambridge: British Crop Protection Council/Royal Society of Medicine.]). Pyridine derivatives have occupied a unique position in medicinal chemistry. Among them, 2-amino-3-cyano­pyridines have been identified as IKK-β inhibitors (Murata et al., 2003[Murata, T., Shimada, M., Sakakibara, S., Yoshino, T., Kadono, H., Masuda, T., Shimazaki, M., Shintani, T., Fuchikami, K., Sakai, K., Inbe, H., Takeshita, K., Niki, T., Umeda, M., Bacon, K. B., Ziegelbauer, K. B. & Lowinger, T. B. (2003). Bioorg. Med. Chem. Lett. 13, 913-918.]). Many fused cyano­pyridines have also been shown to have a wide spectrum of biological activity (Boschelli et al., 2004[Boschelli, D. H., Wu, B., Barrios Sosa, A. C., Durutlic, H., Ye, F., Raifeld, Y., Golas, J. M. & Boschelli, F. (2004). J. Med. Chem. 47, 6666-6668.]). Our inter­est in the preparation of pharmacologically active 3-cyano­pyridine compounds led us to synthesize the title compounds and we report herein on their crystal structures.

[Scheme 1]

2. Structural commentary

The mol­ecular structures of the title compounds, (I)[link] and (II)[link], are shown in Figs. 1[link] and 2[link], respectively. The bromo derivative (I)[link], crystallizes in the monoclinic space group P21/n while the chloro derivative (II)[link], crystallizes in the triclinic space group P[\overline{1}].

[Figure 1]
Figure 1
The mol­ecular structure of compound (I)[link], showing 50% probability displacement ellipsoids and the atom labelling.
[Figure 2]
Figure 2
The mol­ecular structure of (II)[link], showing 50% probability displacement ellipsoids and the atom labelling.

In both compounds, the pyridine ring is connected to a benzene ring by a –CH2—NH2– chain, as found in a similar structure N6-(4-fluoro­benz­yl)-3-nitro­pyridine-2,6-di­amine (Ge & Qian, 2011[Ge, J. & Qian, X. (2011). Acta Cryst. E67, o1481.]). As expected, the pyridine ring (C2–C6/N3) is planar with r.m.s. deviations of 0.0083 and 0.0093 Å in compounds (I)[link] and (II)[link], respectively. In both compounds, the cyclo­heptane ring adopts a half-chair conformation, with puckering parameters Q2 = 0.415 (3) Å, φ2 = 310.1 (4)° and Q3 = 0.637 (3) Å and φ3 = 283.4 (3)° for compound (I)[link] and Q2 = 0.475 (2) Å, φ2 = 310.3 (2)° and Q3 = 0.635 (2) Å and φ3 = 283.58 (17)° for compound (II)[link]. The amine N atom, N2, attached to the pyridine ring (N3/C2–C6) deviates by only 0.0107 (1) and 0.0073 (1) Å from the ring plane in (I)[link] and (II)[link], respectively. Steric hindrance rotates the benzene ring (C31–C36) out of the plane of the central pyridine ring by 72.51 (14)° in compound (I)[link] and by only 54.90 (8)° in compound (II)[link]. The benzene ring is inclined to the phenyl ring (C22–C27) by 53.82 (17) in (I)[link] and by 58.04 (9)° in (II)[link].

3. Supra­molecular features

In the crystal of (I)[link], mol­ecules are linked by pairs of N—H⋯Nnitrile hydrogen bonds, forming inversion dimers with [R_{2}^{2}](12) ring motifs (Table 1[link] and Fig. 3[link]). The resulting dimers are connected through C—H⋯Br hydrogen bonds, forming sheets lying parallel to (10[\overline{1}]). The sheets are connected by weak ππ stacking inter­actions involving adjacent inversion-related pyridine rings with a centroid-to-centroid distance of 3.7710 (7) Å, as shown in Fig. 3[link]. These inter­actions lead to the formation of a three-dimensional network.

Table 1
Hydrogen-bond geometry (Å, °) for (I)[link]

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2⋯N1i 0.86 2.28 3.010 (3) 143
C21—H21B⋯Br1ii 0.97 2.90 3.703 (3) 141
Symmetry codes: (i) -x, -y+1, -z; (ii) [x+{\script{1\over 2}}, -y+{\script{1\over 2}}, z+{\script{1\over 2}}].
[Figure 3]
Figure 3
Crystal packing diagram of compound (I)[link], viewed along the b axis. Hydrogen bonds (see Table 1[link] for details) and ππ inter­actions are shown as dashed lines (centroids are shown as small circles). H atoms not involved in hydrogen bonding have been omitted for clarity.

In the crystal of (II)[link], mol­ecules are also linked by pairs of N—H⋯Nnitrile hydrogen bonds, forming inversion dimers with [R_{2}^{2}](12) ring motifs (Table 2[link] and Fig. 4[link]). The dimers are connected through weak ππ inter­actions involving inversion-related pyridine rings with a centroid-to-centroid distance of 3.7818 (2) Å (Fig. 4[link]). The resulting structure is a two-dimensional network lying parallel to (001).

