research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of (E)-1-{2-[(5,5-di­methyl-1,3,2-dioxaphosphinan-2-yl)­­oxy]naphthalen-1-yl}-N-(4-fluoro­phen­yl)methanimine

aChemistry Department, Taibah University, PO Box 30002, Code 14177, Al-Madinah Al-Munawarah, Kingdom of Saudi Arabia, and bSchool of Chemistry, University of East Anglia, Norwich NR4 7TJ, England
*Correspondence e-mail: musa_said04@yahoo.co.uk, d.l.hughes@uea.ac.uk

Edited by H. Stoeckli-Evans, University of Neuchâtel, Switzerland (Received 21 November 2014; accepted 5 December 2014; online 1 January 2015)

In the title compound, C22H21FNO3P, a 1,3,2-dioxaphosphinan-2-yloxy derivative, three O atoms are bonded in a trigonal–pyramidal manner to the P atom. The exocyclic P—O bond is significantly longer than the two endocyclic P—O bonds, viz. 1.6678 (12) Å compared to 1.6046 (13) and 1.6096 (12) Å. The six-membered ring which includes the P atom has a chair conformation. The fluoro­phenyl ring is inclined to the naphthalene ring system by 24.42 (7)°. In the crystal, mol­ecules are linked via C—H⋯π inter­actions, forming slabs lying parallel to (10-1).

1. Chemical context

Many phospho­rus and/or nitro­gen based ligands bind strongly to transition metals and they offer a wide range of properties and basicities due to the large variety of accessible substituents (Crabtree, 2005[Crabtree, R. H. (2005). Organometallic chemistry of the transition metals, 4th ed., pp. 99-103. Hoboken, NJ: Wiley-Interscience.]; Joslin et al., 2012[Joslin, E. E., McMullin, C. L., Gunnoe, T. B., Cundari, T. R., Sabat, M. & Myers, W. H. (2012). Inorg. Chem. 51, 4791-4801.]; Kuehl, 2005[Kuehl, O. (2005). Coord. Chem. Rev. 249, 693-704.]; Tolman, 1977[Tolman, C. A. (1977). Chem. Rev. 77, 313-348.]). The title compound is an example of a phospho­rus-nitro­gen bidentate ligand. Complexation experiments with such ligands could result in the isolation of mono- or bi-nuclear complexes (van den Beuken et al., 1997[Beuken, E. K. van den, Meetsma, A., Kooijman, H., Spek, A. L. & Feringa, B. L. (1997). Inorg. Chim. Acta, 264, 171-183.]). Examples of bidentate ligands with phospho­rus and nitro­gen donor groups bonded to transition metals have been shown to be effective cross-coupling catalysts (Hayashi & Kumada, 1985[Hayashi, T. & Kumada, M. (1985). In Asymmetric Synthesis, Vol. 5, edited by J. D. Morrison, pp. 147-148. Orlando: Academic Press.]). The present work is a continuation of the investigation into the synthesis and study of more bi- and tri-cyclic, penta- and hexa-­coordinated phospho­ranes to form anionic, neutral and zwitterionic compounds (Said et al. 1996[Said, M. A., Pülm, M., Herbst-Irmer, R. & Kumara Swamy, K. C. (1996). J. Am. Chem. Soc. 118, 9841-9849.]; Timosheva et al. 2006[Timosheva, N. V., Chandrasekaran, A. & Holmes, R. R. (2006). Inorg. Chem. 45, 3113-3123.]; Kumara Swamy & Kumar, 2006[Kumara Swamy, K. C. & Satish Kumar, N. (2006). Acc. Chem. Res. 39, 324-333.]).

[Scheme 1]

2. Structural commentary

The mol­ecular structure of the title compound, Fig. 1[link], shows that the three oxygen atoms about the phospho­rus atom are bonded in a trigonal pyramidal form. The O—P—O angles are in the range of 96.35 (6) to 102.37 (6)°. The P1—O2 bond length [1.6678 (12) Å] is significantly longer than the other P—O bonds [1.6046 (13) and 1.6096 (12) Å]. The six-membered ring which includes the phospho­rus atom has a chair conformation. The fluoro­phenyl ring is inclined to the naphthalene ring system by 24.42 (7)°. The mol­ecule has an E conformation about the C=N bond (Fig. 1[link]).

[Figure 1]
Figure 1
The mol­ecular structure of the title compound, showing the atom labelling. Displacement ellipsoids are drawn at the 50% probability level.

3. Supra­molecular features

In the crystal, mol­ecules are linked via C—H⋯π inter­actions (Table 1[link]), forming slabs lying parallel to (10[\overline{1}]), as shown in Fig. 2[link].

Table 1
C—H⋯π inter­actions (Å, °)

Cg1 and Cg2 are the centroids of rings C1–C4/C9/C10 and C121–C126, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
C4—H4⋯Cg1i 0.93 2.70 3.456 (2) 140
C35—H35CCg2ii 0.96 2.94 3.878 (2) 167
Symmetry codes: (i) [-x+{\script{1\over 2}}, y-{\script{1\over 2}}, -z+{\script{3\over 2}}]; (ii) [x-{\script{1\over 2}}, -y+{\script{3\over 2}}, z-{\script{1\over 2}}].
[Figure 2]
Figure 2
A view along the b axis of the crystal packing of the title compound showing the H⋯C contacts (dashed lines) of the C—H⋯π weak interactions (see Table 1[link] for details).

4. Synthesis and crystallization

To 1.02 g (6.05 mmol) of 2-chloro-5,5-dimethyl-1,2,3-dioxaphosphinane in 40 ml of dry di­chloro­methane was added 1.61 g (6.05 mmol) of (E)-1-[(4-fluoro­phenyl­imino)­meth­yl]­naphthalene-2-ol in 10 ml of dry di­chloro­methane. The mixture was refluxed under a slow flow of nitro­gen for 4 h. The solvent was reduced to 5 ml under vacuum and 3 ml of dry n-hexane were added to afford the title compound as a pale-yellow crystalline solid (yield 2.07 g, 86%; m.p. 401–405 K). 1H NMR (CDCl3, 450 MHz): δ 9.16 (s, 1H, CHN), 7.83–7.01 (m, 10H, Ar—H), 4.22 (d, 2H, CH2), 3.40 (t, 2H, CH2), 1.23 (s, 3H, CH3), 0.65 (s, 3H, CH3). 13C NMR (CDCl3, 450 MHz): δ 162.46–115.62 (aromatic carbons), 69.86 (1C, CMe2), 32.95 (2C, CH2), 22.46 (2C, CH3). 31P NMR (CDCl3, 450 MHz): δ 116.31. 19F NMR (CDCl3, 450 MHz): δ −116.10.

5. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. The H atoms were included in idealized positions and treated as riding atoms: C—H = 0.93–0.97 Å with Uiso(H) = 1.5Ueq(C) for methyl H atoms and = 1.2Ueq(C) for other H atoms.

Table 2
Experimental details

Crystal data
Chemical formula C22H21FNO3P
Mr 397.37
Crystal system, space group Monoclinic, P21/n
Temperature (K) 140
a, b, c (Å) 18.3667 (8), 5.7898 (2), 19.7710 (7)
β (°) 110.870 (4)
V3) 1964.50 (13)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.17
Crystal size (mm) 0.40 × 0.11 × 0.07
 
Data collection
Diffractometer Oxford Diffraction Xcalibur 3/Sapphire3 CCD
Absorption correction Multi-scan (CrysAlis PRO; Oxford Diffraction, 2010[Oxford Diffraction (2010). CrysAlis PRO. Oxford Diffraction Ltd, Abingdon, England.])
Tmin, Tmax 0.790, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 32284, 4518, 3624
Rint 0.054
(sin θ/λ)max−1) 0.650
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.044, 0.097, 1.05
No. of reflections 4518
No. of parameters 253
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.26, −0.34
Computer programs: CrysAlis PRO (Oxford Diffraction, 2010[Oxford Diffraction (2010). CrysAlis PRO. Oxford Diffraction Ltd, Abingdon, England.]), SHELXS97, SHELXL97 and SHELXL2014 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), ORTEPII (Johnson, 1976[Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.]) and WinGX (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]).

Supporting information


Computing details top

Data collection: CrysAlis PRO (Oxford Diffraction, 2010); cell refinement: CrysAlis PRO (Oxford Diffraction, 2010); data reduction: CrysAlis PRO (Oxford Diffraction, 2010); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2008); molecular graphics: ORTEPII (Johnson, 1976); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and WinGX (Farrugia, 2012).

(I) top
Crystal data top
C22H21FNO3PF(000) = 832
Mr = 397.37Dx = 1.344 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 18.3667 (8) ÅCell parameters from 5215 reflections
b = 5.7898 (2) Åθ = 3.1–32.5°
c = 19.7710 (7) ŵ = 0.17 mm1
β = 110.870 (4)°T = 140 K
V = 1964.50 (13) Å3Prism, pale yellow
Z = 40.40 × 0.11 × 0.07 mm
Data collection top
Oxford Diffraction Xcalibur 3/Sapphire3 CCD
diffractometer
4518 independent reflections
Radiation source: Enhance (Mo) X-ray Source3624 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.054
Detector resolution: 16.0050 pixels mm-1θmax = 27.5°, θmin = 3.1°
Thin–slice φ and ω scansh = 2323
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2010)
k = 77
Tmin = 0.790, Tmax = 1.000l = 2525
32284 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.044Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.097H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.0347P)2 + 0.8268P]
where P = (Fo2 + 2Fc2)/3
4518 reflections(Δ/σ)max < 0.001
253 parametersΔρmax = 0.26 e Å3
0 restraintsΔρmin = 0.34 e Å3
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Reflections were merged by SHELXL according to the crystal class for the calculation of statistics and refinement.

_reflns_Friedel_fraction is defined as the number of unique Friedel pairs measured divided by the number that would be possible theoretically, ignoring centric projections and systematic absences.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.40211 (9)0.4807 (3)0.77326 (8)0.0211 (3)
C20.37237 (9)0.3394 (3)0.71306 (8)0.0219 (3)
C30.32866 (10)0.1394 (3)0.71261 (9)0.0250 (4)
H30.30850.05080.67080.030*
C40.31611 (10)0.0769 (3)0.77383 (9)0.0275 (4)
H40.28920.05880.77420.033*
C50.32844 (12)0.1500 (4)0.89990 (10)0.0382 (5)
H50.30140.01420.89990.046*
C60.35310 (13)0.2835 (4)0.96045 (11)0.0494 (6)
H60.34370.23811.00170.059*
C70.39270 (13)0.4898 (4)0.96012 (11)0.0480 (6)
H70.40840.58261.00120.058*
C80.40887 (11)0.5581 (4)0.90065 (9)0.0349 (4)
H80.43540.69580.90200.042*
C90.38558 (9)0.4212 (3)0.83716 (9)0.0240 (4)
C100.34324 (10)0.2143 (3)0.83686 (9)0.0262 (4)
C110.45172 (9)0.6736 (3)0.76817 (8)0.0221 (3)
H110.44770.72200.72210.027*
N120.49987 (8)0.7800 (2)0.82205 (7)0.0240 (3)
C1210.54836 (9)0.9486 (3)0.80773 (9)0.0228 (3)
C1220.56436 (10)1.1496 (3)0.84926 (9)0.0269 (4)
H1220.54291.16950.88500.032*
C1230.61157 (10)1.3197 (3)0.83817 (10)0.0304 (4)
H1230.62091.45550.86500.036*
C1240.64446 (10)1.2835 (3)0.78647 (10)0.0300 (4)
F1240.69271 (6)1.44882 (19)0.77655 (7)0.0435 (3)
C1250.63219 (10)1.0855 (3)0.74575 (10)0.0301 (4)
H1250.65601.06440.71190.036*
C1260.58359 (10)0.9183 (3)0.75626 (9)0.0260 (4)
H1260.57420.78390.72870.031*
P10.41707 (3)0.20397 (8)0.60526 (2)0.02624 (12)
O20.38648 (7)0.3996 (2)0.65108 (6)0.0262 (3)
O30.33653 (7)0.14447 (19)0.54070 (6)0.0269 (3)
O40.45712 (7)0.3839 (2)0.56752 (6)0.0293 (3)
C310.29181 (10)0.3271 (3)0.49448 (9)0.0270 (4)
H31A0.27170.42890.52270.032*
H31B0.24770.26010.45630.032*
C320.34018 (10)0.4681 (3)0.46065 (8)0.0247 (4)
C330.41052 (10)0.5660 (3)0.52151 (9)0.0272 (4)
H33A0.44260.65320.50080.033*
H33B0.39270.67100.55060.033*
C340.36634 (11)0.3186 (3)0.40960 (9)0.0338 (4)
H34A0.39740.19250.43620.051*
H34B0.39660.41050.38890.051*
H34C0.32140.25910.37170.051*
C350.29039 (12)0.6694 (3)0.41909 (10)0.0378 (5)
H35A0.31990.76010.39730.057*
H35B0.27540.76410.45180.057*
H35C0.24460.61050.38200.057*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0179 (8)0.0223 (8)0.0214 (8)0.0023 (6)0.0050 (6)0.0006 (6)
C20.0218 (8)0.0245 (9)0.0197 (8)0.0044 (6)0.0078 (7)0.0017 (6)
C30.0235 (9)0.0243 (9)0.0248 (8)0.0000 (7)0.0058 (7)0.0044 (7)
C40.0251 (9)0.0240 (9)0.0352 (9)0.0020 (7)0.0131 (8)0.0003 (7)
C50.0400 (11)0.0440 (12)0.0377 (10)0.0083 (9)0.0223 (9)0.0023 (9)
C60.0566 (14)0.0693 (15)0.0318 (10)0.0176 (12)0.0274 (10)0.0035 (10)
C70.0543 (14)0.0670 (15)0.0287 (10)0.0202 (11)0.0222 (10)0.0149 (10)
C80.0366 (10)0.0438 (11)0.0280 (9)0.0115 (9)0.0159 (8)0.0094 (8)
C90.0196 (8)0.0301 (9)0.0223 (8)0.0024 (7)0.0074 (7)0.0004 (7)
C100.0226 (8)0.0306 (9)0.0271 (8)0.0016 (7)0.0107 (7)0.0017 (7)
C110.0224 (8)0.0232 (8)0.0204 (8)0.0037 (6)0.0071 (7)0.0005 (6)
N120.0220 (7)0.0263 (7)0.0241 (7)0.0008 (6)0.0088 (6)0.0031 (6)
C1210.0196 (8)0.0233 (8)0.0228 (8)0.0026 (6)0.0043 (7)0.0005 (7)
C1220.0204 (8)0.0308 (10)0.0266 (9)0.0023 (7)0.0048 (7)0.0056 (7)
C1230.0227 (9)0.0238 (9)0.0373 (10)0.0027 (7)0.0016 (8)0.0044 (8)
C1240.0210 (9)0.0243 (9)0.0395 (10)0.0016 (7)0.0042 (8)0.0083 (8)
F1240.0348 (6)0.0318 (6)0.0615 (8)0.0075 (5)0.0142 (6)0.0086 (5)
C1250.0288 (9)0.0329 (10)0.0305 (9)0.0018 (8)0.0129 (8)0.0040 (8)
C1260.0280 (9)0.0239 (9)0.0255 (8)0.0009 (7)0.0089 (7)0.0023 (7)
P10.0281 (2)0.0278 (2)0.0229 (2)0.00239 (19)0.00914 (18)0.00166 (18)
O20.0367 (7)0.0246 (6)0.0189 (6)0.0019 (5)0.0118 (5)0.0021 (5)
O30.0337 (7)0.0223 (6)0.0239 (6)0.0050 (5)0.0092 (5)0.0029 (5)
O40.0225 (6)0.0387 (7)0.0270 (6)0.0026 (5)0.0092 (5)0.0019 (5)
C310.0238 (9)0.0315 (10)0.0237 (8)0.0029 (7)0.0059 (7)0.0029 (7)
C320.0289 (9)0.0258 (9)0.0202 (8)0.0040 (7)0.0096 (7)0.0042 (7)
C330.0311 (9)0.0284 (9)0.0245 (8)0.0076 (7)0.0127 (7)0.0031 (7)
C340.0400 (11)0.0401 (11)0.0238 (9)0.0042 (9)0.0143 (8)0.0083 (8)
C350.0477 (12)0.0330 (11)0.0294 (9)0.0014 (9)0.0096 (9)0.0016 (8)
Geometric parameters (Å, º) top
C1—C21.386 (2)C123—C1241.376 (3)
C1—C91.442 (2)C123—H1230.9300
C1—C111.467 (2)C124—F1241.365 (2)
C2—O21.3843 (19)C124—C1251.372 (3)
C2—C31.407 (2)C125—C1261.382 (2)
C3—C41.359 (2)C125—H1250.9300
C3—H30.9300C126—H1260.9300
C4—C101.411 (2)P1—O41.6046 (13)
C4—H40.9300P1—O31.6096 (12)
C5—C61.360 (3)P1—O21.6678 (12)
C5—C101.417 (2)O3—C311.447 (2)
C5—H50.9300O4—C331.455 (2)
C6—C71.399 (3)C31—C321.525 (2)
C6—H60.9300C31—H31A0.9700
C7—C81.370 (3)C31—H31B0.9700
C7—H70.9300C32—C331.527 (2)
C8—C91.416 (2)C32—C351.528 (2)
C8—H80.9300C32—C341.531 (2)
C9—C101.427 (2)C33—H33A0.9700
C11—N121.275 (2)C33—H33B0.9700
C11—H110.9300C34—H34A0.9600
N12—C1211.416 (2)C34—H34B0.9600
C121—C1221.394 (2)C34—H34C0.9600
C121—C1261.398 (2)C35—H35A0.9600
C122—C1231.380 (2)C35—H35B0.9600
C122—H1220.9300C35—H35C0.9600
C2—C1—C9118.02 (15)F124—C124—C123118.63 (16)
C2—C1—C11117.04 (14)C125—C124—C123122.63 (17)
C9—C1—C11124.85 (14)C124—C125—C126118.48 (17)
O2—C2—C1118.08 (14)C124—C125—H125120.8
O2—C2—C3119.20 (14)C126—C125—H125120.8
C1—C2—C3122.71 (15)C125—C126—C121120.85 (16)
C4—C3—C2119.39 (16)C125—C126—H126119.6
C4—C3—H3120.3C121—C126—H126119.6
C2—C3—H3120.3O4—P1—O3102.37 (6)
C3—C4—C10121.18 (16)O4—P1—O296.35 (6)
C3—C4—H4119.4O3—P1—O2100.59 (6)
C10—C4—H4119.4C2—O2—P1121.02 (10)
C6—C5—C10121.11 (18)C31—O3—P1119.93 (10)
C6—C5—H5119.4C33—O4—P1119.75 (10)
C10—C5—H5119.4O3—C31—C32112.32 (13)
C5—C6—C7119.46 (18)O3—C31—H31A109.1
C5—C6—H6120.3C32—C31—H31A109.1
C7—C6—H6120.3O3—C31—H31B109.1
C8—C7—C6121.49 (19)C32—C31—H31B109.1
C8—C7—H7119.3H31A—C31—H31B107.9
C6—C7—H7119.3C31—C32—C33108.34 (13)
C7—C8—C9120.68 (18)C31—C32—C35108.27 (14)
C7—C8—H8119.7C33—C32—C35108.46 (14)
C9—C8—H8119.7C31—C32—C34110.82 (14)
C8—C9—C10117.75 (15)C33—C32—C34110.69 (14)
C8—C9—C1123.49 (16)C35—C32—C34110.18 (14)
C10—C9—C1118.76 (15)O4—C33—C32111.58 (13)
C4—C10—C5120.70 (17)O4—C33—H33A109.3
C4—C10—C9119.82 (15)C32—C33—H33A109.3
C5—C10—C9119.48 (16)O4—C33—H33B109.3
N12—C11—C1124.98 (15)C32—C33—H33B109.3
N12—C11—H11117.5H33A—C33—H33B108.0
C1—C11—H11117.5C32—C34—H34A109.5
C11—N12—C121117.67 (14)C32—C34—H34B109.5
C122—C121—C126118.57 (16)H34A—C34—H34B109.5
C122—C121—N12118.25 (15)C32—C34—H34C109.5
C126—C121—N12123.11 (15)H34A—C34—H34C109.5
C123—C122—C121120.98 (17)H34B—C34—H34C109.5
C123—C122—H122119.5C32—C35—H35A109.5
C121—C122—H122119.5C32—C35—H35B109.5
C124—C123—C122118.44 (16)H35A—C35—H35B109.5
C124—C123—H123120.8C32—C35—H35C109.5
C122—C123—H123120.8H35A—C35—H35C109.5
F124—C124—C125118.72 (17)H35B—C35—H35C109.5
C9—C1—C2—O2178.35 (14)C11—N12—C121—C12641.1 (2)
C11—C1—C2—O24.8 (2)C126—C121—C122—C1232.4 (2)
C9—C1—C2—C31.5 (2)N12—C121—C122—C123179.62 (15)
C11—C1—C2—C3175.39 (14)C121—C122—C123—C1241.9 (2)
O2—C2—C3—C4178.58 (15)C122—C123—C124—F124178.44 (15)
C1—C2—C3—C41.6 (2)C122—C123—C124—C1250.0 (3)
C2—C3—C4—C102.8 (3)F124—C124—C125—C126179.69 (15)
C10—C5—C6—C71.0 (3)C123—C124—C125—C1261.3 (3)
C5—C6—C7—C81.5 (4)C124—C125—C126—C1210.7 (3)
C6—C7—C8—C90.2 (3)C122—C121—C126—C1251.1 (2)
C7—C8—C9—C101.6 (3)N12—C121—C126—C125178.18 (15)
C7—C8—C9—C1178.70 (19)C1—C2—O2—P1133.32 (13)
C2—C1—C9—C8176.40 (16)C3—C2—O2—P146.84 (19)
C11—C1—C9—C87.0 (3)O4—P1—O2—C2156.24 (12)
C2—C1—C9—C103.3 (2)O3—P1—O2—C299.87 (12)
C11—C1—C9—C10173.29 (15)O4—P1—O3—C3142.49 (13)
C3—C4—C10—C5178.69 (17)O2—P1—O3—C3156.49 (12)
C3—C4—C10—C90.9 (3)O3—P1—O4—C3343.33 (12)
C6—C5—C10—C4178.77 (19)O2—P1—O4—C3359.01 (12)
C6—C5—C10—C90.8 (3)P1—O3—C31—C3254.06 (17)
C8—C9—C10—C4177.50 (16)O3—C31—C32—C3357.15 (18)
C1—C9—C10—C42.2 (2)O3—C31—C32—C35174.59 (13)
C8—C9—C10—C52.1 (2)O3—C31—C32—C3464.47 (18)
C1—C9—C10—C5178.22 (16)P1—O4—C33—C3255.56 (16)
C2—C1—C11—N12160.05 (16)C31—C32—C33—O457.62 (18)
C9—C1—C11—N1216.6 (3)C35—C32—C33—O4174.93 (14)
C1—C11—N12—C121174.38 (14)C34—C32—C33—O464.08 (18)
C11—N12—C121—C122141.88 (16)
Hydrogen-bond geometry (Å, º) top
Cg1 and Cg2 are the centroids of rings C1–C4/C9/C10 and C121–C126, respectively.
D—H···AD—HH···AD···AD—H···A
C4—H4···Cg1i0.932.703.456 (2)140
C35—H35C···Cg2ii0.962.943.878 (2)167
Symmetry codes: (i) x+1/2, y1/2, z+3/2; (ii) x1/2, y+3/2, z1/2.
 

Acknowledgements

We gratefully acknowledge the King Abdulaziz City for Science and Technology, Riyadh, Kingdom of Saudi Arabia, for their financial support in the framework of an MSc program for BLAlB (grant 0043–12).

References

First citationBeuken, E. K. van den, Meetsma, A., Kooijman, H., Spek, A. L. & Feringa, B. L. (1997). Inorg. Chim. Acta, 264, 171–183.  Google Scholar
First citationCrabtree, R. H. (2005). Organometallic chemistry of the transition metals, 4th ed., pp. 99–103. Hoboken, NJ: Wiley-Interscience.  Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationHayashi, T. & Kumada, M. (1985). In Asymmetric Synthesis, Vol. 5, edited by J. D. Morrison, pp. 147–148. Orlando: Academic Press.  Google Scholar
First citationJohnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.  Google Scholar
First citationJoslin, E. E., McMullin, C. L., Gunnoe, T. B., Cundari, T. R., Sabat, M. & Myers, W. H. (2012). Inorg. Chem. 51, 4791–4801.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationKuehl, O. (2005). Coord. Chem. Rev. 249, 693–704.  CAS Google Scholar
First citationKumara Swamy, K. C. & Satish Kumar, N. (2006). Acc. Chem. Res. 39, 324–333.  Web of Science CrossRef PubMed CAS Google Scholar
First citationOxford Diffraction (2010). CrysAlis PRO. Oxford Diffraction Ltd, Abingdon, England.  Google Scholar
First citationSaid, M. A., Pülm, M., Herbst-Irmer, R. & Kumara Swamy, K. C. (1996). J. Am. Chem. Soc. 118, 9841–9849.  CSD CrossRef CAS Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTimosheva, N. V., Chandrasekaran, A. & Holmes, R. R. (2006). Inorg. Chem. 45, 3113–3123.  CSD CrossRef PubMed CAS Google Scholar
First citationTolman, C. A. (1977). Chem. Rev. 77, 313–348.  CrossRef CAS Web of Science Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds