organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of (E)-2-[4-(4-hy­dr­oxy­phen­yl)butan-2-yl­­idene]hydrazine-1-carbo­thio­amide

aDepartamento de Química, Universidade Federal de Sergipe, Av. Marechal Rondon s/n, 49100-000 São Cristóvão-SE, Brazil, bInstitut für Anorganische Chemie, Universität Bonn, Gerhard-Domagk-Strasse 1, D-53121 Bonn, Germany, and cInstituto de Química, Universidade Estadual Paulista, Rua Francisco Degni s/n, 14801-970 Araraquara-SP, Brazil
*Correspondence e-mail: adriano@daad-alumni.de

Edited by H. Stoeckli-Evans, University of Neuchâtel, Switzerland (Received 24 November 2014; accepted 1 December 2014; online 1 January 2015)

The title compound, C11H15N3OS, is a thio­semicarbazone derivative of the raspberry ketone rheosmin [systematic name: 4-(4-hy­droxy­phen­yl)butane-2-one]. The mol­ecule deviates from planarity, with the bridging C—C—C=N torsion angle equal to −101.3 (2)°. The maximum deviation from the mean plane of the non-H atoms of the thio­semicarbazone fragment [C=N—N—C(= S)—N] is 0.085 (5) Å for the Schiff base N atom, and the dihedral angle between this mean plane and the aromatic ring is 50.31 (8)°. In the crystal, mol­ecules are linked by N—H⋯O, N—H⋯S and O—H⋯S hydrogen bonds, forming a three-dimensional structure, with the mol­ecules stacked along [011].

1. Related literature

For one of the first reports of thio­semicarbazone derivatives synthesis, see: Freund & Schander (1902[Freund, M. & Schander, A. (1902). Ber. Dtsch. Chem. Ges. 35, 2602-2606.]). For a report concerning the synthesis of the raspberry ketone, see: Hoffmann & Degner (1981[Hoffmann, W. & Degner, D. (1981). German Patent DE3015359 A1.]). For the biological properties of thio­semicarbazone compounds as well as for their importance in coordination chemistry, see: Lobana et al. (2009[Lobana, T. S., Sharma, R., Bawa, G. & Khanna, S. (2009). Coord. Chem. Rev. 253, 977-1055.]).

[Scheme 1]

2. Experimental

2.1. Crystal data

  • C11H15N3OS

  • Mr = 237.32

  • Monoclinic, P 21 /c

  • a = 13.5604 (7) Å

  • b = 9.7578 (6) Å

  • c = 9.3079 (4) Å

  • β = 95.194 (3)°

  • V = 1226.56 (11) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.25 mm−1

  • T = 293 K

  • 0.17 × 0.13 × 0.09 mm

2.2. Data collection

  • Nonius KappaCCD diffractometer

  • Absorption correction: multi-scan (Blessing, 1995[Blessing, R. H. (1995). Acta Cryst. A51, 33-38.]) Tmin = 0.929, Tmax = 0.994

  • 12737 measured reflections

  • 2806 independent reflections

  • 1587 reflections with I > 2σ(I)

  • Rint = 0.058

2.3. Refinement

  • R[F2 > 2σ(F2)] = 0.043

  • wR(F2) = 0.116

  • S = 0.98

  • 2806 reflections

  • 205 parameters

  • All H-atom parameters refined

  • Δρmax = 0.16 e Å−3

  • Δρmin = −0.21 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯S1i 0.89 (4) 2.32 (4) 3.206 (2) 175 (3)
N3—H10A⋯O1ii 0.85 (2) 2.22 (2) 2.936 (2) 143 (2)
N3—H10B⋯S1iii 0.91 (3) 2.73 (3) 3.585 (2) 156.6 (19)
Symmetry codes: (i) [x-1, -y-{\script{3\over 2}}, z-{\script{1\over 2}}]; (ii) [-x, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iii) [-x+1, y+{\script{1\over 2}}, -z+{\script{3\over 2}}].

Data collection: COLLECT (Nonius, 1998[Nonius (1998). COLLECT. Nonius BV, Delft, The Netherlands.]); cell refinement: SCALEPACK (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]); data reduction: DENZO (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]) and SCALEPACK; program(s) used to solve structure: SUPERFLIP (Palatinus & Chapuis, 2007[Palatinus, L. & Chapuis, G. (2007). J. Appl. Cryst. 40, 786-790.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: DIAMOND (Brandenburg, 2006[Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]) and WinGX (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]).

Supporting information


Structural commentary top

Our work is actually dedicated to the synthesis and structural determination of thio­semicarbazone derivatives of natural products. The thio­semicarbazone unit is well known for its biological properties as well as for its importance in coordination chemistry (Lobana et al., 2009). Herein, we contribute to the thio­semicarbazone chemistry by the synthesis and crystal structure of raspberry ketone thio­semicarbazone. The raspberry ketone is a natural product with great demand on the market and its synthesis has already been reported and optimized (Hoffmann & Degner, 1981).

In the title molecule, Fig. 1, the thio­semicarbazone unit is nearly planar showing a torsion angle for the N1—N2—C10—N3 entity of -3.1 (3)°. The maximum deviation from the mean plane of the non-H atoms of the C9/C10/N1/N2/N3/S1 fragment amounts to 0.085 (5)°. The angle between this mean plane and the aromatic ring is 50.31 (8)°. This strong tilting is possiblly due to free rotation around the sp3-hybridized C7 and C8 atoms (Fig. 1).

In the crystal, molecules are connected by N—H···O, N—H···S and O—H···S hydrogen bonds, with bridging sulfur atoms, into a three-dimensional H-bonded network (Figs. 2 and 3, and Table 1). The molecules are arranged along the [011] direction, but the hydrogen bonding inter­actions are present along all three directions (Fig. 3).

Synthesis and crystallization top

The synthesis of the title compound was adapted from a procedure reported previously (Freund & Schander, 1902). In a hydro­chloric acid catalyzed reaction, a mixture of 4-(4-hy­droxy­phenyl)-2-butanone (raspberry ketone) (10 mmol) and thio­semicarbazide (10 mmol) in ethanol (80 mL) was refluxed for 5 h. After cooling and filtering, the title compound was obtained. Yellow crystals suitable for X-ray diffraction were obtained by slow evaporation of asolution in methanol.

Refinement top

Crystal data, data collection and structure refinement details are summarized in Table 1. All the hydrogen atoms were located in a difference Fourier map and freely refined.

Related literature top

For one of the first reports of thiosemicarbazone derivatives synthesis, see: Freund & Schander (1902). For a report concerning the synthesis of the raspberry ketone, see: Hoffmann & Degner (1981). For the biological properties of thiosemicarbazone compounds as well as for their importance in coordination chemistry, see: Lobana et al. (2009).

Structure description top

Our work is actually dedicated to the synthesis and structural determination of thio­semicarbazone derivatives of natural products. The thio­semicarbazone unit is well known for its biological properties as well as for its importance in coordination chemistry (Lobana et al., 2009). Herein, we contribute to the thio­semicarbazone chemistry by the synthesis and crystal structure of raspberry ketone thio­semicarbazone. The raspberry ketone is a natural product with great demand on the market and its synthesis has already been reported and optimized (Hoffmann & Degner, 1981).

In the title molecule, Fig. 1, the thio­semicarbazone unit is nearly planar showing a torsion angle for the N1—N2—C10—N3 entity of -3.1 (3)°. The maximum deviation from the mean plane of the non-H atoms of the C9/C10/N1/N2/N3/S1 fragment amounts to 0.085 (5)°. The angle between this mean plane and the aromatic ring is 50.31 (8)°. This strong tilting is possiblly due to free rotation around the sp3-hybridized C7 and C8 atoms (Fig. 1).

In the crystal, molecules are connected by N—H···O, N—H···S and O—H···S hydrogen bonds, with bridging sulfur atoms, into a three-dimensional H-bonded network (Figs. 2 and 3, and Table 1). The molecules are arranged along the [011] direction, but the hydrogen bonding inter­actions are present along all three directions (Fig. 3).

For one of the first reports of thiosemicarbazone derivatives synthesis, see: Freund & Schander (1902). For a report concerning the synthesis of the raspberry ketone, see: Hoffmann & Degner (1981). For the biological properties of thiosemicarbazone compounds as well as for their importance in coordination chemistry, see: Lobana et al. (2009).

Synthesis and crystallization top

The synthesis of the title compound was adapted from a procedure reported previously (Freund & Schander, 1902). In a hydro­chloric acid catalyzed reaction, a mixture of 4-(4-hy­droxy­phenyl)-2-butanone (raspberry ketone) (10 mmol) and thio­semicarbazide (10 mmol) in ethanol (80 mL) was refluxed for 5 h. After cooling and filtering, the title compound was obtained. Yellow crystals suitable for X-ray diffraction were obtained by slow evaporation of asolution in methanol.

Refinement details top

Crystal data, data collection and structure refinement details are summarized in Table 1. All the hydrogen atoms were located in a difference Fourier map and freely refined.

Computing details top

Data collection: COLLECT (Nonius, 1998); cell refinement: SCALEPACK (Otwinowski & Minor, 1997); data reduction: DENZO and SCALEPACK (Otwinowski & Minor, 1997); program(s) used to solve structure: SUPERFLIP (Palatinus & Chapuis, 2007); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 2006); software used to prepare material for publication: publCIF (Westrip, 2010) and WinGX (Farrugia, 2012).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing the atom labelling. Displacement ellipsoids are drawn at the 40% probability level.
[Figure 2] Fig. 2. A view of the intermolecular hydrogen bonding (dashed lines) in the crystal of the title compound (see Table 1 for details of the hydrogen bonding and the symmetry codes).
[Figure 3] Fig. 3. Crystal packing of the title compound viewed along the c axis, with the molecules stacking along the [011] direction. Hydrogen bonds are shown as dashed lines (see Table 1 for details).
(E)-2-[4-(4-Hydroxyphenyl)butan-2-ylidene]hydrazine-1-carbothioamide top
Crystal data top
C11H15N3OSF(000) = 504
Mr = 237.32Dx = 1.285 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 4899 reflections
a = 13.5604 (7) Åθ = 2.9–27.5°
b = 9.7578 (6) ŵ = 0.25 mm1
c = 9.3079 (4) ÅT = 293 K
β = 95.194 (3)°Rod, yellow
V = 1226.56 (11) Å30.17 × 0.13 × 0.09 mm
Z = 4
Data collection top
Nonius KappaCCD
diffractometer
2806 independent reflections
Radiation source: fine-focus sealed tube, Nonius KappaCCD1587 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.058
Detector resolution: 9 pixels mm-1θmax = 27.5°, θmin = 3.0°
CCD rotation images, thick slices scansh = 1517
Absorption correction: multi-scan
(Blessing, 1995)
k = 1112
Tmin = 0.929, Tmax = 0.994l = 129
12737 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.043Hydrogen site location: difference Fourier map
wR(F2) = 0.116All H-atom parameters refined
S = 0.98 w = 1/[σ2(Fo2) + (0.0576P)2]
where P = (Fo2 + 2Fc2)/3
2806 reflections(Δ/σ)max = 0.001
205 parametersΔρmax = 0.16 e Å3
0 restraintsΔρmin = 0.21 e Å3
Crystal data top
C11H15N3OSV = 1226.56 (11) Å3
Mr = 237.32Z = 4
Monoclinic, P21/cMo Kα radiation
a = 13.5604 (7) ŵ = 0.25 mm1
b = 9.7578 (6) ÅT = 293 K
c = 9.3079 (4) Å0.17 × 0.13 × 0.09 mm
β = 95.194 (3)°
Data collection top
Nonius KappaCCD
diffractometer
2806 independent reflections
Absorption correction: multi-scan
(Blessing, 1995)
1587 reflections with I > 2σ(I)
Tmin = 0.929, Tmax = 0.994Rint = 0.058
12737 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0430 restraints
wR(F2) = 0.116All H-atom parameters refined
S = 0.98Δρmax = 0.16 e Å3
2806 reflectionsΔρmin = 0.21 e Å3
205 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.53385 (4)0.71017 (6)0.78232 (6)0.0603 (2)
O10.29137 (12)0.88281 (19)0.09365 (18)0.0714 (5)
N10.30776 (11)0.76195 (18)0.49369 (17)0.0513 (4)
N20.38871 (12)0.7859 (2)0.59241 (18)0.0522 (5)
N30.41152 (14)0.5570 (2)0.6114 (2)0.0635 (5)
C10.19991 (14)0.8803 (2)0.1707 (2)0.0480 (5)
C20.12722 (15)0.9634 (2)0.1242 (2)0.0538 (5)
C30.03396 (16)0.9638 (2)0.1973 (2)0.0550 (5)
C40.01049 (14)0.8834 (2)0.3178 (2)0.0493 (5)
C50.08500 (15)0.8014 (2)0.3617 (2)0.0515 (5)
C60.17858 (16)0.7981 (2)0.2904 (2)0.0496 (5)
C70.08871 (17)0.8918 (4)0.4046 (3)0.0701 (7)
C80.17714 (15)0.8434 (3)0.3288 (2)0.0501 (5)
C90.27054 (13)0.8668 (2)0.42605 (19)0.0467 (5)
C100.43922 (14)0.6808 (2)0.6538 (2)0.0493 (5)
C110.3082 (2)1.0096 (3)0.4435 (3)0.0671 (7)
H10.337 (3)0.853 (4)0.148 (4)0.145 (15)*
H20.1415 (17)1.020 (2)0.035 (2)0.077 (7)*
H30.0147 (16)1.022 (2)0.1646 (19)0.054 (6)*
H50.0730 (17)0.750 (2)0.449 (2)0.069 (6)*
H60.2290 (15)0.741 (2)0.3238 (19)0.051 (6)*
H7A0.101 (2)0.985 (3)0.439 (3)0.114 (11)*
H7B0.091 (2)0.833 (3)0.499 (3)0.103 (9)*
H8A0.1836 (15)0.894 (2)0.235 (2)0.060 (6)*
H8B0.1737 (14)0.751 (2)0.3086 (19)0.048 (6)*
H90.4068 (16)0.864 (2)0.614 (2)0.054 (7)*
H10A0.3683 (18)0.544 (2)0.541 (3)0.077 (8)*
H10B0.4429 (17)0.481 (3)0.650 (2)0.078 (7)*
H11A0.377 (2)1.011 (3)0.431 (3)0.101 (9)*
H11B0.275 (2)1.069 (3)0.380 (3)0.121 (11)*
H11C0.302 (2)1.039 (3)0.539 (3)0.119 (11)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0393 (3)0.0773 (4)0.0609 (3)0.0021 (3)0.0135 (2)0.0007 (3)
O10.0395 (9)0.0927 (13)0.0788 (10)0.0011 (8)0.0123 (8)0.0169 (9)
N10.0360 (9)0.0618 (11)0.0537 (9)0.0004 (8)0.0091 (7)0.0022 (8)
N20.0378 (9)0.0564 (13)0.0593 (10)0.0007 (9)0.0129 (7)0.0022 (9)
N30.0545 (12)0.0599 (14)0.0713 (13)0.0051 (10)0.0212 (9)0.0006 (10)
C10.0352 (10)0.0496 (13)0.0583 (11)0.0043 (10)0.0016 (8)0.0011 (9)
C20.0484 (13)0.0553 (14)0.0575 (12)0.0053 (11)0.0028 (10)0.0094 (10)
C30.0425 (12)0.0553 (14)0.0681 (14)0.0078 (11)0.0096 (10)0.0020 (11)
C40.0388 (11)0.0577 (14)0.0504 (11)0.0057 (10)0.0006 (8)0.0100 (9)
C50.0470 (12)0.0546 (13)0.0522 (12)0.0092 (11)0.0007 (9)0.0043 (10)
C60.0403 (11)0.0470 (13)0.0618 (12)0.0007 (10)0.0052 (9)0.0023 (10)
C70.0400 (13)0.107 (2)0.0618 (14)0.0023 (13)0.0043 (10)0.0199 (15)
C80.0413 (12)0.0546 (14)0.0525 (12)0.0065 (10)0.0067 (9)0.0027 (10)
C90.0360 (11)0.0555 (14)0.0476 (11)0.0003 (10)0.0015 (8)0.0010 (9)
C100.0328 (10)0.0634 (15)0.0513 (11)0.0021 (10)0.0016 (8)0.0045 (10)
C110.0553 (16)0.0638 (16)0.0787 (18)0.0031 (13)0.0125 (13)0.0031 (13)
Geometric parameters (Å, º) top
S1—C101.6973 (19)C4—C51.379 (3)
O1—C11.376 (2)C4—C71.507 (3)
O1—H10.89 (4)C5—C61.378 (3)
N1—C91.281 (2)C5—H50.95 (2)
N1—N21.386 (2)C6—H60.95 (2)
N2—C101.333 (3)C7—C81.520 (3)
N2—H90.82 (2)C7—H7A0.98 (3)
N3—C101.315 (3)C7—H7B1.05 (3)
N3—H10A0.85 (2)C8—C91.506 (2)
N3—H10B0.91 (3)C8—H8A1.01 (2)
C1—C21.376 (3)C8—H8B0.92 (2)
C1—C61.382 (3)C9—C111.488 (3)
C2—C31.381 (3)C11—H11A0.95 (3)
C2—H21.00 (2)C11—H11B0.91 (3)
C3—C41.383 (3)C11—H11C0.95 (3)
C3—H30.94 (2)
C1—O1—H1110 (2)C1—C6—H6119.7 (11)
C9—N1—N2116.39 (18)C4—C7—C8115.97 (18)
C10—N2—N1120.0 (2)C4—C7—H7A110.2 (17)
C10—N2—H9118.6 (14)C8—C7—H7A109.0 (18)
N1—N2—H9121.4 (14)C4—C7—H7B112.1 (15)
C10—N3—H10A121.7 (16)C8—C7—H7B104.6 (15)
C10—N3—H10B121.1 (15)H7A—C7—H7B104 (2)
H10A—N3—H10B117 (2)C9—C8—C7109.24 (17)
O1—C1—C2117.58 (18)C9—C8—H8A108.1 (12)
O1—C1—C6122.95 (19)C7—C8—H8A112.5 (12)
C2—C1—C6119.47 (18)C9—C8—H8B107.2 (12)
C1—C2—C3119.8 (2)C7—C8—H8B111.8 (12)
C1—C2—H2119.8 (13)H8A—C8—H8B107.9 (17)
C3—C2—H2120.4 (13)N1—C9—C11125.35 (18)
C2—C3—C4122.1 (2)N1—C9—C8116.50 (19)
C2—C3—H3118.7 (11)C11—C9—C8118.01 (19)
C4—C3—H3119.2 (11)N3—C10—N2117.12 (19)
C5—C4—C3116.66 (18)N3—C10—S1122.95 (16)
C5—C4—C7121.0 (2)N2—C10—S1119.93 (17)
C3—C4—C7122.2 (2)C9—C11—H11A109.3 (18)
C6—C5—C4122.55 (19)C9—C11—H11B112.3 (19)
C6—C5—H5118.4 (14)H11A—C11—H11B110 (3)
C4—C5—H5118.8 (14)C9—C11—H11C108.9 (19)
C5—C6—C1119.4 (2)H11A—C11—H11C106 (2)
C5—C6—H6120.8 (11)H11B—C11—H11C110 (3)
C9—N1—N2—C10171.64 (19)C2—C1—C6—C50.4 (3)
O1—C1—C2—C3179.56 (19)C5—C4—C7—C8118.0 (3)
C6—C1—C2—C30.0 (3)C3—C4—C7—C866.8 (3)
C1—C2—C3—C40.4 (3)C4—C7—C8—C9176.4 (2)
C2—C3—C4—C50.3 (3)N2—N1—C9—C111.1 (3)
C2—C3—C4—C7175.1 (2)N2—N1—C9—C8174.63 (17)
C3—C4—C5—C60.1 (3)C7—C8—C9—N1101.3 (2)
C7—C4—C5—C6175.6 (2)C7—C8—C9—C1174.7 (3)
C4—C5—C6—C10.5 (3)N1—N2—C10—N33.1 (3)
O1—C1—C6—C5179.97 (19)N1—N2—C10—S1176.21 (14)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···S1i0.89 (4)2.32 (4)3.206 (2)175 (3)
N3—H10A···O1ii0.85 (2)2.22 (2)2.936 (2)143 (2)
N3—H10B···S1iii0.91 (3)2.73 (3)3.585 (2)156.6 (19)
Symmetry codes: (i) x1, y3/2, z1/2; (ii) x, y+1/2, z+1/2; (iii) x+1, y+1/2, z+3/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···S1i0.89 (4)2.32 (4)3.206 (2)175 (3)
N3—H10A···O1ii0.85 (2)2.22 (2)2.936 (2)143 (2)
N3—H10B···S1iii0.91 (3)2.73 (3)3.585 (2)156.6 (19)
Symmetry codes: (i) x1, y3/2, z1/2; (ii) x, y+1/2, z+1/2; (iii) x+1, y+1/2, z+3/2.
 

Acknowledgements

BRSF thanks the CNPq/UFS for the award of a PIBIC scholarship and FVR acknowledges FAPESP for a Post-Doctoral scholarship (Proc. No. 2013/20156–5).

References

First citationBlessing, R. H. (1995). Acta Cryst. A51, 33–38.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationBrandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFreund, M. & Schander, A. (1902). Ber. Dtsch. Chem. Ges. 35, 2602–2606.  CrossRef CAS Google Scholar
First citationHoffmann, W. & Degner, D. (1981). German Patent DE3015359 A1.  Google Scholar
First citationLobana, T. S., Sharma, R., Bawa, G. & Khanna, S. (2009). Coord. Chem. Rev. 253, 977–1055.  Web of Science CrossRef CAS Google Scholar
First citationNonius (1998). COLLECT. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationPalatinus, L. & Chapuis, G. (2007). J. Appl. Cryst. 40, 786–790.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds