research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of (E)-2-{[(4-anilinophen­yl)imino]­meth­yl}phenol

aDepartment of Chemistry, Indian Institute of Technology Kanpur, Kanpur, UP 208 016, India, and bNational Taras Shevchenko University, Department of Chemistry, Volodymyrska str. 64, 01601 Kyiv, Ukraine
*Correspondence e-mail: nsharkina@ukr.net

Edited by H. Stoeckli-Evans, University of Neuchâtel, Switzerland (Received 21 November 2014; accepted 30 November 2014; online 1 January 2015)

The title compound, C19H16N2O, crystallized with two independent mol­ecules (A and B) in the asymmetric unit. There is an intra­molecular O—H⋯N hydrogen bond in each mol­ecule with the phenol ring being inclined to the central benzene ring by 4.93 (14) and 7.12 (14)° in mol­ecules A and B, respectively. The conformation of the two mol­ecules differs essentially in the orientation of the terminal amino­phenyl ring with respect to the central benzene ring; this dihedral angle is 50.51 (4)° in mol­ecule A and 54.61 (14)° in mol­ecule B. The two outer aromatic rings are inclined to one another by 51.39 (14) and 49.88 (14)° in mol­ecules A and B, respectively. In the crystal, mol­ecules are connected by N—H⋯O hydrogen bonds generating –A-BAB– zigzag chains extending along [010]. The chains are linked via C—H⋯π inter­actions involving neighbouring A mol­ecules, forming slabs lying parallel to (100).

1. Chemical context

Schiff bases often exhibit various biological activities and in many cases have been shown to have anti­bacterial, anti­cancer, anti-inflammatory and anti­toxic properties (Lozier et al., 1975[Lozier, R. H., Bogomolni, R. A. & Stoeckenius, W. (1975). Biophys. J. 15, 955-962.]). They are used as anion sensors (Dalapati et al., 2011[Dalapati, S., Alam, M. A., Jana, S. & Guchhait, N. (2011). J. Fluor. Chem. 132, 536-540.]), as non-linear optics compounds (Sun et al., 2012[Sun, Y., Wang, Y., Liu, Z., Huang, C. & Yu, C. (2012). Spectrochim. Acta Part A, 96, 42-50.]) and as versatile polynuclear ligands for multinuclear magnetic exchange clusters (Moroz et al., 2012[Moroz, Y. S., Demeshko, S., Haukka, M., Mokhir, A., Mitra, U., Stocker, M., Müller, P., Meyer, F. & Fritsky, I. O. (2012). Inorg. Chem. 51, 7445-7447.]). Schiff bases have also been used to prepare metal complexes (Faizi & Sen, 2014[Faizi, M. S. H. & Sen, P. (2014). Acta Cryst. E70, m173.]; Faizi & Hussain, 2014[Faizi, M. S. H. & Hussain, S. (2014). Acta Cryst. E70, m197.]; Penkova et al., 2010[Penkova, L., Demeshko, S., Pavlenko, V. A., Dechert, S., Meyer, F. & Fritsky, I. O. (2010). Inorg. Chim. Acta, 363, 3036-3040.]). We report herein on the crystal structure of the title compound synthesized by the condensation reaction of salicyladehyde and N-phenyl-p-phenyl­enedi­amine.

[Scheme 1]

2. Structural commentary

The title compound crystallized with two independent mol­ecules (A and B) in the asymmetric unit (Fig. 1[link]). There is an intra­molecular O—H⋯N hydrogen bond in each mol­ecule, which is a common feature in related imine-phenol compounds and it stabilizes the mol­ecular structure (Table 1[link] and Fig. 1[link]). The imine group displays a torsion angle C6—C7—N1—C8 = 178.8 (2)° in mol­ecule A and C25—C26—N3—C27 = 178.5 (2)° in mol­ecule B. In mol­ecules A and B the phenol rings (C1–C6 and C20–C25) are inclined to the central benzene rings (C8–C13 and C27–C32) by 4.93 (14) and 7.12 (14)°, respectively.

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 is the centroid of ring C1–C6 in mol­ecule A.

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H4A⋯N1 0.82 1.86 2.568 (3) 144
O2—H3A⋯N3 0.82 1.82 2.550 (3) 148
N2—H1A⋯O2i 0.86 2.29 3.006 (4) 141
N4—H2A⋯O1ii 0.86 2.33 3.179 (4) 168
C15—H13⋯Cg1iii 0.93 2.92 3.581 (4) 129
Symmetry codes: (i) x, y, z-1; (ii) x, y+1, z+1; (iii) [-x, y+{\script{1\over 2}}, -z+1].
[Figure 1]
Figure 1
The mol­ecular structure of the two independent mol­ecules (A and B) of the title compound, with the atom labelling. Displacement ellipsoids are drawn at the 40% probability level. Intra­molecular O—H⋯N hydrogen bonds are shown as dashed lines (see Table 1[link] for details).

The conformation of the two mol­ecules differs essentially in the orientation of the terminal amino­phenyl rings (C14–C19 and C33–C38) with respect to the central benzene rings (C8–C13 and C27–C32); this dihedral angle is 50.51 (4)° in mol­ecule A and 54.61 (14)° in mol­ecule B. The two outer aromatic rings (C1–C6 and C14–C19 in A, and C20–C25 and C33–C38 in B) are inclined to one another by 51.39 (14) and 49.88 (14)° in mol­ecules A and B, respectively. The C—N, C≡N and C—C bond lengths are normal and close to the values observed in related structures (Sliva et al., 1997[Sliva, T. Yu., Duda, A. M., Głowiak, T., Fritsky, I. O., Amirkhanov, V. M., Mokhir, A. A. & Kozłowski, H. (1997). J. Chem. Soc. Dalton Trans. pp. 273-276.]; Petrusenko et al., 1997[Petrusenko, S. R., Kokozay, V. N. & Fritsky, I. O. (1997). Polyhedron, 16, 267-274.]).

3. Supra­molecular features

In the crystal, mol­ecules are connected by N—H⋯O hydrogen bonds, generating –A-BAB– zigzag chains extending along [010]; Table 1[link] and Fig. 2[link]. The chains are linked via C—H⋯π inter­actions involving neighbouring A mol­ecules, forming slabs lying parallel to (100); see Table 1[link] and Fig. 3[link].

[Figure 2]
Figure 2
A view of the –A-BAB– zigzag hydrogen-bonded chain in the crystal of the title compound, extending along the b axis (hydrogen bonds are shown as dashed lines; see Table 1[link] for details).
[Figure 3]
Figure 3
A view along the c axis of the crystal packing of the title compound. The hydrogen bonds and C—H⋯π inter­actions are shown as dashed lines (see Table 1[link] for details; for the latter inter­actions the atoms involved are shown as light and dark grey balls).

4. Database survey

There are very few examples of similar compounds in the literature although some metal complexes of similar ligands have been reported on (Xie et al., 2013[Xie, Y.-Z., Shan, G.-G., Li, P., Zhou, Z.-Y. & Su, Z.-M. (2013). Dyes and Pigments, 96, 467-474.]; Safin et al., 2012[Safin, D. A., Robeyns, K. & Garcia, Y. (2012). RSC Adv. 2, 11379-11388.]). A search of the Cambridge Structural Database (Version 5.35, May 2014; Groom & Allen, 2014[Groom, C. R. & Allen, F. H. (2014). Angew. Chem. Int. Ed. 53, 662-671.]) revealed the structure of one very similar compound, viz. N-[(E)-4-chloro­benzyl­idene]-N′-phenyl­benzene-1,4-di­amine (II) (Nor Hashim et al., 2010[Nor Hashim, N. Z., Kassim, K. & Yamin, B. M. (2010). Acta Cryst. E66, o2039.]), in which the 2-phenol ring in the title compound is replaced by a 4-chloro­benzene ring. In (II), the central six-membered ring makes a dihedral angle of 12.26 (10)° with the 4-chloro­phenyl ring. The same dihedral angle is smaller in the title compound, 4.93 (14)° in mol­ecule A and 7.12 (14)° in mol­ecule B, owing to the presence of the intra­molecular O—H⋯N hydrogen bond. The outer phenyl ring is inclined to the central six-membered ring by 44.18 (11)° in (II), compared to 50.51 (4) and 54.61 (14)° in mol­ecules A and B, respectively, of the title compound.

5. Synthesis and crystallization

100 mg (1 mmol) of N-phenyl-p-phenyl­enedi­amine were dissolved in 10 ml of absolute ethanol. To this solution, 66 mg (1 mmol) of salicyladehyde in 5 ml of absolute ethanol was added dropwise with stirring. The mixture was stirred for 10 min, two drops of glacial acetic acid were then added and the mixture was further refluxed for 2 h. The resulting reddish yellow precipitate was recovered by filtration, washed several times with a small portions of EtOH and then with diethyl ether to give 120 mg (75%) of the title compound. Crystals suitable for X-ray analysis was obtained within 3 days by slow evaporation of a solution in methanol.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. The N—H and O—H H atoms were located from a difference Fourier map and constrained to ride on their parent atoms, with N—H = 0.86 and O—H = 0.82 Å and with Uiso(H) = 1.2Ueq(N) and = 1.5Ueq(O). All C-bound H atoms were positioned geometrically and refined using a riding model with C—H = 0.93 Å and with Uiso(H) = 1.2Ueq(C).

Table 2
Experimental details

Crystal data
Chemical formula C19H16N2O
Mr 288.34
Crystal system, space group Monoclinic, P21
Temperature (K) 100
a, b, c (Å) 7.704 (6), 16.706 (12), 11.617 (9)
β (°) 93.880 (14)
V3) 1492 (2)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.08
Crystal size (mm) 0.20 × 0.15 × 0.12
 
Data collection
Diffractometer Bruker SMART APEX CCD
Absorption correction Multi-scan (SADABS; Sheldrick, 2004[Sheldrick, G. M. (2004). SADABS. University of Göttingen, Germany.])
Tmin, Tmax 0.986, 0.990
No. of measured, independent and observed [I > 2σ(I)] reflections 8013, 5245, 4091
Rint 0.026
(sin θ/λ)max−1) 0.606
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.045, 0.127, 0.97
No. of reflections 5242
No. of parameters 397
No. of restraints 1
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.12, −0.15
Computer programs: SMART and SAINT (Bruker, 2003[Bruker (2003). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]), SIR97 (Altomare et al., 1999[Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115-119.]), SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), DIAMOND (Brandenberg & Putz, 2006[Brandenberg, K. & Putz, H. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.]), Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Computing details top

Data collection: SMART (Bruker, 2003); cell refinement: SAINT (Bruker, 2003); data reduction: SAINT (Bruker, 2003); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenberg & Putz, 2006) and Mercury (Macrae et al., 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

(E)-2-{[(4-Anilinophenyl)imino]methyl}phenol top
Crystal data top
C19H16N2OF(000) = 608
Mr = 288.34Dx = 1.284 Mg m3
Monoclinic, P21Melting point: 280 K
Hall symbol: P 2ybMo Kα radiation, λ = 0.71073 Å
a = 7.704 (6) ÅCell parameters from 2553 reflections
b = 16.706 (12) Åθ = 2.7–23.7°
c = 11.617 (9) ŵ = 0.08 mm1
β = 93.880 (14)°T = 100 K
V = 1492 (2) Å3Needle, dark yellow
Z = 40.20 × 0.15 × 0.12 mm
Data collection top
Bruker SMART APEX CCD
diffractometer
5245 independent reflections
Radiation source: fine-focus sealed tube4091 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.026
ω scansθmax = 25.5°, θmin = 1.8°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2004)
h = 97
Tmin = 0.986, Tmax = 0.990k = 2019
8013 measured reflectionsl = 1413
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.045Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.127H-atom parameters constrained
S = 0.97 w = 1/[σ2(Fo2) + (0.0711P)2 + 0.0812P]
where P = (Fo2 + 2Fc2)/3
5242 reflections(Δ/σ)max < 0.001
397 parametersΔρmax = 0.12 e Å3
1 restraintΔρmin = 0.15 e Å3
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C150.2606 (3)0.66796 (17)0.4413 (2)0.0599 (7)
H130.22510.61920.47060.072*
C160.2437 (4)0.73672 (18)0.5044 (3)0.0642 (7)
H140.19820.73370.57640.077*
C170.2923 (4)0.80966 (19)0.4637 (3)0.0763 (9)
H150.28000.85590.50700.092*
C180.3596 (5)0.8129 (2)0.3573 (3)0.0834 (10)
H160.39130.86210.32760.100*
C190.3807 (4)0.74423 (19)0.2938 (3)0.0715 (8)
H170.42960.74740.22290.086*
C140.3301 (3)0.67070 (16)0.3346 (2)0.0544 (6)
C110.3031 (3)0.52520 (15)0.2888 (2)0.0538 (6)
C120.2085 (4)0.47990 (17)0.2069 (2)0.0605 (7)
H200.16850.50350.13770.073*
C130.1725 (4)0.40068 (17)0.2262 (2)0.0605 (7)
H210.10830.37170.16980.073*
C80.2303 (3)0.36316 (15)0.3284 (2)0.0515 (6)
C90.3247 (4)0.40894 (15)0.4112 (2)0.0595 (7)
H230.36300.38560.48100.071*
C100.3620 (4)0.48772 (16)0.3914 (2)0.0602 (7)
H240.42750.51670.44720.072*
C10.0687 (3)0.12055 (16)0.3414 (2)0.0569 (7)
C20.0062 (4)0.04379 (18)0.3517 (3)0.0647 (7)
H260.06490.02150.29220.078*
C30.0489 (4)0.00004 (18)0.4503 (3)0.0722 (8)
H270.00820.05220.45630.087*
C40.1521 (4)0.03320 (18)0.5403 (3)0.0696 (8)
H280.18040.00360.60670.083*
C50.2121 (4)0.10975 (17)0.5308 (3)0.0621 (7)
H290.28250.13150.59110.075*
C60.1703 (3)0.15580 (16)0.4335 (2)0.0525 (6)
C70.2253 (3)0.23864 (16)0.4276 (2)0.0542 (6)
H370.29170.26070.48950.065*
N20.3442 (3)0.60413 (13)0.2630 (2)0.0663 (7)
H1A0.38170.61300.19610.080*
N10.1843 (3)0.28196 (13)0.3392 (2)0.0560 (6)
O10.0278 (3)0.16115 (13)0.24309 (16)0.0714 (5)
H4A0.08270.20320.24340.107*
C330.1682 (3)1.17385 (17)0.9328 (2)0.0590 (7)
C380.2378 (4)1.24246 (19)0.9834 (3)0.0693 (8)
H20.27981.24161.06030.083*
C370.2458 (4)1.31204 (19)0.9210 (3)0.0762 (9)
H30.29291.35800.95600.091*
C360.1842 (4)1.31411 (19)0.8067 (3)0.0707 (8)
H40.19101.36090.76390.085*
C350.1130 (4)1.24640 (18)0.7571 (3)0.0663 (7)
H50.06971.24760.68040.080*
C340.1046 (4)1.17697 (18)0.8187 (2)0.0655 (7)
H60.05571.13150.78360.079*
C300.1879 (4)1.02639 (16)0.9723 (2)0.0565 (7)
C290.2807 (4)1.00490 (16)0.8772 (2)0.0592 (7)
H80.31741.04420.82760.071*
C280.3171 (4)0.92596 (16)0.8573 (2)0.0593 (7)
H90.37800.91240.79360.071*
C270.2653 (3)0.86564 (15)0.9300 (2)0.0532 (6)
C320.1747 (4)0.88786 (17)1.0241 (2)0.0603 (7)
H110.13970.84861.07430.072*
C310.1356 (4)0.96604 (17)1.0447 (2)0.0633 (7)
H120.07330.97911.10790.076*
C250.3974 (3)0.66532 (15)0.8267 (2)0.0511 (6)
C240.4721 (4)0.63136 (18)0.7335 (2)0.0616 (7)
H320.50070.66390.67270.074*
C230.5049 (4)0.55121 (18)0.7285 (3)0.0651 (7)
H330.55720.52980.66560.078*
C220.4601 (4)0.50243 (18)0.8170 (3)0.0640 (7)
H340.48040.44760.81340.077*
C210.3851 (4)0.53439 (17)0.9110 (3)0.0643 (7)
H350.35540.50100.97060.077*
C200.3537 (4)0.61552 (16)0.9176 (2)0.0570 (7)
C260.3651 (4)0.75097 (17)0.8317 (2)0.0577 (7)
H380.39470.78330.77090.069*
N40.1551 (4)1.10499 (14)1.0013 (2)0.0729 (7)
H2A0.12311.11291.06990.088*
N30.2966 (3)0.78277 (13)0.9181 (2)0.0577 (6)
O20.2820 (3)0.64507 (13)1.01166 (17)0.0804 (6)
H3A0.27160.69381.00580.121*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C150.0657 (16)0.0499 (15)0.0653 (17)0.0044 (13)0.0135 (13)0.0061 (14)
C160.0660 (18)0.0598 (18)0.0674 (17)0.0004 (14)0.0095 (14)0.0059 (15)
C170.086 (2)0.0538 (19)0.088 (2)0.0044 (16)0.0051 (18)0.0101 (17)
C180.102 (3)0.0523 (19)0.095 (3)0.0241 (18)0.003 (2)0.0120 (18)
C190.083 (2)0.0619 (19)0.0699 (19)0.0170 (16)0.0064 (15)0.0121 (17)
C140.0537 (14)0.0489 (15)0.0603 (16)0.0029 (12)0.0026 (12)0.0069 (13)
C110.0606 (16)0.0503 (15)0.0518 (15)0.0064 (12)0.0117 (12)0.0039 (12)
C120.0727 (18)0.0622 (18)0.0466 (15)0.0055 (14)0.0038 (13)0.0020 (13)
C130.0654 (17)0.0652 (19)0.0504 (16)0.0026 (14)0.0005 (13)0.0083 (13)
C80.0530 (14)0.0499 (15)0.0516 (15)0.0028 (12)0.0029 (11)0.0000 (12)
C90.0687 (18)0.0539 (17)0.0547 (16)0.0058 (13)0.0049 (13)0.0033 (13)
C100.0702 (18)0.0488 (16)0.0606 (17)0.0005 (13)0.0022 (13)0.0007 (13)
C10.0594 (16)0.0568 (17)0.0555 (16)0.0032 (13)0.0124 (13)0.0025 (14)
C20.0672 (17)0.0598 (18)0.0680 (19)0.0055 (14)0.0120 (14)0.0123 (15)
C30.077 (2)0.0545 (17)0.088 (2)0.0032 (15)0.0223 (17)0.0045 (17)
C40.080 (2)0.0582 (18)0.0706 (19)0.0098 (16)0.0088 (16)0.0067 (15)
C50.0650 (17)0.0576 (17)0.0636 (18)0.0059 (14)0.0027 (14)0.0027 (14)
C60.0541 (14)0.0490 (15)0.0555 (15)0.0042 (12)0.0112 (11)0.0037 (12)
C70.0603 (16)0.0526 (16)0.0504 (15)0.0029 (13)0.0083 (12)0.0037 (13)
N20.0920 (18)0.0493 (14)0.0597 (14)0.0024 (13)0.0212 (13)0.0051 (11)
N10.0609 (13)0.0488 (13)0.0589 (14)0.0015 (10)0.0092 (11)0.0036 (11)
O10.0855 (13)0.0679 (13)0.0599 (11)0.0105 (11)0.0026 (9)0.0010 (10)
C330.0608 (16)0.0555 (17)0.0611 (17)0.0088 (14)0.0070 (13)0.0025 (14)
C380.0741 (19)0.0608 (18)0.0713 (19)0.0029 (16)0.0063 (15)0.0145 (17)
C370.087 (2)0.0529 (19)0.089 (2)0.0051 (16)0.0059 (18)0.0099 (17)
C360.077 (2)0.0549 (18)0.082 (2)0.0044 (15)0.0180 (16)0.0056 (16)
C350.0669 (18)0.0671 (19)0.0648 (17)0.0043 (15)0.0047 (14)0.0028 (16)
C340.0784 (19)0.0552 (17)0.0628 (17)0.0073 (15)0.0030 (14)0.0036 (14)
C300.0624 (17)0.0513 (16)0.0552 (15)0.0023 (13)0.0003 (13)0.0036 (13)
C290.0659 (17)0.0544 (17)0.0583 (16)0.0025 (13)0.0108 (13)0.0049 (13)
C280.0635 (17)0.0556 (17)0.0604 (16)0.0003 (13)0.0147 (13)0.0012 (13)
C270.0584 (15)0.0493 (16)0.0521 (15)0.0045 (12)0.0058 (12)0.0017 (12)
C320.0705 (18)0.0588 (18)0.0525 (15)0.0069 (14)0.0112 (13)0.0045 (13)
C310.0710 (18)0.0634 (18)0.0570 (16)0.0022 (14)0.0145 (14)0.0009 (14)
C250.0513 (14)0.0506 (16)0.0515 (15)0.0019 (12)0.0025 (11)0.0033 (13)
C240.0654 (17)0.0656 (19)0.0551 (16)0.0014 (14)0.0135 (13)0.0012 (13)
C230.0669 (17)0.067 (2)0.0625 (17)0.0038 (14)0.0140 (14)0.0039 (15)
C220.0665 (18)0.0533 (17)0.0722 (19)0.0006 (14)0.0046 (14)0.0061 (15)
C210.081 (2)0.0512 (17)0.0612 (18)0.0003 (14)0.0117 (15)0.0074 (13)
C200.0666 (17)0.0566 (17)0.0482 (15)0.0006 (13)0.0066 (13)0.0008 (13)
C260.0631 (16)0.0589 (18)0.0516 (15)0.0035 (13)0.0070 (13)0.0083 (14)
N40.105 (2)0.0584 (16)0.0569 (14)0.0095 (14)0.0161 (13)0.0026 (12)
N30.0646 (14)0.0497 (14)0.0591 (14)0.0009 (11)0.0060 (11)0.0018 (11)
O20.1272 (18)0.0600 (13)0.0575 (12)0.0089 (12)0.0318 (12)0.0068 (9)
Geometric parameters (Å, º) top
C15—C161.373 (4)C33—C341.383 (4)
C15—C141.384 (4)C33—C381.380 (4)
C15—H130.9300C33—N41.406 (4)
C16—C171.368 (4)C38—C371.373 (5)
C16—H140.9300C38—H20.9300
C17—C181.374 (5)C37—C361.381 (5)
C17—H150.9300C37—H30.9300
C18—C191.380 (5)C36—C351.367 (4)
C18—H160.9300C36—H40.9300
C19—C141.382 (4)C35—C341.367 (4)
C19—H170.9300C35—H50.9300
C14—N21.397 (4)C34—H60.9300
C11—C121.384 (4)C30—N41.383 (4)
C11—N21.393 (3)C30—C311.390 (4)
C11—C101.395 (4)C30—C291.403 (4)
C12—C131.374 (4)C29—C281.371 (4)
C12—H200.9300C29—H80.9300
C13—C81.389 (4)C28—C271.391 (4)
C13—H210.9300C28—H90.9300
C8—C91.394 (4)C27—C321.387 (4)
C8—N11.410 (3)C27—N31.414 (3)
C9—C101.370 (4)C32—C311.365 (4)
C9—H230.9300C32—H110.9300
C10—H240.9300C31—H120.9300
C1—O11.348 (3)C25—C241.382 (4)
C1—C21.378 (4)C25—C201.403 (4)
C1—C61.411 (4)C25—C261.454 (4)
C2—C31.380 (4)C24—C231.365 (4)
C2—H260.9300C24—H320.9300
C3—C41.386 (4)C23—C221.375 (4)
C3—H270.9300C23—H330.9300
C4—C51.367 (4)C22—C211.377 (4)
C4—H280.9300C22—H340.9300
C5—C61.388 (4)C21—C201.380 (4)
C5—H290.9300C21—H350.9300
C6—C71.450 (4)C20—O21.350 (3)
C7—N11.278 (3)C26—N31.280 (3)
C7—H370.9300C26—H380.9300
N2—H1A0.8600N4—H2A0.8600
O1—H4A0.8200O2—H3A0.8200
C16—C15—C14120.4 (3)C34—C33—C38118.6 (3)
C16—C15—H13119.8C34—C33—N4122.6 (3)
C14—C15—H13119.8C38—C33—N4118.7 (3)
C15—C16—C17121.5 (3)C33—C38—C37120.6 (3)
C15—C16—H14119.3C33—C38—H2119.7
C17—C16—H14119.3C37—C38—H2119.7
C18—C17—C16118.4 (3)C36—C37—C38120.3 (3)
C18—C17—H15120.8C36—C37—H3119.9
C16—C17—H15120.8C38—C37—H3119.9
C17—C18—C19120.9 (3)C37—C36—C35119.1 (3)
C17—C18—H16119.6C37—C36—H4120.4
C19—C18—H16119.6C35—C36—H4120.4
C14—C19—C18120.7 (3)C34—C35—C36120.9 (3)
C14—C19—H17119.7C34—C35—H5119.6
C18—C19—H17119.7C36—C35—H5119.6
C15—C14—C19118.1 (3)C35—C34—C33120.5 (3)
C15—C14—N2123.9 (2)C35—C34—H6119.7
C19—C14—N2117.9 (2)C33—C34—H6119.7
C12—C11—N2119.1 (2)N4—C30—C31118.5 (3)
C12—C11—C10117.9 (3)N4—C30—C29123.1 (3)
N2—C11—C10122.9 (3)C31—C30—C29118.3 (3)
C13—C12—C11121.2 (3)C28—C29—C30120.0 (3)
C13—C12—H20119.4C28—C29—H8120.0
C11—C12—H20119.4C30—C29—H8120.0
C12—C13—C8121.2 (3)C29—C28—C27121.6 (3)
C12—C13—H21119.4C29—C28—H9119.2
C8—C13—H21119.4C27—C28—H9119.2
C13—C8—C9117.7 (2)C32—C27—C28117.7 (3)
C13—C8—N1116.3 (2)C32—C27—N3115.9 (2)
C9—C8—N1126.0 (2)C28—C27—N3126.4 (2)
C10—C9—C8121.1 (3)C31—C32—C27121.5 (3)
C10—C9—H23119.5C31—C32—H11119.2
C8—C9—H23119.5C27—C32—H11119.2
C9—C10—C11121.0 (3)C32—C31—C30120.8 (3)
C9—C10—H24119.5C32—C31—H12119.6
C11—C10—H24119.5C30—C31—H12119.6
O1—C1—C2118.6 (3)C24—C25—C20118.7 (2)
O1—C1—C6121.2 (2)C24—C25—C26121.1 (2)
C2—C1—C6120.1 (3)C20—C25—C26120.2 (2)
C1—C2—C3120.1 (3)C23—C24—C25121.7 (3)
C1—C2—H26120.0C23—C24—H32119.2
C3—C2—H26120.0C25—C24—H32119.2
C2—C3—C4120.4 (3)C24—C23—C22119.5 (3)
C2—C3—H27119.8C24—C23—H33120.2
C4—C3—H27119.8C22—C23—H33120.2
C5—C4—C3119.6 (3)C21—C22—C23120.2 (3)
C5—C4—H28120.2C21—C22—H34119.9
C3—C4—H28120.2C23—C22—H34119.9
C4—C5—C6121.5 (3)C22—C21—C20120.7 (3)
C4—C5—H29119.2C22—C21—H35119.7
C6—C5—H29119.2C20—C21—H35119.7
C5—C6—C1118.2 (2)O2—C20—C21119.2 (2)
C5—C6—C7121.0 (2)O2—C20—C25121.6 (2)
C1—C6—C7120.8 (2)C21—C20—C25119.2 (3)
N1—C7—C6121.4 (2)N3—C26—C25121.4 (2)
N1—C7—H37119.3N3—C26—H38119.3
C6—C7—H37119.3C25—C26—H38119.3
C14—N2—C11126.7 (2)C30—N4—C33128.2 (2)
C14—N2—H1A116.5C30—N4—H2A116.0
C11—N2—H1A116.9C33—N4—H2A115.8
C7—N1—C8124.5 (2)C26—N3—C27124.4 (2)
C1—O1—H4A109.7C20—O2—H3A109.8
C14—C15—C16—C170.9 (4)C34—C33—C38—C370.8 (4)
C15—C16—C17—C180.1 (5)N4—C33—C38—C37177.0 (3)
C16—C17—C18—C191.2 (5)C33—C38—C37—C360.1 (5)
C17—C18—C19—C141.8 (5)C38—C37—C36—C351.0 (5)
C16—C15—C14—C190.2 (4)C37—C36—C35—C340.9 (5)
C16—C15—C14—N2177.0 (3)C36—C35—C34—C330.0 (5)
C18—C19—C14—C151.1 (4)C38—C33—C34—C350.9 (4)
C18—C19—C14—N2175.8 (3)N4—C33—C34—C35176.9 (3)
N2—C11—C12—C13176.7 (3)N4—C30—C29—C28176.2 (3)
C10—C11—C12—C130.4 (4)C31—C30—C29—C280.2 (4)
C11—C12—C13—C80.2 (4)C30—C29—C28—C270.5 (4)
C12—C13—C8—C90.6 (4)C29—C28—C27—C320.0 (4)
C12—C13—C8—N1179.4 (3)C29—C28—C27—N3179.6 (3)
C13—C8—C9—C101.3 (4)C28—C27—C32—C310.6 (4)
N1—C8—C9—C10179.9 (3)N3—C27—C32—C31179.7 (3)
C8—C9—C10—C111.5 (4)C27—C32—C31—C300.9 (4)
C12—C11—C10—C91.1 (4)N4—C30—C31—C32175.8 (3)
N2—C11—C10—C9177.2 (3)C29—C30—C31—C320.4 (4)
O1—C1—C2—C3178.5 (2)C20—C25—C24—C230.4 (4)
C6—C1—C2—C32.7 (4)C26—C25—C24—C23179.2 (2)
C1—C2—C3—C41.2 (4)C25—C24—C23—C221.2 (5)
C2—C3—C4—C50.2 (5)C24—C23—C22—C211.0 (4)
C3—C4—C5—C60.8 (5)C23—C22—C21—C200.1 (4)
C4—C5—C6—C12.3 (4)C22—C21—C20—O2179.2 (3)
C4—C5—C6—C7175.9 (3)C22—C21—C20—C250.7 (4)
O1—C1—C6—C5178.0 (2)C24—C25—C20—O2179.3 (3)
C2—C1—C6—C53.2 (4)C26—C25—C20—O20.3 (4)
O1—C1—C6—C73.7 (4)C24—C25—C20—C210.5 (4)
C2—C1—C6—C7175.0 (2)C26—C25—C20—C21179.9 (3)
C5—C6—C7—N1178.5 (2)C24—C25—C26—N3179.7 (3)
C1—C6—C7—N10.4 (4)C20—C25—C26—N30.1 (4)
C15—C14—N2—C114.5 (4)C31—C30—N4—C33168.0 (3)
C19—C14—N2—C11178.8 (3)C29—C30—N4—C3316.0 (5)
C12—C11—N2—C14134.9 (3)C34—C33—N4—C3044.6 (5)
C10—C11—N2—C1449.0 (4)C38—C33—N4—C30139.4 (3)
C6—C7—N1—C8178.8 (2)C25—C26—N3—C27178.5 (2)
C13—C8—N1—C7179.3 (2)C32—C27—N3—C26173.9 (3)
C9—C8—N1—C70.7 (4)C28—C27—N3—C266.4 (4)
Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of ring C1–C6 in molecule A.
D—H···AD—HH···AD···AD—H···A
O1—H4A···N10.821.862.568 (3)144
O2—H3A···N30.821.822.550 (3)148
N2—H1A···O2i0.862.293.006 (4)141
N4—H2A···O1ii0.862.333.179 (4)168
C15—H13···Cg1iii0.932.923.581 (4)129
Symmetry codes: (i) x, y, z1; (ii) x, y+1, z+1; (iii) x, y+1/2, z+1.
 

Acknowledgements

The authors are grateful to the National Taras Shevchenko University, Ukraine, for financial support.

References

First citationAltomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationBrandenberg, K. & Putz, H. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2003). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDalapati, S., Alam, M. A., Jana, S. & Guchhait, N. (2011). J. Fluor. Chem. 132, 536–540.  Web of Science CrossRef CAS Google Scholar
First citationFaizi, M. S. H. & Hussain, S. (2014). Acta Cryst. E70, m197.  CSD CrossRef IUCr Journals Google Scholar
First citationFaizi, M. S. H. & Sen, P. (2014). Acta Cryst. E70, m173.  CSD CrossRef IUCr Journals Google Scholar
First citationGroom, C. R. & Allen, F. H. (2014). Angew. Chem. Int. Ed. 53, 662–671.  Web of Science CSD CrossRef CAS Google Scholar
First citationLozier, R. H., Bogomolni, R. A. & Stoeckenius, W. (1975). Biophys. J. 15, 955–962.  CrossRef PubMed CAS Web of Science Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationMoroz, Y. S., Demeshko, S., Haukka, M., Mokhir, A., Mitra, U., Stocker, M., Müller, P., Meyer, F. & Fritsky, I. O. (2012). Inorg. Chem. 51, 7445–7447.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationNor Hashim, N. Z., Kassim, K. & Yamin, B. M. (2010). Acta Cryst. E66, o2039.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationPenkova, L., Demeshko, S., Pavlenko, V. A., Dechert, S., Meyer, F. & Fritsky, I. O. (2010). Inorg. Chim. Acta, 363, 3036–3040.  Web of Science CSD CrossRef CAS Google Scholar
First citationPetrusenko, S. R., Kokozay, V. N. & Fritsky, I. O. (1997). Polyhedron, 16, 267–274.  CSD CrossRef CAS Web of Science Google Scholar
First citationSafin, D. A., Robeyns, K. & Garcia, Y. (2012). RSC Adv. 2, 11379–11388.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2004). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSliva, T. Yu., Duda, A. M., Głowiak, T., Fritsky, I. O., Amirkhanov, V. M., Mokhir, A. A. & Kozłowski, H. (1997). J. Chem. Soc. Dalton Trans. pp. 273–276.  CSD CrossRef Web of Science Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSun, Y., Wang, Y., Liu, Z., Huang, C. & Yu, C. (2012). Spectrochim. Acta Part A, 96, 42–50.  Web of Science CSD CrossRef CAS Google Scholar
First citationXie, Y.-Z., Shan, G.-G., Li, P., Zhou, Z.-Y. & Su, Z.-M. (2013). Dyes and Pigments, 96, 467–474.  Web of Science CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds