research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of (Z)-2-[(E)-2-benzyl­­idene­hydrazin-1-yl­­idene]-1,2-di­phenyl­ethanone

aLaboratoire de Chimie, Ingénierie Moléculaire et Nanostructures (LCIMN), Université Ferhat Abbas Sétif 1, Sétif 19000, Algeria, bLaboratoire d'Electrochimie des Matériaux Moléculaires et Complexes (L.E.M.M.C.), Université Ferhat Abbas Sétif 1, Sétif 19000, Algeria, cDépartement de Technologie, Faculté de Technologie, Université 20 Août 1955-Skikda, BP 26, Route d'El-Hadaiek, Skikda 21000, Algeria, and dDepartment of Chemistry, University of Otago, PO Box 56, Dunedin, New Zealand
*Correspondence e-mail: setifi_zouaoui@yahoo.fr

Edited by H. Stoeckli-Evans, University of Neuchâtel, Switzerland (Received 21 November 2014; accepted 1 December 2014; online 1 January 2015)

The title compound, C21H16N2O, has an almost planar (r.m.s. deviation = 0.0074 Å) 1,2-di­benzyl­idenehydrazine backbone with an approximately orthogonal almost planar (r.m.s. deviation = 0.0368 Å) phenyl­ethanone substituent on one of the imine C atoms. The dihedral angle between the two mean planes is 76.99 (4)°. In the crystal, mol­ecules are linked via C—H⋯O hydrogen bonds and C—H⋯π contacts, forming a three-dimensional structure with mol­ecules stacked along the a-axis direction.

1. Chemical context

Aromatic carbonyl compounds react easily with hydrazines to form hydrazones, which can condense with a second mol­ecule of a carbonyl compound to yield an azine. As a result of their fascinating physical and chemical properties, azines and their derivatives have been utilized extensively in areas such as dyes (Kim et al., 2010[Kim, S. H., Gwon, S. Y., Burkinshaw, S. M. & Son, Y. A. (2010). Dyes Pigm. 87, 268-271.]) and non-linear fluoro­phores (Facchetti et al., 2002[Facchetti, A., Abbotto, A., Beverina, L., van der Boom, M. E., Dutta, P., Evmenenko, G., Marks, T. J. & Pagani, G. A. (2002). Chem. Mater. 14, 4996-5005.]). They are also noted for their biological and pharmaceutical applications (Wadher et al., 2009[Wadher, J. S., Puranik, M. P., Karande, N. A. & Yeole, P. G. (2009). J. Pharm. Tech. Res. 1, 22-33.]; Pandeya et al., 1999[Pandeya, S. N., Sriram, D., Nath, G. & De Clercq, E. (1999). Pharm. Acta Helv. 74, 11-17.]). Furthermore, there are many reports of polyazines as highly conjugated polymers functioning in electronic, optoelectronic and photonic applications (Dudis et al., 1993[Dudis, D. S., Yeates, A. T., Kost, D., Smith, D. A. & Medrano, J. (1993). J. Am. Chem. Soc. 115, 8770-8774.]). As part of our studies of Schiff base azines, the title compound was synthesized and its mol­ecular and crystal structure are reported on herein.

[Scheme 1]

2. Structural commentary

The mol­ecule of the title compound, Fig. 1[link], comprises a 1,2-di­benzyl­idenehydrazine backbone with a phenyl ethanone substituent on atom C2. Both the hydrazine and ethanone fragments are approximately planar with r.m.s. deviations of 0.0074 Å from the O1/C1/C11–C16 mean plane and 0.0368 Å from the plane through the 16 atoms of the di­benzyl­idenehydrazine unit. The two mean planes are almost orthogonal with a dihedral angle of 76.99 (4)°. The mol­ecule adopts a Z conformation with respect to the C2=N1 bond and an E conformation with respect to the C3=N2 bond, with the carbonyl atom O1 and the C11–C16 phenyl ring located on opposite sides of the di­benzyl­idenehydrazine plane. The bond lengths and angles in the title mol­ecule agree reasonably well with those found in closely related structures (Abbasi et al., 2007[Abbasi, A., Mohammadi Ziarani, G. & Tarighi, S. (2007). Acta Cryst. E63, o2579-o2580.]; Wieland et al., 2011[Wieland, M., Seichter, W., Schwarzer, A. & Weber, E. (2011). Struct. Chem. 22, 1267-1279.]).

[Figure 1]
Figure 1
The mol­ecular structure of the title compound, showing the atom labelling. Displacement ellipsoids are drawn at the 50% probability level.

3. Supra­molecular features

In the crystal, a pair of C35—H35⋯O1 hydrogen bonds link adjacent mol­ecules into dimers with R22(20) ring motifs (Fig. 2[link] and Table 1[link]). Atom O1 is also involved in two further C—H⋯O hydrogen bonds, C3—H3⋯O1 and C32—H32⋯O1 that generate R21(6) ring motifs. These contacts link the dimers into stacks parallel to (011); see Table 1[link] and Fig. 2[link]. Inter­estingly, neither of the hydrazine N atoms are involved in significantly close inter­molecular contacts with the shortest inter­molecular H12⋯N1 contact being ca 2.85 Å. A contribution to the packing is, however, made by a C—H⋯π inter­action (Table 1[link]). These inter­actions link mol­ecules in a head-to-tail fashion, forming chains along c, as shown in Fig. 3[link]. With 16 mol­ecules in the ortho­rhom­bic unit cell, these various contacts combine to form a three dimensional structure with mol­ecules stacked along the a-axis direction, as shown in Fig. 4[link].

Table 1
Hydrogen-bond geometry (Å, °)

Cg is the centroid of the C31–C36 phenyl ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C35—H35⋯O1i 0.95 2.61 3.337 (3) 134
C3—H3⋯O1ii 0.95 2.41 3.272 (3) 151
C32—H32⋯O1ii 0.95 2.68 3.478 (3) 141
C26—H26⋯Cgiii 0.95 2.97 3.699 (3) 135
Symmetry codes: (i) [x, -y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) [x+{\script{1\over 4}}, y-{\script{1\over 4}}, -z+{\script{3\over 4}}]; (iii) [x+{\script{1\over 4}}, -y+{\script{1\over 4}}, z+{\script{1\over 4}}].
[Figure 2]
Figure 2
A view of the dimers formed via C—H⋯O contacts (blue dashed lines; see Table 1[link] for details) and linked into stacks running parallel to (011) in the crystal of the title compound.
[Figure 3]
Figure 3
A view of the chains along the c-axis direction formed by C—H⋯π contacts in the crystal of the title compound (shown as green dotted lines with the ring centroids displayed as coloured spheres, see Table 1[link] for details).
[Figure 4]
Figure 4
A view along the a-axis direction of the crystal packing of the title compound. Hydrogen bonds are drawn as blue dashed lines with a representative C—H⋯π contact shown as a green dotted line (see Table 1[link] for details).

4. Database survey

A search for the (benzyl­idenehydrazono)-1,2-di­phenyl­ethanone skeleton in the Cambridge Structural Database (Version 5.35, November 2013 with three updates; Groom & Allen, 2014[Groom, C. R. & Allen, F. H. (2014). Angew. Chem. Int. Ed. 53, 662-671.]) revealed only 7 similar compounds. The closest to the title structure are 2-{(Z)-2-[(E)-1-(2-hy­droxy­phen­yl)methyl­idene]hydrazono}-1,2-di­phenyl­ethan-1-one (Abbasi et al., 2007[Abbasi, A., Mohammadi Ziarani, G. & Tarighi, S. (2007). Acta Cryst. E63, o2579-o2580.]), with an hy­droxy substituent in the p position on the equivalent of the benzene ring, and 1,2-diphenyl-2-[4-(4-pyrid­yl)benzyl­idenehydrazono]ethan-1-one, with a pyridyl ring in the same position (Patra & Ng, 2009[Patra, G. K. & Ng, S. W. (2009). Acta Cryst. E65, o1810.]). Two reports of polymorphs of the symmetrical 2,2′-(1,2-hydrazinediyl­idene)-bis­(di­phenyl­ethanone) have also appeared (Patra et al., 2009[Patra, G. K., Mukherjee, A. & Ng, S. W. (2009). Acta Cryst. E65, o1745.]; Wieland et al., 2011[Wieland, M., Seichter, W., Schwarzer, A. & Weber, E. (2011). Struct. Chem. 22, 1267-1279.])

5. Synthesis and crystallization

A mixture of benzaldehyde (0.01 mol, 1.06 g), benzil (0.01 mol, 2.10 g) and hydrazine hydrate (0.01 mol, 0.32 g) in 50 ml of ethanol containing 2 drops of acetic acid was refluxed for about 2 h. The reaction was monitored by TLC until completion. Excess solvent was evaporated under vacuum and the resulting yellow solid product was recrystallized from absolute ethanol to afford yellow needles of the title compound (m.p. 453 K, 75% yield). Analysis calculated for C21H16N2O (312.36): C 80.75, H 5.16, N 8.97%; found: C 80.73, H 5.17, N 9.01%.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. The C-bound H atoms were included in calculated positions and treated as riding atoms: C—H = 0.95 Å with Uiso = 1.2Ueq(C).

Table 2
Experimental details

Crystal data
Chemical formula C21H16N2O
Mr 312.36
Crystal system, space group Orthorhombic, F2dd
Temperature (K) 150
a, b, c (Å) 8.1653 (3), 27.6113 (11), 29.6818 (13)
V3) 6691.9 (5)
Z 16
Radiation type Mo Kα
μ (mm−1) 0.08
Crystal size (mm) 0.55 × 0.29 × 0.24
 
Data collection
Diffractometer Bruker APEXII
Absorption correction Multi-scan (SADABS; Bruker, 2006[Bruker (2006). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.884, 0.982
No. of measured, independent and observed [I > 2σ(I)] reflections 8049, 3350, 3036
Rint 0.032
(sin θ/λ)max−1) 0.649
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.039, 0.094, 1.06
No. of reflections 3350
No. of parameters 217
No. of restraints 1
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.18, −0.16
Computer programs: APEX2 and SAINT (Bruker, 2006[Bruker (2006). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SIR97 (Altomare et al., 1999[Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115-119.]), SHELXL2014 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]), CRYSCAL (T. Roisnel, local program), enCIFer (Allen et al., 2004[Allen, F. H., Johnson, O., Shields, G. P., Smith, B. R. & Towler, M. (2004). J. Appl. Cryst. 37, 335-338.]), PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]), WinGX (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and publCIF (Westrip 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Computing details top

Data collection: APEX2 (Bruker, 2006); cell refinement: SAINT (Bruker, 2006); data reduction: SAINT (Bruker, 2006); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2008); molecular graphics: Mercury (Macrae et al., 2008); software used to prepare material for publication: CRYSCAL (T. Roisnel, local program), SHELXL2014 (Sheldrick, 2008), enCIFer (Allen et al., 2004), PLATON (Spek, 2009), publCIF (Westrip 2010) and WinGX (Farrugia, 2012).

(Z)-2-[(E)-2-Benzylidenehydrazin-1-ylidene]-1,2-diphenylethanone top
Crystal data top
C21H16N2OF(000) = 2624
Mr = 312.36Dx = 1.240 Mg m3
Orthorhombic, F2ddMo Kα radiation, λ = 0.71073 Å
Hall symbol: F -2d 2Cell parameters from 2807 reflections
a = 8.1653 (3) Åθ = 2.7–27.3°
b = 27.6113 (11) ŵ = 0.08 mm1
c = 29.6818 (13) ÅT = 150 K
V = 6691.9 (5) Å3Prism, yellow
Z = 160.55 × 0.29 × 0.24 mm
Data collection top
Bruker APEXII
diffractometer
3036 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.032
CCD rotation images, thin slices scansθmax = 27.5°, θmin = 3.0°
Absorption correction: multi-scan
(SADABS; Bruker, 2006)
h = 910
Tmin = 0.884, Tmax = 0.982k = 3524
8049 measured reflectionsl = 3838
3350 independent reflections
Refinement top
Refinement on F21 restraint
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.039H-atom parameters constrained
wR(F2) = 0.094 w = 1/[σ2(Fo2) + (0.0407P)2 + 4.1058P]
where P = (Fo2 + 2Fc2)/3
S = 1.06(Δ/σ)max < 0.001
3350 reflectionsΔρmax = 0.18 e Å3
217 parametersΔρmin = 0.16 e Å3
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C110.4692 (3)0.24563 (8)0.36467 (7)0.0255 (5)
C120.4156 (3)0.28709 (9)0.34210 (7)0.0316 (5)
H120.47580.31640.34440.038*
C130.2746 (3)0.28525 (11)0.31643 (9)0.0426 (7)
H130.23810.31340.30100.051*
C140.1865 (3)0.24267 (12)0.31313 (10)0.0504 (8)
H140.08880.24180.29580.060*
C150.2393 (4)0.20147 (11)0.33483 (10)0.0453 (7)
H150.17900.17220.33220.054*
C160.3810 (3)0.20282 (9)0.36059 (8)0.0326 (6)
H160.41780.17440.37550.039*
C10.6212 (3)0.24786 (8)0.39198 (6)0.0222 (4)
O10.7037 (2)0.28433 (5)0.39542 (5)0.0300 (4)
C20.6774 (3)0.20274 (8)0.41744 (7)0.0220 (5)
C210.6542 (3)0.20065 (8)0.46670 (6)0.0234 (5)
C220.5622 (3)0.23566 (9)0.48904 (7)0.0291 (5)
H220.51100.26080.47230.035*
C230.5449 (3)0.23409 (10)0.53561 (8)0.0344 (6)
H230.48250.25820.55070.041*
C240.6182 (3)0.19755 (11)0.55991 (8)0.0401 (6)
H240.60670.19660.59170.048*
C250.7083 (4)0.16228 (11)0.53816 (8)0.0406 (7)
H250.75750.13690.55500.049*
C260.7272 (3)0.16376 (9)0.49169 (8)0.0332 (6)
H260.79010.13960.47690.040*
N10.7555 (2)0.16872 (7)0.39690 (6)0.0265 (4)
N20.7675 (2)0.17867 (7)0.35026 (6)0.0255 (4)
C30.8450 (3)0.14520 (8)0.32965 (7)0.0245 (5)
H30.89030.11920.34650.029*
C310.8657 (3)0.14596 (8)0.28078 (7)0.0252 (5)
C320.9510 (3)0.10863 (9)0.25997 (8)0.0307 (5)
H320.99910.08380.27770.037*
C330.9664 (3)0.10743 (10)0.21338 (8)0.0383 (6)
H331.02280.08140.19930.046*
C340.9002 (3)0.14389 (9)0.18749 (8)0.0371 (6)
H340.91150.14310.15560.045*
C350.8166 (3)0.18203 (10)0.20799 (8)0.0346 (6)
H350.77210.20740.19020.041*
C360.7987 (3)0.18291 (9)0.25427 (8)0.0294 (5)
H360.74060.20870.26820.035*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C110.0250 (11)0.0314 (12)0.0200 (9)0.0026 (11)0.0015 (8)0.0014 (8)
C120.0328 (13)0.0337 (13)0.0283 (11)0.0066 (11)0.0003 (10)0.0044 (10)
C130.0368 (15)0.0525 (17)0.0385 (14)0.0136 (14)0.0061 (11)0.0126 (12)
C140.0283 (15)0.076 (2)0.0472 (15)0.0018 (15)0.0157 (12)0.0105 (15)
C150.0348 (15)0.0542 (17)0.0471 (15)0.0116 (14)0.0096 (12)0.0049 (13)
C160.0298 (13)0.0375 (14)0.0304 (11)0.0016 (12)0.0019 (9)0.0049 (10)
C10.0268 (11)0.0233 (11)0.0166 (8)0.0035 (10)0.0021 (8)0.0012 (8)
O10.0370 (10)0.0233 (8)0.0298 (8)0.0021 (8)0.0063 (7)0.0013 (6)
C20.0214 (11)0.0228 (10)0.0217 (9)0.0008 (10)0.0023 (8)0.0004 (8)
C210.0236 (12)0.0262 (11)0.0205 (9)0.0027 (9)0.0012 (8)0.0029 (8)
C220.0292 (13)0.0311 (13)0.0268 (11)0.0028 (11)0.0008 (9)0.0009 (9)
C230.0317 (14)0.0428 (15)0.0288 (12)0.0041 (12)0.0054 (10)0.0010 (10)
C240.0344 (14)0.0655 (18)0.0203 (10)0.0006 (14)0.0028 (10)0.0063 (12)
C250.0372 (15)0.0549 (17)0.0297 (12)0.0075 (14)0.0009 (10)0.0153 (11)
C260.0347 (14)0.0367 (14)0.0284 (12)0.0061 (12)0.0004 (10)0.0079 (10)
N10.0320 (11)0.0263 (10)0.0212 (9)0.0019 (9)0.0025 (8)0.0019 (7)
N20.0317 (11)0.0248 (10)0.0201 (9)0.0012 (9)0.0014 (8)0.0013 (7)
C30.0258 (12)0.0213 (11)0.0265 (10)0.0013 (10)0.0021 (8)0.0005 (9)
C310.0237 (12)0.0250 (11)0.0268 (10)0.0049 (10)0.0009 (9)0.0034 (9)
C320.0327 (14)0.0296 (12)0.0299 (12)0.0014 (11)0.0035 (9)0.0009 (9)
C330.0395 (16)0.0419 (15)0.0335 (13)0.0008 (13)0.0100 (10)0.0070 (11)
C340.0386 (15)0.0490 (16)0.0238 (10)0.0104 (13)0.0031 (10)0.0019 (10)
C350.0359 (14)0.0378 (14)0.0299 (12)0.0038 (12)0.0064 (10)0.0054 (10)
C360.0319 (13)0.0256 (12)0.0307 (11)0.0002 (11)0.0049 (10)0.0005 (9)
Geometric parameters (Å, º) top
C11—C161.390 (3)C23—H230.9500
C11—C121.397 (3)C24—C251.381 (4)
C11—C11.483 (3)C24—H240.9500
C12—C131.382 (4)C25—C261.388 (3)
C12—H120.9500C25—H250.9500
C13—C141.382 (4)C26—H260.9500
C13—H130.9500N1—N21.415 (2)
C14—C151.377 (4)N2—C31.276 (3)
C14—H140.9500C3—C311.461 (3)
C15—C161.387 (4)C3—H30.9500
C15—H150.9500C31—C321.389 (3)
C16—H160.9500C31—C361.400 (3)
C1—O11.216 (3)C32—C331.389 (3)
C1—C21.528 (3)C32—H320.9500
C2—N11.288 (3)C33—C341.377 (4)
C2—C211.476 (3)C33—H330.9500
C21—C221.392 (3)C34—C351.395 (4)
C21—C261.394 (3)C34—H340.9500
C22—C231.390 (3)C35—C361.382 (3)
C22—H220.9500C35—H350.9500
C23—C241.377 (4)C36—H360.9500
C16—C11—C12119.5 (2)C23—C24—C25120.2 (2)
C16—C11—C1121.1 (2)C23—C24—H24119.9
C12—C11—C1119.4 (2)C25—C24—H24119.9
C13—C12—C11119.7 (2)C24—C25—C26120.2 (2)
C13—C12—H12120.1C24—C25—H25119.9
C11—C12—H12120.1C26—C25—H25119.9
C12—C13—C14120.3 (2)C25—C26—C21120.2 (2)
C12—C13—H13119.9C25—C26—H26119.9
C14—C13—H13119.9C21—C26—H26119.9
C15—C14—C13120.4 (2)C2—N1—N2110.84 (16)
C15—C14—H14119.8C3—N2—N1111.29 (17)
C13—C14—H14119.8N2—C3—C31121.5 (2)
C14—C15—C16119.8 (3)N2—C3—H3119.2
C14—C15—H15120.1C31—C3—H3119.2
C16—C15—H15120.1C32—C31—C36119.1 (2)
C15—C16—C11120.2 (2)C32—C31—C3119.3 (2)
C15—C16—H16119.9C36—C31—C3121.6 (2)
C11—C16—H16119.9C31—C32—C33120.4 (2)
O1—C1—C11122.96 (19)C31—C32—H32119.8
O1—C1—C2117.85 (19)C33—C32—H32119.8
C11—C1—C2119.19 (19)C34—C33—C32120.2 (2)
N1—C2—C21120.24 (19)C34—C33—H33119.9
N1—C2—C1120.61 (18)C32—C33—H33119.9
C21—C2—C1118.91 (18)C33—C34—C35120.1 (2)
C22—C21—C26118.99 (19)C33—C34—H34120.0
C22—C21—C2120.9 (2)C35—C34—H34120.0
C26—C21—C2120.1 (2)C36—C35—C34119.9 (2)
C23—C22—C21120.4 (2)C36—C35—H35120.0
C23—C22—H22119.8C34—C35—H35120.0
C21—C22—H22119.8C35—C36—C31120.3 (2)
C24—C23—C22120.0 (2)C35—C36—H36119.8
C24—C23—H23120.0C31—C36—H36119.8
C22—C23—H23120.0
C16—C11—C12—C130.7 (3)C2—C21—C22—C23178.2 (2)
C1—C11—C12—C13179.7 (2)C21—C22—C23—C240.4 (4)
C11—C12—C13—C140.2 (4)C22—C23—C24—C250.3 (4)
C12—C13—C14—C151.0 (4)C23—C24—C25—C260.8 (4)
C13—C14—C15—C160.7 (5)C24—C25—C26—C210.5 (4)
C14—C15—C16—C110.2 (4)C22—C21—C26—C250.2 (4)
C12—C11—C16—C151.0 (3)C2—C21—C26—C25178.7 (2)
C1—C11—C16—C15179.9 (2)C21—C2—N1—N2178.27 (18)
C16—C11—C1—O1178.1 (2)C1—C2—N1—N23.8 (3)
C12—C11—C1—O10.8 (3)C2—N1—N2—C3179.9 (2)
C16—C11—C1—C22.4 (3)N1—N2—C3—C31176.64 (19)
C12—C11—C1—C2178.7 (2)N2—C3—C31—C32180.0 (2)
O1—C1—C2—N1100.0 (2)N2—C3—C31—C361.3 (3)
C11—C1—C2—N180.6 (3)C36—C31—C32—C331.4 (4)
O1—C1—C2—C2174.6 (3)C3—C31—C32—C33177.3 (2)
C11—C1—C2—C21104.9 (2)C31—C32—C33—C341.5 (4)
N1—C2—C21—C22176.3 (2)C32—C33—C34—C350.4 (4)
C1—C2—C21—C229.1 (3)C33—C34—C35—C360.7 (4)
N1—C2—C21—C264.9 (3)C34—C35—C36—C310.7 (4)
C1—C2—C21—C26169.7 (2)C32—C31—C36—C350.4 (4)
C26—C21—C22—C230.6 (4)C3—C31—C36—C35178.3 (2)
Hydrogen-bond geometry (Å, º) top
Cg is the centroid of the C31–C36 phenyl ring.
D—H···AD—HH···AD···AD—H···A
C35—H35···O1i0.952.613.337 (3)134
C3—H3···O1ii0.952.413.272 (3)151
C32—H32···O1ii0.952.683.478 (3)141
C26—H26···Cgiii0.952.973.699 (3)135
Symmetry codes: (i) x, y+1/2, z+1/2; (ii) x+1/4, y1/4, z+3/4; (iii) x+1/4, y+1/4, z+1/4.
 

Acknowledgements

The authors acknowledge the Algerian Ministry of Higher Education and Scientific Research, the Algerian Directorate General for Scientific Research and Technological Development, and Ferhat Abbas Sétif 1 University for financial support. The Chemistry Department of the University of Otago is also thanked for support of the work of JS. Dr Lahcène Ouahab from the University of Rennes 1, France, is thanked for the data collection.

References

First citationAbbasi, A., Mohammadi Ziarani, G. & Tarighi, S. (2007). Acta Cryst. E63, o2579–o2580.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationAllen, F. H., Johnson, O., Shields, G. P., Smith, B. R. & Towler, M. (2004). J. Appl. Cryst. 37, 335–338.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationAltomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationBruker (2006). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDudis, D. S., Yeates, A. T., Kost, D., Smith, D. A. & Medrano, J. (1993). J. Am. Chem. Soc. 115, 8770–8774.  CrossRef CAS Web of Science Google Scholar
First citationFacchetti, A., Abbotto, A., Beverina, L., van der Boom, M. E., Dutta, P., Evmenenko, G., Marks, T. J. & Pagani, G. A. (2002). Chem. Mater. 14, 4996–5005.  Web of Science CrossRef CAS Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGroom, C. R. & Allen, F. H. (2014). Angew. Chem. Int. Ed. 53, 662–671.  Web of Science CSD CrossRef CAS Google Scholar
First citationKim, S. H., Gwon, S. Y., Burkinshaw, S. M. & Son, Y. A. (2010). Dyes Pigm. 87, 268–271.  Web of Science CrossRef CAS Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationPandeya, S. N., Sriram, D., Nath, G. & De Clercq, E. (1999). Pharm. Acta Helv. 74, 11–17.  CrossRef PubMed CAS Google Scholar
First citationPatra, G. K., Mukherjee, A. & Ng, S. W. (2009). Acta Cryst. E65, o1745.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationPatra, G. K. & Ng, S. W. (2009). Acta Cryst. E65, o1810.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWadher, J. S., Puranik, M. P., Karande, N. A. & Yeole, P. G. (2009). J. Pharm. Tech. Res. 1, 22–33.  CAS Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWieland, M., Seichter, W., Schwarzer, A. & Weber, E. (2011). Struct. Chem. 22, 1267–1279.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds