research communications
E)-1-{2-[(5,5-dimethyl-1,3,2-dioxaphosphinan-2-yl)oxy]naphthalen-1-yl}-N-(4-fluorophenyl)methanimine
of (aChemistry Department, Taibah University, PO Box 30002, Code 14177, Al-Madinah Al-Munawarah, Kingdom of Saudi Arabia, and bSchool of Chemistry, University of East Anglia, Norwich NR4 7TJ, England
*Correspondence e-mail: musa_said04@yahoo.co.uk, d.l.hughes@uea.ac.uk
In the title compound, C22H21FNO3P, a 1,3,2-dioxaphosphinan-2-yloxy derivative, three O atoms are bonded in a trigonal–pyramidal manner to the P atom. The exocyclic P—O bond is significantly longer than the two endocyclic P—O bonds, viz. 1.6678 (12) Å compared to 1.6046 (13) and 1.6096 (12) Å. The six-membered ring which includes the P atom has a chair conformation. The fluorophenyl ring is inclined to the naphthalene ring system by 24.42 (7)°. In the crystal, molecules are linked via C—H⋯π interactions, forming slabs lying parallel to (10-1).
Keywords: crystal structure; phosphites; 1,3,2-dioxaphosphinan-2-oxy; naphthalene; C—H⋯π interactions.
CCDC reference: 1037929
1. Chemical context
Many phosphorus and/or nitrogen based ligands bind strongly to transition metals and they offer a wide range of properties and basicities due to the large variety of accessible substituents (Crabtree, 2005; Joslin et al., 2012; Kuehl, 2005; Tolman, 1977). The title compound is an example of a phosphorus-nitrogen bidentate ligand. Complexation experiments with such ligands could result in the isolation of mono- or bi-nuclear complexes (van den Beuken et al., 1997). Examples of bidentate ligands with phosphorus and nitrogen donor groups bonded to transition metals have been shown to be effective cross-coupling catalysts (Hayashi & Kumada, 1985). The present work is a continuation of the investigation into the synthesis and study of more bi- and tri-cyclic, penta- and hexa-coordinated phosphoranes to form anionic, neutral and (Said et al. 1996; Timosheva et al. 2006; Kumara Swamy & Kumar, 2006).
2. Structural commentary
The molecular structure of the title compound, Fig. 1, shows that the three oxygen atoms about the phosphorus atom are bonded in a trigonal pyramidal form. The O—P—O angles are in the range of 96.35 (6) to 102.37 (6)°. The P1—O2 bond length [1.6678 (12) Å] is significantly longer than the other P—O bonds [1.6046 (13) and 1.6096 (12) Å]. The six-membered ring which includes the phosphorus atom has a chair conformation. The fluorophenyl ring is inclined to the naphthalene ring system by 24.42 (7)°. The molecule has an E conformation about the C=N bond (Fig. 1).
3. Supramolecular features
In the crystal, molecules are linked via C—H⋯π interactions (Table 1), forming slabs lying parallel to (10), as shown in Fig. 2.
4. Synthesis and crystallization
To 1.02 g (6.05 mmol) of 2-chloro-5,5-dimethyl-1,2,3-dioxaphosphinane in 40 ml of dry dichloromethane was added 1.61 g (6.05 mmol) of (E)-1-[(4-fluorophenylimino)methyl]naphthalene-2-ol in 10 ml of dry dichloromethane. The mixture was refluxed under a slow flow of nitrogen for 4 h. The solvent was reduced to 5 ml under vacuum and 3 ml of dry n-hexane were added to afford the title compound as a pale-yellow crystalline solid (yield 2.07 g, 86%; m.p. 401–405 K). 1H NMR (CDCl3, 450 MHz): δ 9.16 (s, 1H, CHN), 7.83–7.01 (m, 10H, Ar—H), 4.22 (d, 2H, CH2), 3.40 (t, 2H, CH2), 1.23 (s, 3H, CH3), 0.65 (s, 3H, CH3). 13C NMR (CDCl3, 450 MHz): δ 162.46–115.62 (aromatic carbons), 69.86 (1C, CMe2), 32.95 (2C, CH2), 22.46 (2C, CH3). 31P NMR (CDCl3, 450 MHz): δ 116.31. 19F NMR (CDCl3, 450 MHz): δ −116.10.
5. Refinement
Crystal data, data collection and structure . The H atoms were included in idealized positions and treated as riding atoms: C—H = 0.93–0.97 Å with Uiso(H) = 1.5Ueq(C) for methyl H atoms and = 1.2Ueq(C) for other H atoms.
details are summarized in Table 2Supporting information
CCDC reference: 1037929
https://doi.org/10.1107/S2056989014026838/su5030sup1.cif
contains datablock I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2056989014026838/su5030Isup2.hkl
Supporting information file. DOI: https://doi.org/10.1107/S2056989014026838/su5030Isup3.cml
Data collection: CrysAlis PRO (Oxford Diffraction, 2010); cell
CrysAlis PRO (Oxford Diffraction, 2010); data reduction: CrysAlis PRO (Oxford Diffraction, 2010); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2008); molecular graphics: ORTEPII (Johnson, 1976); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and WinGX (Farrugia, 2012).C22H21FNO3P | F(000) = 832 |
Mr = 397.37 | Dx = 1.344 Mg m−3 |
Monoclinic, P21/n | Mo Kα radiation, λ = 0.71073 Å |
a = 18.3667 (8) Å | Cell parameters from 5215 reflections |
b = 5.7898 (2) Å | θ = 3.1–32.5° |
c = 19.7710 (7) Å | µ = 0.17 mm−1 |
β = 110.870 (4)° | T = 140 K |
V = 1964.50 (13) Å3 | Prism, pale yellow |
Z = 4 | 0.40 × 0.11 × 0.07 mm |
Oxford Diffraction Xcalibur 3/Sapphire3 CCD diffractometer | 4518 independent reflections |
Radiation source: Enhance (Mo) X-ray Source | 3624 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.054 |
Detector resolution: 16.0050 pixels mm-1 | θmax = 27.5°, θmin = 3.1° |
Thin–slice φ and ω scans | h = −23→23 |
Absorption correction: multi-scan (CrysAlis PRO; Oxford Diffraction, 2010) | k = −7→7 |
Tmin = 0.790, Tmax = 1.000 | l = −25→25 |
32284 measured reflections |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.044 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.097 | H-atom parameters constrained |
S = 1.05 | w = 1/[σ2(Fo2) + (0.0347P)2 + 0.8268P] where P = (Fo2 + 2Fc2)/3 |
4518 reflections | (Δ/σ)max < 0.001 |
253 parameters | Δρmax = 0.26 e Å−3 |
0 restraints | Δρmin = −0.34 e Å−3 |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Reflections were merged by SHELXL according to the crystal class for the calculation of statistics and refinement. _reflns_Friedel_fraction is defined as the number of unique Friedel pairs measured divided by the number that would be possible theoretically, ignoring centric projections and systematic absences. |
x | y | z | Uiso*/Ueq | ||
C1 | 0.40211 (9) | 0.4807 (3) | 0.77326 (8) | 0.0211 (3) | |
C2 | 0.37237 (9) | 0.3394 (3) | 0.71306 (8) | 0.0219 (3) | |
C3 | 0.32866 (10) | 0.1394 (3) | 0.71261 (9) | 0.0250 (4) | |
H3 | 0.3085 | 0.0508 | 0.6708 | 0.030* | |
C4 | 0.31611 (10) | 0.0769 (3) | 0.77383 (9) | 0.0275 (4) | |
H4 | 0.2892 | −0.0588 | 0.7742 | 0.033* | |
C5 | 0.32844 (12) | 0.1500 (4) | 0.89990 (10) | 0.0382 (5) | |
H5 | 0.3014 | 0.0142 | 0.8999 | 0.046* | |
C6 | 0.35310 (13) | 0.2835 (4) | 0.96045 (11) | 0.0494 (6) | |
H6 | 0.3437 | 0.2381 | 1.0017 | 0.059* | |
C7 | 0.39270 (13) | 0.4898 (4) | 0.96012 (11) | 0.0480 (6) | |
H7 | 0.4084 | 0.5826 | 1.0012 | 0.058* | |
C8 | 0.40887 (11) | 0.5581 (4) | 0.90065 (9) | 0.0349 (4) | |
H8 | 0.4354 | 0.6958 | 0.9020 | 0.042* | |
C9 | 0.38558 (9) | 0.4212 (3) | 0.83716 (9) | 0.0240 (4) | |
C10 | 0.34324 (10) | 0.2143 (3) | 0.83686 (9) | 0.0262 (4) | |
C11 | 0.45172 (9) | 0.6736 (3) | 0.76817 (8) | 0.0221 (3) | |
H11 | 0.4477 | 0.7220 | 0.7221 | 0.027* | |
N12 | 0.49987 (8) | 0.7800 (2) | 0.82205 (7) | 0.0240 (3) | |
C121 | 0.54836 (9) | 0.9486 (3) | 0.80773 (9) | 0.0228 (3) | |
C122 | 0.56436 (10) | 1.1496 (3) | 0.84926 (9) | 0.0269 (4) | |
H122 | 0.5429 | 1.1695 | 0.8850 | 0.032* | |
C123 | 0.61157 (10) | 1.3197 (3) | 0.83817 (10) | 0.0304 (4) | |
H123 | 0.6209 | 1.4555 | 0.8650 | 0.036* | |
C124 | 0.64446 (10) | 1.2835 (3) | 0.78647 (10) | 0.0300 (4) | |
F124 | 0.69271 (6) | 1.44882 (19) | 0.77655 (7) | 0.0435 (3) | |
C125 | 0.63219 (10) | 1.0855 (3) | 0.74575 (10) | 0.0301 (4) | |
H125 | 0.6560 | 1.0644 | 0.7119 | 0.036* | |
C126 | 0.58359 (10) | 0.9183 (3) | 0.75626 (9) | 0.0260 (4) | |
H126 | 0.5742 | 0.7839 | 0.7287 | 0.031* | |
P1 | 0.41707 (3) | 0.20397 (8) | 0.60526 (2) | 0.02624 (12) | |
O2 | 0.38648 (7) | 0.3996 (2) | 0.65108 (6) | 0.0262 (3) | |
O3 | 0.33653 (7) | 0.14447 (19) | 0.54070 (6) | 0.0269 (3) | |
O4 | 0.45712 (7) | 0.3839 (2) | 0.56752 (6) | 0.0293 (3) | |
C31 | 0.29181 (10) | 0.3271 (3) | 0.49448 (9) | 0.0270 (4) | |
H31A | 0.2717 | 0.4289 | 0.5227 | 0.032* | |
H31B | 0.2477 | 0.2601 | 0.4563 | 0.032* | |
C32 | 0.34018 (10) | 0.4681 (3) | 0.46065 (8) | 0.0247 (4) | |
C33 | 0.41052 (10) | 0.5660 (3) | 0.52151 (9) | 0.0272 (4) | |
H33A | 0.4426 | 0.6532 | 0.5008 | 0.033* | |
H33B | 0.3927 | 0.6710 | 0.5506 | 0.033* | |
C34 | 0.36634 (11) | 0.3186 (3) | 0.40960 (9) | 0.0338 (4) | |
H34A | 0.3974 | 0.1925 | 0.4362 | 0.051* | |
H34B | 0.3966 | 0.4105 | 0.3889 | 0.051* | |
H34C | 0.3214 | 0.2591 | 0.3717 | 0.051* | |
C35 | 0.29039 (12) | 0.6694 (3) | 0.41909 (10) | 0.0378 (5) | |
H35A | 0.3199 | 0.7601 | 0.3973 | 0.057* | |
H35B | 0.2754 | 0.7641 | 0.4518 | 0.057* | |
H35C | 0.2446 | 0.6105 | 0.3820 | 0.057* |
U11 | U22 | U33 | U12 | U13 | U23 | |
C1 | 0.0179 (8) | 0.0223 (8) | 0.0214 (8) | 0.0023 (6) | 0.0050 (6) | 0.0006 (6) |
C2 | 0.0218 (8) | 0.0245 (9) | 0.0197 (8) | 0.0044 (6) | 0.0078 (7) | 0.0017 (6) |
C3 | 0.0235 (9) | 0.0243 (9) | 0.0248 (8) | 0.0000 (7) | 0.0058 (7) | −0.0044 (7) |
C4 | 0.0251 (9) | 0.0240 (9) | 0.0352 (9) | −0.0020 (7) | 0.0131 (8) | 0.0003 (7) |
C5 | 0.0400 (11) | 0.0440 (12) | 0.0377 (10) | −0.0083 (9) | 0.0223 (9) | 0.0023 (9) |
C6 | 0.0566 (14) | 0.0693 (15) | 0.0318 (10) | −0.0176 (12) | 0.0274 (10) | −0.0035 (10) |
C7 | 0.0543 (14) | 0.0670 (15) | 0.0287 (10) | −0.0202 (11) | 0.0222 (10) | −0.0149 (10) |
C8 | 0.0366 (10) | 0.0438 (11) | 0.0280 (9) | −0.0115 (9) | 0.0159 (8) | −0.0094 (8) |
C9 | 0.0196 (8) | 0.0301 (9) | 0.0223 (8) | 0.0024 (7) | 0.0074 (7) | −0.0004 (7) |
C10 | 0.0226 (8) | 0.0306 (9) | 0.0271 (8) | 0.0016 (7) | 0.0107 (7) | 0.0017 (7) |
C11 | 0.0224 (8) | 0.0232 (8) | 0.0204 (8) | 0.0037 (6) | 0.0071 (7) | −0.0005 (6) |
N12 | 0.0220 (7) | 0.0263 (7) | 0.0241 (7) | −0.0008 (6) | 0.0088 (6) | −0.0031 (6) |
C121 | 0.0196 (8) | 0.0233 (8) | 0.0228 (8) | 0.0026 (6) | 0.0043 (7) | −0.0005 (7) |
C122 | 0.0204 (8) | 0.0308 (10) | 0.0266 (9) | 0.0023 (7) | 0.0048 (7) | −0.0056 (7) |
C123 | 0.0227 (9) | 0.0238 (9) | 0.0373 (10) | 0.0027 (7) | 0.0016 (8) | −0.0044 (8) |
C124 | 0.0210 (9) | 0.0243 (9) | 0.0395 (10) | −0.0016 (7) | 0.0042 (8) | 0.0083 (8) |
F124 | 0.0348 (6) | 0.0318 (6) | 0.0615 (8) | −0.0075 (5) | 0.0142 (6) | 0.0086 (5) |
C125 | 0.0288 (9) | 0.0329 (10) | 0.0305 (9) | 0.0018 (8) | 0.0129 (8) | 0.0040 (8) |
C126 | 0.0280 (9) | 0.0239 (9) | 0.0255 (8) | 0.0009 (7) | 0.0089 (7) | −0.0023 (7) |
P1 | 0.0281 (2) | 0.0278 (2) | 0.0229 (2) | 0.00239 (19) | 0.00914 (18) | −0.00166 (18) |
O2 | 0.0367 (7) | 0.0246 (6) | 0.0189 (6) | −0.0019 (5) | 0.0118 (5) | −0.0021 (5) |
O3 | 0.0337 (7) | 0.0223 (6) | 0.0239 (6) | −0.0050 (5) | 0.0092 (5) | −0.0029 (5) |
O4 | 0.0225 (6) | 0.0387 (7) | 0.0270 (6) | −0.0026 (5) | 0.0092 (5) | −0.0019 (5) |
C31 | 0.0238 (9) | 0.0315 (10) | 0.0237 (8) | −0.0029 (7) | 0.0059 (7) | −0.0029 (7) |
C32 | 0.0289 (9) | 0.0258 (9) | 0.0202 (8) | −0.0040 (7) | 0.0096 (7) | −0.0042 (7) |
C33 | 0.0311 (9) | 0.0284 (9) | 0.0245 (8) | −0.0076 (7) | 0.0127 (7) | −0.0031 (7) |
C34 | 0.0400 (11) | 0.0401 (11) | 0.0238 (9) | −0.0042 (9) | 0.0143 (8) | −0.0083 (8) |
C35 | 0.0477 (12) | 0.0330 (11) | 0.0294 (9) | 0.0014 (9) | 0.0096 (9) | 0.0016 (8) |
C1—C2 | 1.386 (2) | C123—C124 | 1.376 (3) |
C1—C9 | 1.442 (2) | C123—H123 | 0.9300 |
C1—C11 | 1.467 (2) | C124—F124 | 1.365 (2) |
C2—O2 | 1.3843 (19) | C124—C125 | 1.372 (3) |
C2—C3 | 1.407 (2) | C125—C126 | 1.382 (2) |
C3—C4 | 1.359 (2) | C125—H125 | 0.9300 |
C3—H3 | 0.9300 | C126—H126 | 0.9300 |
C4—C10 | 1.411 (2) | P1—O4 | 1.6046 (13) |
C4—H4 | 0.9300 | P1—O3 | 1.6096 (12) |
C5—C6 | 1.360 (3) | P1—O2 | 1.6678 (12) |
C5—C10 | 1.417 (2) | O3—C31 | 1.447 (2) |
C5—H5 | 0.9300 | O4—C33 | 1.455 (2) |
C6—C7 | 1.399 (3) | C31—C32 | 1.525 (2) |
C6—H6 | 0.9300 | C31—H31A | 0.9700 |
C7—C8 | 1.370 (3) | C31—H31B | 0.9700 |
C7—H7 | 0.9300 | C32—C33 | 1.527 (2) |
C8—C9 | 1.416 (2) | C32—C35 | 1.528 (2) |
C8—H8 | 0.9300 | C32—C34 | 1.531 (2) |
C9—C10 | 1.427 (2) | C33—H33A | 0.9700 |
C11—N12 | 1.275 (2) | C33—H33B | 0.9700 |
C11—H11 | 0.9300 | C34—H34A | 0.9600 |
N12—C121 | 1.416 (2) | C34—H34B | 0.9600 |
C121—C122 | 1.394 (2) | C34—H34C | 0.9600 |
C121—C126 | 1.398 (2) | C35—H35A | 0.9600 |
C122—C123 | 1.380 (2) | C35—H35B | 0.9600 |
C122—H122 | 0.9300 | C35—H35C | 0.9600 |
C2—C1—C9 | 118.02 (15) | F124—C124—C123 | 118.63 (16) |
C2—C1—C11 | 117.04 (14) | C125—C124—C123 | 122.63 (17) |
C9—C1—C11 | 124.85 (14) | C124—C125—C126 | 118.48 (17) |
O2—C2—C1 | 118.08 (14) | C124—C125—H125 | 120.8 |
O2—C2—C3 | 119.20 (14) | C126—C125—H125 | 120.8 |
C1—C2—C3 | 122.71 (15) | C125—C126—C121 | 120.85 (16) |
C4—C3—C2 | 119.39 (16) | C125—C126—H126 | 119.6 |
C4—C3—H3 | 120.3 | C121—C126—H126 | 119.6 |
C2—C3—H3 | 120.3 | O4—P1—O3 | 102.37 (6) |
C3—C4—C10 | 121.18 (16) | O4—P1—O2 | 96.35 (6) |
C3—C4—H4 | 119.4 | O3—P1—O2 | 100.59 (6) |
C10—C4—H4 | 119.4 | C2—O2—P1 | 121.02 (10) |
C6—C5—C10 | 121.11 (18) | C31—O3—P1 | 119.93 (10) |
C6—C5—H5 | 119.4 | C33—O4—P1 | 119.75 (10) |
C10—C5—H5 | 119.4 | O3—C31—C32 | 112.32 (13) |
C5—C6—C7 | 119.46 (18) | O3—C31—H31A | 109.1 |
C5—C6—H6 | 120.3 | C32—C31—H31A | 109.1 |
C7—C6—H6 | 120.3 | O3—C31—H31B | 109.1 |
C8—C7—C6 | 121.49 (19) | C32—C31—H31B | 109.1 |
C8—C7—H7 | 119.3 | H31A—C31—H31B | 107.9 |
C6—C7—H7 | 119.3 | C31—C32—C33 | 108.34 (13) |
C7—C8—C9 | 120.68 (18) | C31—C32—C35 | 108.27 (14) |
C7—C8—H8 | 119.7 | C33—C32—C35 | 108.46 (14) |
C9—C8—H8 | 119.7 | C31—C32—C34 | 110.82 (14) |
C8—C9—C10 | 117.75 (15) | C33—C32—C34 | 110.69 (14) |
C8—C9—C1 | 123.49 (16) | C35—C32—C34 | 110.18 (14) |
C10—C9—C1 | 118.76 (15) | O4—C33—C32 | 111.58 (13) |
C4—C10—C5 | 120.70 (17) | O4—C33—H33A | 109.3 |
C4—C10—C9 | 119.82 (15) | C32—C33—H33A | 109.3 |
C5—C10—C9 | 119.48 (16) | O4—C33—H33B | 109.3 |
N12—C11—C1 | 124.98 (15) | C32—C33—H33B | 109.3 |
N12—C11—H11 | 117.5 | H33A—C33—H33B | 108.0 |
C1—C11—H11 | 117.5 | C32—C34—H34A | 109.5 |
C11—N12—C121 | 117.67 (14) | C32—C34—H34B | 109.5 |
C122—C121—C126 | 118.57 (16) | H34A—C34—H34B | 109.5 |
C122—C121—N12 | 118.25 (15) | C32—C34—H34C | 109.5 |
C126—C121—N12 | 123.11 (15) | H34A—C34—H34C | 109.5 |
C123—C122—C121 | 120.98 (17) | H34B—C34—H34C | 109.5 |
C123—C122—H122 | 119.5 | C32—C35—H35A | 109.5 |
C121—C122—H122 | 119.5 | C32—C35—H35B | 109.5 |
C124—C123—C122 | 118.44 (16) | H35A—C35—H35B | 109.5 |
C124—C123—H123 | 120.8 | C32—C35—H35C | 109.5 |
C122—C123—H123 | 120.8 | H35A—C35—H35C | 109.5 |
F124—C124—C125 | 118.72 (17) | H35B—C35—H35C | 109.5 |
C9—C1—C2—O2 | 178.35 (14) | C11—N12—C121—C126 | −41.1 (2) |
C11—C1—C2—O2 | −4.8 (2) | C126—C121—C122—C123 | 2.4 (2) |
C9—C1—C2—C3 | −1.5 (2) | N12—C121—C122—C123 | 179.62 (15) |
C11—C1—C2—C3 | 175.39 (14) | C121—C122—C123—C124 | −1.9 (2) |
O2—C2—C3—C4 | 178.58 (15) | C122—C123—C124—F124 | −178.44 (15) |
C1—C2—C3—C4 | −1.6 (2) | C122—C123—C124—C125 | 0.0 (3) |
C2—C3—C4—C10 | 2.8 (3) | F124—C124—C125—C126 | 179.69 (15) |
C10—C5—C6—C7 | 1.0 (3) | C123—C124—C125—C126 | 1.3 (3) |
C5—C6—C7—C8 | −1.5 (4) | C124—C125—C126—C121 | −0.7 (3) |
C6—C7—C8—C9 | 0.2 (3) | C122—C121—C126—C125 | −1.1 (2) |
C7—C8—C9—C10 | 1.6 (3) | N12—C121—C126—C125 | −178.18 (15) |
C7—C8—C9—C1 | −178.70 (19) | C1—C2—O2—P1 | 133.32 (13) |
C2—C1—C9—C8 | −176.40 (16) | C3—C2—O2—P1 | −46.84 (19) |
C11—C1—C9—C8 | 7.0 (3) | O4—P1—O2—C2 | −156.24 (12) |
C2—C1—C9—C10 | 3.3 (2) | O3—P1—O2—C2 | 99.87 (12) |
C11—C1—C9—C10 | −173.29 (15) | O4—P1—O3—C31 | −42.49 (13) |
C3—C4—C10—C5 | 178.69 (17) | O2—P1—O3—C31 | 56.49 (12) |
C3—C4—C10—C9 | −0.9 (3) | O3—P1—O4—C33 | 43.33 (12) |
C6—C5—C10—C4 | −178.77 (19) | O2—P1—O4—C33 | −59.01 (12) |
C6—C5—C10—C9 | 0.8 (3) | P1—O3—C31—C32 | 54.06 (17) |
C8—C9—C10—C4 | 177.50 (16) | O3—C31—C32—C33 | −57.15 (18) |
C1—C9—C10—C4 | −2.2 (2) | O3—C31—C32—C35 | −174.59 (13) |
C8—C9—C10—C5 | −2.1 (2) | O3—C31—C32—C34 | 64.47 (18) |
C1—C9—C10—C5 | 178.22 (16) | P1—O4—C33—C32 | −55.56 (16) |
C2—C1—C11—N12 | −160.05 (16) | C31—C32—C33—O4 | 57.62 (18) |
C9—C1—C11—N12 | 16.6 (3) | C35—C32—C33—O4 | 174.93 (14) |
C1—C11—N12—C121 | 174.38 (14) | C34—C32—C33—O4 | −64.08 (18) |
C11—N12—C121—C122 | 141.88 (16) |
Cg1 and Cg2 are the centroids of rings C1–C4/C9/C10 and C121–C126, respectively. |
D—H···A | D—H | H···A | D···A | D—H···A |
C4—H4···Cg1i | 0.93 | 2.70 | 3.456 (2) | 140 |
C35—H35C···Cg2ii | 0.96 | 2.94 | 3.878 (2) | 167 |
Symmetry codes: (i) −x+1/2, y−1/2, −z+3/2; (ii) x−1/2, −y+3/2, z−1/2. |
Acknowledgements
We gratefully acknowledge the King Abdulaziz City for Science and Technology, Riyadh, Kingdom of Saudi Arabia, for their financial support in the framework of an MSc program for BLAlB (grant 0043–12).
References
Beuken, E. K. van den, Meetsma, A., Kooijman, H., Spek, A. L. & Feringa, B. L. (1997). Inorg. Chim. Acta, 264, 171–183. Google Scholar
Crabtree, R. H. (2005). Organometallic chemistry of the transition metals, 4th ed., pp. 99–103. Hoboken, NJ: Wiley-Interscience. Google Scholar
Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854. Web of Science CrossRef CAS IUCr Journals Google Scholar
Hayashi, T. & Kumada, M. (1985). In Asymmetric Synthesis, Vol. 5, edited by J. D. Morrison, pp. 147–148. Orlando: Academic Press. Google Scholar
Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA. Google Scholar
Joslin, E. E., McMullin, C. L., Gunnoe, T. B., Cundari, T. R., Sabat, M. & Myers, W. H. (2012). Inorg. Chem. 51, 4791–4801. Web of Science CSD CrossRef CAS PubMed Google Scholar
Kuehl, O. (2005). Coord. Chem. Rev. 249, 693–704. CAS Google Scholar
Kumara Swamy, K. C. & Satish Kumar, N. (2006). Acc. Chem. Res. 39, 324–333. Web of Science CrossRef PubMed CAS Google Scholar
Oxford Diffraction (2010). CrysAlis PRO. Oxford Diffraction Ltd, Abingdon, England. Google Scholar
Said, M. A., Pülm, M., Herbst-Irmer, R. & Kumara Swamy, K. C. (1996). J. Am. Chem. Soc. 118, 9841–9849. CSD CrossRef CAS Web of Science Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Timosheva, N. V., Chandrasekaran, A. & Holmes, R. R. (2006). Inorg. Chem. 45, 3113–3123. CSD CrossRef PubMed CAS Google Scholar
Tolman, C. A. (1977). Chem. Rev. 77, 313–348. CrossRef CAS Web of Science Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.