Table 2
Hydrogen-bond geometry (Å, °) for (II)[link]

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2⋯N1i 0.86 2.26 3.007 (2) 145
Symmetry code: (i) -x, -y+1, -z+1.
[Figure 4]
Figure 4
Crystal packing diagram of compound (II)[link], viewed along the b axis. Hydrogen bonds (see Table 2[link] for details) and ππ inter­actions are shown as dashed lines (centroids are shown as small circles). H atoms not involved in hydrogen bonding have been omitted for clarity.

4. Synthesis and crystallization

Compounds (I)[link] and (II)[link] were prepared in a similar manner using 4-bromo aldehyde (1 mmol) for compound (I)[link] and 4-chloro aldehyde (1 mmol) for compound (II)[link]. A mixture of cyclo­hepta­none (1 mmol), aromatic aldehyde (1 mmol), malono­nitrile (1 mmol) and benzyl­amine (1mmol) were taken in ethanol (10 ml) to which p-TSA (p-toluene­sulfonic acid) (1.0 mmol) was added. The reaction mixture was heated under reflux for 2–3 h. On completion of the reaction, verified by thin-layer chromatography (TLC), the mixture was poured into crushed ice and extracted with ethyl acetate. The excess solvent was removed under vacuum and the residue was subjected to column chromatography using a petroleum ether/ethyl acetate mixture (97:3 v/v) as eluent to afford the pure products. They were recrystallized from ethyl acetate, giving colourless crystals of compounds (I)[link] [m.p. 417 K; yield 74%] and (II)[link] [m.p. 397 K; yield 75%].

5. Database survey

A similar structure reported in the literature, 2-(4-bromophen­yl)-4-(4-meth­oxy­phen­yl)-6,7,8,9-tetra­hydro-5H-cyclohepta­[b]pyridine (Çelik et al., 2013[Çelik, Í., Akkurt, M., Gezegen, H. & Kazak, C. (2013). Acta Cryst. E69, o956.]) also has a chair conformation of the cyclo­heptane ring and a planar conformation of the pyridine ring, as found for (I)[link] and (II)[link]. In compounds (I)[link] and (II)[link] the C—N bond lengths in the –CH2—NH2– chain, viz. C6—N2 and C21—N2, are 1.350 (3) and 1.441 (3) Å, respectively, in (I)[link] and 1.354 (2) and 1.442 (2) Å, respectively, in (II)[link]. These distances are similar to those reported for N6-(4-fluoro­benz­yl)-3-nitro­pyridine-2,6-di­amine (Ge & Qian, 2011[Ge, J. & Qian, X. (2011). Acta Cryst. E67, o1481.]), viz. 1.341 (3) and 1.454 (3) Å, respectively.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3[link]. The NH and C-bound H atoms were placed in calculated positions and allowed to ride on their carrier atoms: N—H = 0.86 Å and C—H = 0.93–0.97 Å with Uiso(H) = 1.5Ueq(C) for methyl H atoms and = 1.2Ueq(N,C) for other H atoms.

Table 3
Experimental details

  (I) (II)
Crystal data
Chemical formula C24H22BrN3 C24H22ClN3
Mr 432.35 387.89
Crystal system, space group Monoclinic, P21/n Triclinic, P[\overline{1}]
Temperature (K) 293 293
a, b, c (Å) 8.9710 (3), 9.3794 (4), 24.9788 (9) 9.002 (5), 10.097 (5), 11.856 (5)
α, β, γ (°) 90, 99.002 (2), 90 94.939 (5), 108.204 (5), 101.272 (5)
V3) 2075.89 (14) 991.3 (8)
Z 4 2
Radiation type Mo Kα Mo Kα
μ (mm−1) 1.99 0.21
Crystal size (mm) 0.21 × 0.19 × 0.18 0.21 × 0.19 × 0.18
 
Data collection
Diffractometer Bruker Kappa APEXII Bruker Kappa APEXII
Absorption correction Multi-scan (SADABS; Bruker, 2004[Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]) Multi-scan (SADABS; Bruker, 2004[Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.967, 0.974 0.967, 0.974
No. of measured, independent and observed [I > 2σ(I)] reflections 51599, 3863, 2927 24808, 3685, 2918
Rint 0.040 0.026
(sin θ/λ)max−1) 0.606 0.606
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.041, 0.099, 1.10 0.037, 0.105, 1.05
No. of reflections 3863 3685
No. of parameters 253 253
No. of restraints 0 1
H-atom treatment H-atom parameters constrained H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.42, −0.58 0.19, −0.33
Computer programs: APEX2 and SAINT (Bruker, 2004[Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXS97, SHELXL97 and SHELXL2014 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Computing details top

For both compounds, data collection: APEX2 (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009). Software used to prepare material for publication: SHELXL2014 (Sheldrick, 2008) for (I); SHELXL97 (Sheldrick, 2008) for (II).

(I) 2-Benzylamino-4-(4-bromophenyl)-6,7,8,9-tetrahydro-5H-cyclohepta[b]pyridine-3-carbonitrile top
Crystal data top
C24H22BrN3F(000) = 888
Mr = 432.35Dx = 1.383 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 8.9710 (3) ÅCell parameters from 2000 reflections
b = 9.3794 (4) Åθ = 2–31°
c = 24.9788 (9) ŵ = 1.99 mm1
β = 99.002 (2)°T = 293 K
V = 2075.89 (14) Å3Block, colourless
Z = 40.21 × 0.19 × 0.18 mm
Data collection top
Bruker Kappa APEXII
diffractometer
2927 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.040
ω and φ scansθmax = 25.5°, θmin = 2.3°
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
h = 1010
Tmin = 0.967, Tmax = 0.974k = 1111
51599 measured reflectionsl = 3030
3863 independent reflections
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.041H-atom parameters constrained
wR(F2) = 0.099 w = 1/[σ2(Fo2) + (0.0313P)2 + 2.0872P]
where P = (Fo2 + 2Fc2)/3
S = 1.10(Δ/σ)max < 0.001
3863 reflectionsΔρmax = 0.42 e Å3
253 parametersΔρmin = 0.58 e Å3
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.1307 (3)0.3845 (3)0.03963 (10)0.0396 (6)
C20.2856 (3)0.3506 (3)0.02221 (10)0.0328 (6)
C30.3766 (3)0.3123 (3)0.06035 (10)0.0315 (5)
C40.5237 (3)0.2684 (3)0.04248 (10)0.0340 (6)
C50.5720 (3)0.2670 (3)0.01347 (11)0.0357 (6)
C60.3445 (3)0.3496 (3)0.03339 (10)0.0344 (6)
C70.6278 (3)0.2236 (3)0.08138 (11)0.0440 (7)
H7A0.71810.28190.07480.053*
H7B0.57830.24300.11800.053*
C80.6743 (3)0.0676 (3)0.07771 (12)0.0515 (8)
H8A0.58640.01010.07420.062*
H8B0.70830.04040.11130.062*
C90.7981 (3)0.0338 (3)0.03080 (12)0.0519 (8)
H9A0.82470.06600.03300.062*
H9B0.88660.08940.03510.062*
C100.7601 (3)0.0622 (3)0.02499 (12)0.0508 (8)
H10A0.84360.02980.05170.061*
H10B0.67240.00580.02960.061*
C110.7278 (3)0.2176 (3)0.03676 (12)0.0470 (7)
H11A0.74240.23130.07570.056*
H11B0.80070.27720.02240.056*
C210.3110 (3)0.3992 (3)0.12794 (11)0.0481 (7)
H21A0.32180.49920.13770.058*
H21B0.41010.35570.13580.058*
C220.2093 (3)0.3296 (3)0.16277 (11)0.0399 (6)
C230.2260 (4)0.3649 (4)0.21649 (13)0.0708 (10)
H230.29570.43420.23020.085*
C240.1401 (5)0.2983 (5)0.25061 (15)0.0878 (13)
H240.15300.32310.28710.105*
C250.0380 (5)0.1977 (5)0.23151 (18)0.0812 (12)
H250.01830.15210.25470.097*
C260.0187 (5)0.1640 (5)0.17855 (19)0.0843 (12)
H260.05270.09590.16500.101*
C270.1039 (4)0.2295 (4)0.14421 (14)0.0629 (9)
H270.08900.20490.10770.075*
C310.3078 (3)0.3224 (3)0.11850 (10)0.0320 (6)
C320.2628 (4)0.2034 (3)0.14877 (11)0.0512 (8)
H320.28150.11340.13360.061*
C330.1904 (4)0.2159 (3)0.20130 (12)0.0564 (8)
H330.15980.13480.22150.068*
C340.1638 (3)0.3475 (3)0.22362 (10)0.0427 (7)
C350.2063 (3)0.4684 (3)0.19455 (11)0.0473 (7)
H350.18640.55800.20990.057*
C360.2793 (3)0.4546 (3)0.14193 (11)0.0420 (6)
H360.30990.53600.12190.050*
N10.0060 (3)0.4098 (3)0.05266 (10)0.0611 (8)
N20.2581 (3)0.3886 (3)0.07055 (9)0.0475 (6)
H20.16490.40850.05920.057*
N30.4865 (2)0.3065 (2)0.05039 (8)0.0364 (5)
Br10.07272 (5)0.36307 (5)0.29690 (2)0.07749 (17)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0387 (16)0.0493 (17)0.0303 (13)0.0095 (13)0.0039 (11)0.0035 (12)
C20.0278 (12)0.0349 (14)0.0347 (13)0.0055 (11)0.0013 (10)0.0019 (11)
C30.0329 (13)0.0272 (13)0.0341 (13)0.0021 (10)0.0047 (10)0.0001 (10)
C40.0289 (13)0.0318 (13)0.0414 (14)0.0030 (11)0.0058 (11)0.0005 (11)
C50.0287 (13)0.0345 (14)0.0424 (14)0.0036 (11)0.0010 (11)0.0025 (11)
C60.0329 (13)0.0355 (14)0.0345 (13)0.0051 (11)0.0041 (10)0.0025 (11)
C70.0355 (14)0.0557 (18)0.0424 (15)0.0074 (13)0.0105 (12)0.0055 (13)
C80.0460 (17)0.0580 (19)0.0516 (17)0.0139 (15)0.0106 (14)0.0072 (15)
C90.0439 (17)0.0483 (18)0.0636 (19)0.0153 (14)0.0085 (14)0.0014 (15)
C100.0396 (16)0.0541 (19)0.0566 (18)0.0157 (14)0.0010 (13)0.0057 (15)
C110.0321 (14)0.0582 (19)0.0474 (16)0.0094 (13)0.0036 (12)0.0064 (14)
C210.0487 (17)0.0607 (19)0.0340 (14)0.0015 (14)0.0035 (12)0.0033 (13)
C220.0400 (15)0.0438 (16)0.0360 (14)0.0105 (12)0.0066 (11)0.0013 (12)
C230.086 (3)0.087 (3)0.0424 (18)0.019 (2)0.0176 (17)0.0114 (18)
C240.106 (3)0.118 (4)0.047 (2)0.006 (3)0.037 (2)0.002 (2)
C250.068 (3)0.095 (3)0.087 (3)0.008 (2)0.035 (2)0.033 (3)
C260.077 (3)0.087 (3)0.090 (3)0.023 (2)0.019 (2)0.012 (2)
C270.068 (2)0.071 (2)0.0505 (19)0.0095 (19)0.0094 (16)0.0065 (17)
C310.0276 (13)0.0357 (14)0.0334 (13)0.0045 (11)0.0071 (10)0.0002 (11)
C320.078 (2)0.0347 (15)0.0397 (15)0.0015 (15)0.0057 (15)0.0002 (13)
C330.084 (2)0.0457 (19)0.0381 (16)0.0168 (17)0.0037 (15)0.0081 (14)
C340.0402 (15)0.0544 (18)0.0320 (13)0.0076 (13)0.0006 (11)0.0001 (13)
C350.0580 (18)0.0404 (16)0.0399 (15)0.0015 (14)0.0037 (13)0.0031 (13)
C360.0502 (16)0.0357 (15)0.0378 (14)0.0007 (13)0.0002 (12)0.0044 (12)
N10.0367 (14)0.094 (2)0.0506 (15)0.0198 (14)0.0004 (11)0.0073 (14)
N20.0377 (12)0.0729 (18)0.0316 (11)0.0193 (12)0.0044 (10)0.0047 (11)
N30.0324 (11)0.0394 (12)0.0352 (11)0.0067 (10)0.0012 (9)0.0002 (10)
Br10.0937 (3)0.0883 (3)0.04077 (19)0.0216 (2)0.01969 (17)0.00315 (18)
Geometric parameters (Å, º) top
C1—N11.140 (3)C21—C221.505 (4)
C1—C21.426 (4)C21—H21A0.9700
C2—C31.395 (3)C21—H21B0.9700
C2—C61.406 (3)C22—C271.361 (4)
C3—C41.388 (3)C22—C231.367 (4)
C3—C311.490 (3)C23—C241.384 (5)
C4—C51.397 (4)C23—H230.9300
C4—C71.508 (4)C24—C251.349 (6)
C5—N31.341 (3)C24—H240.9300
C5—C111.501 (3)C25—C261.345 (6)
C6—N31.340 (3)C25—H250.9300
C6—N21.350 (3)C26—C271.379 (5)
C7—C81.521 (4)C26—H260.9300
C7—H7A0.9700C27—H270.9300
C7—H7B0.9700C31—C321.372 (4)
C8—C91.517 (4)C31—C361.378 (4)
C8—H8A0.9700C32—C331.375 (4)
C8—H8B0.9700C32—H320.9300
C9—C101.509 (4)C33—C341.359 (4)
C9—H9A0.9700C33—H330.9300
C9—H9B0.9700C34—C351.368 (4)
C10—C111.524 (4)C34—Br11.890 (3)
C10—H10A0.9700C35—C361.380 (4)
C10—H10B0.9700C35—H350.9300
C11—H11A0.9700C36—H360.9300
C11—H11B0.9700N2—H20.8600
C21—N21.441 (3)
N1—C1—C2178.5 (3)N2—C21—C22114.2 (2)
C3—C2—C6120.2 (2)N2—C21—H21A108.7
C3—C2—C1119.7 (2)C22—C21—H21A108.7
C6—C2—C1120.0 (2)N2—C21—H21B108.7
C4—C3—C2119.0 (2)C22—C21—H21B108.7
C4—C3—C31124.1 (2)H21A—C21—H21B107.6
C2—C3—C31116.8 (2)C27—C22—C23117.7 (3)
C3—C4—C5117.0 (2)C27—C22—C21123.6 (3)
C3—C4—C7121.9 (2)C23—C22—C21118.6 (3)
C5—C4—C7121.1 (2)C22—C23—C24120.6 (4)
N3—C5—C4124.4 (2)C22—C23—H23119.7
N3—C5—C11114.6 (2)C24—C23—H23119.7
C4—C5—C11121.0 (2)C25—C24—C23120.7 (4)
N3—C6—N2118.9 (2)C25—C24—H24119.7
N3—C6—C2120.4 (2)C23—C24—H24119.7
N2—C6—C2120.6 (2)C26—C25—C24119.2 (4)
C4—C7—C8114.9 (2)C26—C25—H25120.4
C4—C7—H7A108.6C24—C25—H25120.4
C8—C7—H7A108.6C25—C26—C27120.6 (4)
C4—C7—H7B108.6C25—C26—H26119.7
C8—C7—H7B108.6C27—C26—H26119.7
H7A—C7—H7B107.5C22—C27—C26121.2 (3)
C9—C8—C7114.1 (3)C22—C27—H27119.4
C9—C8—H8A108.7C26—C27—H27119.4
C7—C8—H8A108.7C32—C31—C36118.6 (2)
C9—C8—H8B108.7C32—C31—C3121.8 (2)
C7—C8—H8B108.7C36—C31—C3119.5 (2)
H8A—C8—H8B107.6C31—C32—C33120.7 (3)
C10—C9—C8115.6 (2)C31—C32—H32119.7
C10—C9—H9A108.4C33—C32—H32119.7
C8—C9—H9A108.4C34—C33—C32119.7 (3)
C10—C9—H9B108.4C34—C33—H33120.2
C8—C9—H9B108.4C32—C33—H33120.2
H9A—C9—H9B107.4C33—C34—C35121.2 (3)
C9—C10—C11115.1 (3)C33—C34—Br1119.3 (2)
C9—C10—H10A108.5C35—C34—Br1119.5 (2)
C11—C10—H10A108.5C34—C35—C36118.6 (3)
C9—C10—H10B108.5C34—C35—H35120.7
C11—C10—H10B108.5C36—C35—H35120.7
H10A—C10—H10B107.5C31—C36—C35121.2 (3)
C5—C11—C10114.5 (2)C31—C36—H36119.4
C5—C11—H11A108.6C35—C36—H36119.4
C10—C11—H11A108.6C6—N2—C21124.6 (2)
C5—C11—H11B108.6C6—N2—H2117.7
C10—C11—H11B108.6C21—N2—H2117.7
H11A—C11—H11B107.6C6—N3—C5118.9 (2)
C6—C2—C3—C42.3 (4)C22—C23—C24—C250.2 (7)
C1—C2—C3—C4174.8 (2)C23—C24—C25—C261.0 (7)
C6—C2—C3—C31177.4 (2)C24—C25—C26—C271.1 (7)
C1—C2—C3—C315.5 (4)C23—C22—C27—C261.1 (5)
C2—C3—C4—C50.7 (4)C21—C22—C27—C26176.7 (3)
C31—C3—C4—C5179.0 (2)C25—C26—C27—C220.0 (6)
C2—C3—C4—C7179.2 (2)C4—C3—C31—C3275.4 (4)
C31—C3—C4—C71.1 (4)C2—C3—C31—C32104.9 (3)
C3—C4—C5—N30.7 (4)C4—C3—C31—C36108.7 (3)
C7—C4—C5—N3179.4 (3)C2—C3—C31—C3671.0 (3)
C3—C4—C5—C11178.4 (2)C36—C31—C32—C330.2 (4)
C7—C4—C5—C111.5 (4)C3—C31—C32—C33175.6 (3)
C3—C2—C6—N32.6 (4)C31—C32—C33—C340.4 (5)
C1—C2—C6—N3174.5 (2)C32—C33—C34—C350.7 (5)
C3—C2—C6—N2179.0 (2)C32—C33—C34—Br1177.1 (2)
C1—C2—C6—N23.9 (4)C33—C34—C35—C360.9 (5)
C3—C4—C7—C8114.6 (3)Br1—C34—C35—C36176.9 (2)
C5—C4—C7—C865.3 (3)C32—C31—C36—C350.5 (4)
C4—C7—C8—C978.9 (3)C3—C31—C36—C35175.5 (2)
C7—C8—C9—C1061.7 (4)C34—C35—C36—C310.8 (4)
C8—C9—C10—C1162.9 (4)N3—C6—N2—C215.5 (4)
N3—C5—C11—C10116.6 (3)C2—C6—N2—C21176.0 (3)
C4—C5—C11—C1062.6 (4)C22—C21—N2—C6133.1 (3)
C9—C10—C11—C579.7 (3)N2—C6—N3—C5179.6 (2)
N2—C21—C22—C2719.3 (4)C2—C6—N3—C51.2 (4)
N2—C21—C22—C23162.8 (3)C4—C5—N3—C60.5 (4)
C27—C22—C23—C241.2 (5)C11—C5—N3—C6178.7 (2)
C21—C22—C23—C24176.7 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2···N1i0.862.283.010 (3)143
C21—H21B···Br1ii0.972.903.703 (3)141
Symmetry codes: (i) x, y+1, z; (ii) x+1/2, y+1/2, z+1/2.
(II) 2-Benzylamino-4-(4-chlorophenyl)-6,7,8,9-tetrahydro-5H-cyclohepta[b]pyridine-3-carbonitrile top
Crystal data top
C24H22ClN3Z = 2
Mr = 387.89F(000) = 408
Triclinic, P1Dx = 1.299 Mg m3
a = 9.002 (5) ÅMo Kα radiation, λ = 0.71073 Å
b = 10.097 (5) ÅCell parameters from 2000 reflections
c = 11.856 (5) Åθ = 2–31°
α = 94.939 (5)°µ = 0.21 mm1
β = 108.204 (5)°T = 293 K
γ = 101.272 (5)°Block, colourless
V = 991.3 (8) Å30.21 × 0.19 × 0.18 mm
Data collection top
Bruker Kappa APEXII
diffractometer
2918 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.026
ω and φ scansθmax = 25.5°, θmin = 2.1°
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
h = 1010
Tmin = 0.967, Tmax = 0.974k = 1212
24808 measured reflectionsl = 1414
3685 independent reflections
Refinement top
Refinement on F21 restraint
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.037H-atom parameters constrained
wR(F2) = 0.105 w = 1/[σ2(Fo2) + (0.0486P)2 + 0.3383P]
where P = (Fo2 + 2Fc2)/3
S = 1.05(Δ/σ)max < 0.001
3685 reflectionsΔρmax = 0.19 e Å3
253 parametersΔρmin = 0.33 e Å3
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.1170 (2)0.47342 (18)0.36822 (15)0.0401 (4)
C20.24864 (18)0.41014 (15)0.38041 (14)0.0327 (3)
C30.32569 (17)0.40885 (15)0.29430 (13)0.0304 (3)
C40.44508 (17)0.33539 (15)0.30821 (14)0.0321 (3)
C50.48147 (17)0.26963 (15)0.40915 (14)0.0331 (3)
C60.29611 (17)0.34315 (15)0.48044 (14)0.0320 (3)
C70.53288 (19)0.32240 (17)0.21988 (15)0.0395 (4)
H7A0.64780.34890.26310.047*
H7B0.50740.38540.16330.047*
C80.4910 (2)0.17808 (19)0.14983 (16)0.0477 (4)
H8A0.37600.14110.12740.057*
H8B0.51580.18390.07620.057*
C90.5782 (3)0.0790 (2)0.21741 (18)0.0540 (5)
H9A0.54460.00860.16520.065*
H9B0.69260.11240.23360.065*
C100.5522 (2)0.05584 (19)0.33498 (18)0.0516 (5)
H10A0.61130.01040.36850.062*
H10B0.43890.01630.31840.062*
C110.6037 (2)0.18367 (19)0.42923 (16)0.0451 (4)
H11A0.62230.15650.50810.054*
H11B0.70460.23860.42850.054*
C210.2814 (2)0.29636 (18)0.67846 (15)0.0416 (4)
H21A0.32400.37400.74280.050*
H21B0.36920.25400.67810.050*
C220.15556 (19)0.19495 (16)0.70552 (14)0.0347 (3)
C230.1853 (2)0.16979 (18)0.82224 (16)0.0449 (4)
H230.27890.21890.88230.054*
C240.0778 (3)0.0727 (2)0.85090 (19)0.0589 (5)
H240.09960.05640.92980.071*
C250.0605 (3)0.0004 (2)0.7635 (2)0.0629 (6)
H250.13230.06580.78260.075*
C260.0929 (2)0.0256 (2)0.6480 (2)0.0617 (5)
H260.18770.02280.58860.074*
C270.0142 (2)0.12280 (19)0.61870 (17)0.0503 (4)
H270.00920.13960.53990.060*
C310.28089 (17)0.49110 (15)0.19592 (14)0.0321 (3)
C320.2876 (2)0.62890 (17)0.22518 (15)0.0396 (4)
H320.32230.66830.30560.047*
C330.2437 (2)0.70820 (18)0.13681 (17)0.0459 (4)
H330.24910.80040.15740.055*
C340.19207 (19)0.64947 (18)0.01821 (16)0.0428 (4)
C350.1840 (2)0.51340 (19)0.01437 (16)0.0454 (4)
H350.14930.47480.09500.055*
C360.2284 (2)0.43515 (17)0.07516 (15)0.0395 (4)
H360.22310.34300.05400.047*
N10.0094 (2)0.51850 (19)0.36511 (16)0.0616 (5)
N20.22527 (17)0.34558 (15)0.56572 (13)0.0425 (3)
H20.14130.37860.55170.051*
N30.41191 (15)0.27423 (13)0.49346 (11)0.0349 (3)
Cl10.13087 (7)0.74901 (6)0.09170 (5)0.06667 (19)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0457 (9)0.0481 (10)0.0398 (9)0.0242 (8)0.0226 (7)0.0144 (7)
C20.0336 (7)0.0323 (8)0.0369 (8)0.0132 (6)0.0151 (6)0.0062 (6)
C30.0315 (7)0.0271 (8)0.0337 (8)0.0084 (6)0.0118 (6)0.0038 (6)
C40.0294 (7)0.0317 (8)0.0382 (8)0.0096 (6)0.0141 (6)0.0050 (6)
C50.0307 (7)0.0328 (8)0.0362 (8)0.0110 (6)0.0104 (6)0.0028 (6)
C60.0328 (8)0.0297 (8)0.0369 (8)0.0093 (6)0.0153 (6)0.0047 (6)
C70.0368 (8)0.0452 (9)0.0472 (9)0.0170 (7)0.0224 (7)0.0144 (8)
C80.0523 (10)0.0567 (11)0.0441 (10)0.0229 (9)0.0246 (8)0.0062 (8)
C90.0662 (12)0.0486 (11)0.0619 (12)0.0279 (9)0.0335 (10)0.0071 (9)
C100.0646 (12)0.0436 (10)0.0629 (12)0.0302 (9)0.0318 (10)0.0148 (9)
C110.0454 (9)0.0549 (11)0.0453 (10)0.0294 (8)0.0172 (8)0.0146 (8)
C210.0435 (9)0.0471 (10)0.0368 (9)0.0101 (8)0.0168 (7)0.0088 (7)
C220.0398 (8)0.0331 (8)0.0381 (8)0.0154 (7)0.0184 (7)0.0066 (6)
C230.0513 (10)0.0473 (10)0.0398 (9)0.0150 (8)0.0171 (8)0.0111 (8)
C240.0745 (14)0.0608 (13)0.0570 (12)0.0228 (11)0.0345 (11)0.0288 (10)
C250.0589 (12)0.0536 (12)0.0923 (16)0.0156 (10)0.0404 (12)0.0339 (12)
C260.0479 (11)0.0535 (12)0.0764 (14)0.0035 (9)0.0144 (10)0.0156 (11)
C270.0498 (10)0.0527 (11)0.0455 (10)0.0092 (9)0.0127 (8)0.0119 (8)
C310.0298 (7)0.0341 (8)0.0386 (8)0.0116 (6)0.0167 (6)0.0094 (6)
C320.0413 (9)0.0368 (9)0.0408 (9)0.0121 (7)0.0123 (7)0.0060 (7)
C330.0460 (9)0.0332 (9)0.0594 (11)0.0111 (7)0.0164 (8)0.0136 (8)
C340.0384 (9)0.0483 (10)0.0500 (10)0.0146 (8)0.0195 (8)0.0240 (8)
C350.0499 (10)0.0558 (11)0.0370 (9)0.0171 (8)0.0196 (8)0.0115 (8)
C360.0457 (9)0.0380 (9)0.0416 (9)0.0158 (7)0.0206 (7)0.0072 (7)
N10.0655 (10)0.0839 (13)0.0638 (11)0.0493 (10)0.0377 (9)0.0285 (9)
N20.0472 (8)0.0511 (9)0.0466 (8)0.0259 (7)0.0281 (7)0.0202 (7)
N30.0366 (7)0.0351 (7)0.0366 (7)0.0145 (6)0.0135 (6)0.0072 (6)
Cl10.0687 (3)0.0744 (4)0.0699 (3)0.0251 (3)0.0271 (3)0.0466 (3)
Geometric parameters (Å, º) top
C1—N11.140 (2)C21—C221.505 (2)
C1—C21.428 (2)C21—H21A0.9700
C2—C31.403 (2)C21—H21B0.9700
C2—C61.408 (2)C22—C271.378 (3)
C3—C41.398 (2)C22—C231.381 (2)
C3—C311.489 (2)C23—C241.380 (3)
C4—C51.399 (2)C23—H230.9300
C4—C71.508 (2)C24—C251.366 (3)
C5—N31.337 (2)C24—H240.9300
C5—C111.505 (2)C25—C261.366 (3)
C6—N31.340 (2)C25—H250.9300
C6—N21.354 (2)C26—C271.382 (3)
C7—C81.529 (3)C26—H260.9300
C7—H7A0.9700C27—H270.9300
C7—H7B0.9700C31—C361.388 (2)
C8—C91.520 (3)C31—C321.389 (2)
C8—H8A0.9700C32—C331.380 (2)
C8—H8B0.9700C32—H320.9300
C9—C101.513 (3)C33—C341.373 (3)
C9—H9A0.9700C33—H330.9300
C9—H9B0.9700C34—C351.376 (3)
C10—C111.524 (3)C34—Cl11.7334 (17)
C10—H10A0.9700C35—C361.383 (2)
C10—H10B0.9700C35—H350.9300
C11—H11A0.9700C36—H360.9300
C11—H11B0.9700N2—H20.8600
C21—N21.442 (2)
N1—C1—C2174.73 (18)N2—C21—C22114.79 (14)
C3—C2—C6120.15 (13)N2—C21—H21A108.6
C3—C2—C1122.07 (14)C22—C21—H21A108.6
C6—C2—C1117.73 (14)N2—C21—H21B108.6
C4—C3—C2118.39 (14)C22—C21—H21B108.6
C4—C3—C31123.49 (13)H21A—C21—H21B107.5
C2—C3—C31118.06 (13)C27—C22—C23118.37 (16)
C3—C4—C5117.26 (13)C27—C22—C21123.14 (15)
C3—C4—C7123.47 (14)C23—C22—C21118.46 (15)
C5—C4—C7119.26 (13)C24—C23—C22120.88 (18)
N3—C5—C4124.52 (14)C24—C23—H23119.6
N3—C5—C11114.38 (14)C22—C23—H23119.6
C4—C5—C11121.08 (14)C25—C24—C23120.05 (19)
N3—C6—N2118.13 (14)C25—C24—H24120.0
N3—C6—C2120.89 (13)C23—C24—H24120.0
N2—C6—C2120.98 (13)C24—C25—C26119.80 (19)
C4—C7—C8113.51 (14)C24—C25—H25120.1
C4—C7—H7A108.9C26—C25—H25120.1
C8—C7—H7A108.9C25—C26—C27120.40 (19)
C4—C7—H7B108.9C25—C26—H26119.8
C8—C7—H7B108.9C27—C26—H26119.8
H7A—C7—H7B107.7C22—C27—C26120.48 (18)
C9—C8—C7114.77 (15)C22—C27—H27119.8
C9—C8—H8A108.6C26—C27—H27119.8
C7—C8—H8A108.6C36—C31—C32118.14 (14)
C9—C8—H8B108.6C36—C31—C3122.71 (14)
C7—C8—H8B108.6C32—C31—C3119.13 (14)
H8A—C8—H8B107.6C33—C32—C31121.05 (16)
C10—C9—C8116.06 (15)C33—C32—H32119.5
C10—C9—H9A108.3C31—C32—H32119.5
C8—C9—H9A108.3C34—C33—C32119.28 (16)
C10—C9—H9B108.3C34—C33—H33120.4
C8—C9—H9B108.3C32—C33—H33120.4
H9A—C9—H9B107.4C33—C34—C35121.39 (16)
C9—C10—C11115.01 (16)C33—C34—Cl1118.72 (14)
C9—C10—H10A108.5C35—C34—Cl1119.86 (14)
C11—C10—H10A108.5C34—C35—C36118.70 (16)
C9—C10—H10B108.5C34—C35—H35120.6
C11—C10—H10B108.5C36—C35—H35120.6
H10A—C10—H10B107.5C35—C36—C31121.43 (16)
C5—C11—C10113.24 (15)C35—C36—H36119.3
C5—C11—H11A108.9C31—C36—H36119.3
C10—C11—H11A108.9C6—N2—C21124.26 (14)
C5—C11—H11B108.9C6—N2—H2117.9
C10—C11—H11B108.9C21—N2—H2117.9
H11A—C11—H11B107.7C5—N3—C6118.73 (13)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2···N1i0.862.263.007 (2)145
Symmetry code: (i) x, y+1, z+1.
 

Acknowledgements

JS and RAN thank the management of The Madura College (Autonomous), Madurai, for their encouragement and support. RRK thanks the University Grants Commission, New Delhi, for funds through the Major Research Project F. No. 42–242/2013 (SR).

References

First citationAmr, A. G., Mohamed, A. M., Mohamed, S. F., Abdel-Hafez, N. A. & Hammam, A. G. (2006). Bioorg. Med. Chem. 14, 5481–5488.  Web of Science CrossRef PubMed CAS Google Scholar
First citationBoschelli, D. H., Wu, B., Barrios Sosa, A. C., Durutlic, H., Ye, F., Raifeld, Y., Golas, J. M. & Boschelli, F. (2004). J. Med. Chem. 47, 6666–6668.  Web of Science CrossRef PubMed CAS Google Scholar
First citationBruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationÇelik, Í., Akkurt, M., Gezegen, H. & Kazak, C. (2013). Acta Cryst. E69, o956.  CSD CrossRef IUCr Journals Google Scholar
First citationGe, J. & Qian, X. (2011). Acta Cryst. E67, o1481.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationJansen, B. A. J., van der Zwan, J., den Dulk, H., Brouwer, J. & Reedijk, J. (2001). J. Med. Chem. 44, 245–249.  Web of Science CrossRef PubMed CAS Google Scholar
First citationMurata, T., Shimada, M., Sakakibara, S., Yoshino, T., Kadono, H., Masuda, T., Shimazaki, M., Shintani, T., Fuchikami, K., Sakai, K., Inbe, H., Takeshita, K., Niki, T., Umeda, M., Bacon, K. B., Ziegelbauer, K. B. & Lowinger, T. B. (2003). Bioorg. Med. Chem. Lett. 13, 913–918.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationShinkai, H., Ito, T., Iida, T., Kitao, Y., Yamada, H. & Uchida, I. (2000). J. Med. Chem. 43, 4667–4677.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTomlin, C. (1994). The Pesticide Manual, 10th ed. Cambridge: British Crop Protection Council/Royal Society of Medicine.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds