organic compounds
H,3H,5H)-trione
of 5-[bis(methylsulfonyl)methyl]-1,3-dimethyl-5-(methylsulfonyl)pyrimidine-2,4,6(1aFaculty of Pharmacy and Medical Science, University of Petra, Amman, Jordan, bDepartment of Chemistry, Faculty of Science, University of Jordan, Amman, Jordan, and cInstitut für Anorganische Chemie der Universität Tübingen, Auf der Morgenstelle 18, 72076 Tübingen, Germany
*Correspondence e-mail: eyad782002@yahoo.com
In the title compound, C10H16N2O9S3, the pyrimidine ring of the 1,3-dimethyl barbituric acid moiety has an with the C atom carrying the methylsulfonyl and bis(methylsulfonyl)methyl substituents as the flap. The dihedral angle between mean plane of the pyrimidine ring and the S/C/S plane is 72.4 (3)°. In the crystal, molecules are linked via C—H⋯O hydrogen bonds, forming a three-dimensional structure.
Keywords: crystal structure; barbituric acid; pyrimidines; methylsulfonyl; trione; hydrogen bonding.
CCDC reference: 1039815
1. Related literature
For examples of the biological activity of pyrimidines, see: Habibi & Tarameshloo (2011); Holtkamp & Meierkord (2007). For aspects of nucleic acid binding, see: Demeunynck et al. (2004). For drug applications of C5-substituted barbituric and 2-thiobarbituric acids, see: Getova & Georgiev (1989); Kratt et al. (1990); Kotha et al. (2005). For the structures of similar compounds, see: Huang & Chen (1986); Ye et al. (1989); Al-Sheikh et al. (2009); Awad et al. (2014); Glidewell et al. (1995). For the synthesis of the starting material, see: Sweidan et al. (2009).
2. Experimental
2.1. Crystal data
|
2.2. Data collection
|
2.3. Refinement
|
Data collection: X-AREA (Stoe & Cie, 2008); cell X-AREA; data reduction: X-RED32 (Stoe & Cie, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008; molecular graphics: Mercury (Macrae et al., 2008); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2009).
Supporting information
CCDC reference: 1039815
https://doi.org/10.1107/S2056989014027455/su5040sup1.cif
contains datablocks I, New_Global_Publ_Block. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2056989014027455/su5040Isup2.hkl
Supporting information file. DOI: https://doi.org/10.1107/S2056989014027455/su5040Isup3.cml
The title compound was synthesized by adding m-chloroperbenzoic acid (4.5 g, 20 mmol) to a solution containing 1,3-dimethyl-5-bis-(thiomethyl)methylenebarbituric acid (1.3 g, 5 mmol; Sweidan et al., 2009), in dichloromethane (20 ml) at 213 K. After stirring overnight, the solvent was removed in vacuo. Diethylether (20 ml) was added and the precipitated solid was collected and recrystallized from CH2Cl2/Et2O to give colourless crystals (yield: 1.0 g, 51%).
The C-bound H atoms were included in calculated positions and treated as riding atoms: C—H = 0.98–1.00 Å with Uiso(H) = 1.5Ueq(C) for methyl H atoms and = 1.2Ueq(C) for other H atoms.
Compounds containing pyrimidine play a vital role in biological activity (Habibi & Tarameshloo, 2011; Holtkamp & Meierkord, 2007). This activity differs from molecule to molecule depending on the tautomery and the nature of the substituents (Demeunynck et al., 2004). In view of the pharmaceutical significance of pyrimidines we became interested in obtaining new barbituric acid derivatives. C5-substituted barbituric and 2-thiobarbituric acids have been used for sedative, hypnotics and anticonvulsant drug applications (Getova & Georgiev 1989; Kratt et al., 1990; Kotha et al., 2005). 1,3-dimethyl barbituric acid has a tendency to accept negative charges by delocalization of π electrons and can exhibit zwitterionic nature. The title compound, which was synthesized via the reaction of 1,3-dimethyl-5-bis-(thiomethyl)methylenebarbituric acid and m-chloroperbenzoic acid, may find applications in bio-organic chemistry.
Several noteworthy features are evident in the
of the title compound, Fig. 1. The three central sulfonyl groups utilize one methyl group which have almost identical S—C bond lengths [S1—C9 1.752 (4) Å, S2—C8 1.744 (4) Å, S3—C10 1.762 (4) Å] and they are slightly shorter than those reported for (PhSO2)2CH2 (1.786 Å; Glidewell et al. 1995) and for bis(methylsulfonyl)methane (1.781 Å; Awad et al. 2014). Interestingly, significant elongation of the (C4—C7) bond length [1.547 (5) Å] may be attributed to interactions between the sulfonyl groups located at position C7.As a result of crystal packing the geometry of one of the sulfonyl groups is as expected; having one sulfur-oxygen bond slightly shorter than the other [S2—O1 = 1.415 (3) Å, and S1—O3 = 1.434 (3) Å]. The carbonyl groups that are located on the barbituric acid ring have approximately the same bond lengths, varying from 1.200 (4) to 1.211 (4) Å. The pyrimidine ring in barbituric acid moiety is significantly distorted from planarity and has an
with atom C as the flap.In the crystal, molecules are linked via C—H···O hydrogen bonds forming a three-dimensional structure (Table 1 and Fig. 2)
For examples of the biological activity of pyrimidines, see: Habibi & Tarameshloo (2011); Holtkamp & Meierkord (2007). For aspects of nucleic acid binding, see: Demeunynck et al. (2004). For drug applications of C5-substituted barbituric and 2-thiobarbituric acids, see: Getova & Georgiev (1989); Kratt et al. (1990); Kotha et al. (2005). For the structures of similar compounds, see: Huang & Chen (1986); Ye et al. (1989); Al-Sheikh et al. (2009); Awad et al. (2014); Glidewell et al. (1995). For the synthesis of the starting material, see: Sweidan et al. (2009).
Data collection: X-AREA (Stoe & Cie, 2008); cell
X-AREA (Stoe & Cie, 2008); data reduction: X-RED32 (Stoe & Cie, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008; molecular graphics: Mercury (Macrae et al., 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).Fig. 1. The molecular structure of the title compound, with atom labelling. Displacement ellipsoids are drawn at the 20% probability level. | |
Fig. 2. A view along the a axis of the crystal packing of the title compound. The hydrogen bonds are shown as dashed lines (see Table 1 for details). |
C10H16N2O9S3 | Z = 2 |
Mr = 404.43 | F(000) = 420 |
Triclinic, P1 | Dx = 1.722 Mg m−3 |
Hall symbol: -P 1 | Mo Kα radiation, λ = 0.71073 Å |
a = 7.9415 (16) Å | Cell parameters from 30 reflections |
b = 8.5796 (17) Å | θ = 10.3–20.1° |
c = 12.756 (3) Å | µ = 0.53 mm−1 |
α = 77.08 (3)° | T = 173 K |
β = 79.50 (3)° | Plate, colourless |
γ = 67.83 (3)° | 0.15 × 0.10 × 0.05 mm |
V = 779.9 (3) Å3 |
Stoe IPDS diffractometer | 2582 reflections with I > 2σ(I) |
Radiation source: fine-focus sealed tube | Rint = 0.069 |
Graphite monochromator | θmax = 26.4°, θmin = 3.1° |
phi scans | h = −9→9 |
11105 measured reflections | k = −10→10 |
3175 independent reflections | l = −15→15 |
Refinement on F2 | Secondary atom site location: difference Fourier map |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.060 | H-atom parameters constrained |
wR(F2) = 0.105 | w = 1/[σ2(Fo2) + (0.P)2 + 1.8882P] where P = (Fo2 + 2Fc2)/3 |
S = 1.24 | (Δ/σ)max < 0.001 |
3175 reflections | Δρmax = 0.39 e Å−3 |
223 parameters | Δρmin = −0.44 e Å−3 |
0 restraints | Extinction correction: SHELXL97 (Sheldrick, 2008, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 |
Primary atom site location: structure-invariant direct methods | Extinction coefficient: 0.0053 (11) |
C10H16N2O9S3 | γ = 67.83 (3)° |
Mr = 404.43 | V = 779.9 (3) Å3 |
Triclinic, P1 | Z = 2 |
a = 7.9415 (16) Å | Mo Kα radiation |
b = 8.5796 (17) Å | µ = 0.53 mm−1 |
c = 12.756 (3) Å | T = 173 K |
α = 77.08 (3)° | 0.15 × 0.10 × 0.05 mm |
β = 79.50 (3)° |
Stoe IPDS diffractometer | 2582 reflections with I > 2σ(I) |
11105 measured reflections | Rint = 0.069 |
3175 independent reflections |
R[F2 > 2σ(F2)] = 0.060 | 0 restraints |
wR(F2) = 0.105 | H-atom parameters constrained |
S = 1.24 | Δρmax = 0.39 e Å−3 |
3175 reflections | Δρmin = −0.44 e Å−3 |
223 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
S1 | 0.26932 (13) | 0.98015 (13) | 0.40183 (7) | 0.0206 (2) | |
S2 | 0.04979 (12) | 1.12489 (12) | 0.20775 (7) | 0.0203 (2) | |
S3 | 0.36913 (12) | 0.56897 (12) | 0.32733 (8) | 0.0203 (2) | |
N1 | 0.0632 (4) | 0.6845 (4) | 0.1414 (3) | 0.0199 (7) | |
N2 | 0.3363 (4) | 0.7382 (4) | 0.0629 (2) | 0.0194 (7) | |
O1 | 0.1593 (4) | 1.2283 (4) | 0.1838 (3) | 0.0357 (7) | |
O2 | 0.1389 (4) | 1.1372 (4) | 0.4315 (2) | 0.0322 (7) | |
O3 | 0.3197 (4) | 0.8360 (4) | 0.4871 (2) | 0.0312 (7) | |
O4 | 0.0233 (4) | 1.0569 (4) | 0.1216 (2) | 0.0308 (7) | |
O5 | 0.5284 (4) | 0.5940 (4) | 0.3464 (2) | 0.0289 (7) | |
O6 | 0.3920 (4) | 0.4469 (4) | 0.2607 (2) | 0.0287 (6) | |
O7 | −0.0780 (4) | 0.7631 (4) | 0.3019 (2) | 0.0267 (6) | |
O8 | 0.2123 (4) | 0.6024 (4) | −0.0170 (2) | 0.0255 (6) | |
O9 | 0.4500 (3) | 0.8776 (3) | 0.1470 (2) | 0.0222 (6) | |
C1 | 0.0528 (5) | 0.7430 (5) | 0.2337 (3) | 0.0186 (7) | |
C2 | 0.2063 (5) | 0.6684 (5) | 0.0579 (3) | 0.0177 (7) | |
C3 | 0.3452 (5) | 0.8054 (5) | 0.1483 (3) | 0.0164 (7) | |
C4 | 0.2215 (5) | 0.7758 (5) | 0.2529 (3) | 0.0171 (7) | |
C5 | −0.0927 (5) | 0.6445 (6) | 0.1232 (3) | 0.0275 (9) | |
H5A | −0.1683 | 0.6306 | 0.1920 | 0.041* | |
H5B | −0.0473 | 0.5383 | 0.0935 | 0.041* | |
H5C | −0.1662 | 0.7378 | 0.0721 | 0.041* | |
C6 | 0.4587 (5) | 0.7625 (5) | −0.0362 (3) | 0.0257 (9) | |
H6A | 0.4152 | 0.8825 | −0.0712 | 0.039* | |
H6B | 0.4591 | 0.6901 | −0.0859 | 0.039* | |
H6C | 0.5830 | 0.7309 | −0.0175 | 0.039* | |
C7 | 0.1493 (5) | 0.9322 (5) | 0.3113 (3) | 0.0169 (7) | |
H7 | 0.0390 | 0.9184 | 0.3587 | 0.020* | |
C8 | −0.1646 (5) | 1.2318 (5) | 0.2710 (3) | 0.0272 (9) | |
H8A | −0.1492 | 1.2715 | 0.3338 | 0.041* | |
H8B | −0.2333 | 1.1540 | 0.2949 | 0.041* | |
H8C | −0.2316 | 1.3301 | 0.2199 | 0.041* | |
C9 | 0.4678 (5) | 1.0156 (5) | 0.3342 (3) | 0.0241 (8) | |
H9A | 0.5235 | 1.0504 | 0.3833 | 0.036* | |
H9B | 0.4363 | 1.1060 | 0.2711 | 0.036* | |
H9C | 0.5546 | 0.9102 | 0.3105 | 0.036* | |
C10 | 0.2393 (6) | 0.5223 (5) | 0.4497 (3) | 0.0280 (9) | |
H10A | 0.3164 | 0.4225 | 0.4954 | 0.042* | |
H10B | 0.1361 | 0.4979 | 0.4342 | 0.042* | |
H10C | 0.1930 | 0.6206 | 0.4874 | 0.042* |
U11 | U22 | U33 | U12 | U13 | U23 | |
S1 | 0.0214 (5) | 0.0306 (5) | 0.0163 (4) | −0.0142 (4) | 0.0000 (3) | −0.0093 (4) |
S2 | 0.0178 (4) | 0.0206 (5) | 0.0194 (5) | −0.0040 (4) | 0.0005 (3) | −0.0038 (4) |
S3 | 0.0173 (4) | 0.0210 (5) | 0.0207 (5) | −0.0057 (4) | −0.0023 (4) | −0.0016 (4) |
N1 | 0.0153 (15) | 0.0221 (17) | 0.0245 (17) | −0.0071 (13) | −0.0042 (12) | −0.0058 (13) |
N2 | 0.0209 (16) | 0.0235 (17) | 0.0146 (15) | −0.0078 (13) | 0.0004 (12) | −0.0070 (13) |
O1 | 0.0328 (17) | 0.0331 (18) | 0.0394 (18) | −0.0133 (14) | −0.0022 (14) | −0.0010 (14) |
O2 | 0.0262 (15) | 0.0404 (18) | 0.0368 (17) | −0.0127 (13) | 0.0034 (12) | −0.0236 (14) |
O3 | 0.0381 (17) | 0.0426 (18) | 0.0188 (14) | −0.0216 (14) | −0.0056 (12) | −0.0014 (12) |
O4 | 0.0357 (16) | 0.0259 (16) | 0.0254 (15) | −0.0020 (13) | −0.0083 (12) | −0.0056 (12) |
O5 | 0.0196 (14) | 0.0361 (17) | 0.0314 (16) | −0.0106 (12) | −0.0068 (12) | −0.0019 (13) |
O6 | 0.0330 (16) | 0.0234 (15) | 0.0272 (15) | −0.0053 (12) | −0.0050 (12) | −0.0059 (12) |
O7 | 0.0186 (13) | 0.0409 (18) | 0.0274 (15) | −0.0162 (12) | 0.0049 (11) | −0.0151 (13) |
O8 | 0.0302 (15) | 0.0265 (15) | 0.0230 (14) | −0.0091 (12) | −0.0045 (12) | −0.0105 (12) |
O9 | 0.0220 (13) | 0.0283 (15) | 0.0216 (14) | −0.0147 (12) | 0.0020 (11) | −0.0083 (11) |
C1 | 0.0161 (17) | 0.0206 (19) | 0.0201 (18) | −0.0068 (15) | −0.0023 (14) | −0.0043 (15) |
C2 | 0.0185 (17) | 0.0152 (18) | 0.0179 (18) | −0.0024 (14) | −0.0067 (14) | −0.0025 (14) |
C3 | 0.0127 (16) | 0.0166 (18) | 0.0185 (18) | −0.0033 (14) | −0.0016 (13) | −0.0035 (14) |
C4 | 0.0150 (16) | 0.0226 (19) | 0.0150 (17) | −0.0081 (14) | −0.0004 (13) | −0.0040 (14) |
C5 | 0.025 (2) | 0.033 (2) | 0.033 (2) | −0.0163 (18) | −0.0071 (17) | −0.0088 (18) |
C6 | 0.029 (2) | 0.032 (2) | 0.0184 (19) | −0.0129 (18) | 0.0041 (16) | −0.0089 (17) |
C7 | 0.0159 (17) | 0.023 (2) | 0.0136 (17) | −0.0085 (15) | 0.0010 (13) | −0.0051 (14) |
C8 | 0.0178 (18) | 0.031 (2) | 0.026 (2) | −0.0027 (17) | 0.0022 (16) | −0.0050 (17) |
C9 | 0.0219 (19) | 0.035 (2) | 0.023 (2) | −0.0167 (17) | −0.0028 (15) | −0.0069 (17) |
C10 | 0.032 (2) | 0.031 (2) | 0.022 (2) | −0.0180 (19) | 0.0004 (17) | 0.0011 (17) |
S1—O3 | 1.434 (3) | O9—C3 | 1.207 (4) |
S1—O2 | 1.436 (3) | C1—C4 | 1.539 (5) |
S1—C9 | 1.752 (4) | C3—C4 | 1.539 (5) |
S1—C7 | 1.823 (4) | C4—C7 | 1.547 (5) |
S2—O1 | 1.415 (3) | C5—H5A | 0.9800 |
S2—O4 | 1.434 (3) | C5—H5B | 0.9800 |
S2—C8 | 1.744 (4) | C5—H5C | 0.9800 |
S2—C7 | 1.876 (4) | C6—H6A | 0.9800 |
S3—O5 | 1.430 (3) | C6—H6B | 0.9800 |
S3—O6 | 1.432 (3) | C6—H6C | 0.9800 |
S3—C10 | 1.762 (4) | C7—H7 | 1.0000 |
S3—C4 | 1.873 (4) | C8—H8A | 0.9800 |
N1—C1 | 1.358 (5) | C8—H8B | 0.9800 |
N1—C2 | 1.396 (5) | C8—H8C | 0.9800 |
N1—C5 | 1.471 (5) | C9—H9A | 0.9800 |
N2—C3 | 1.365 (5) | C9—H9B | 0.9800 |
N2—C2 | 1.392 (5) | C9—H9C | 0.9800 |
N2—C6 | 1.474 (5) | C10—H10A | 0.9800 |
O7—C1 | 1.211 (4) | C10—H10B | 0.9800 |
O8—C2 | 1.200 (4) | C10—H10C | 0.9800 |
O3—S1—O2 | 117.09 (19) | C7—C4—S3 | 117.1 (2) |
O3—S1—C9 | 108.84 (19) | N1—C5—H5A | 109.5 |
O2—S1—C9 | 109.23 (19) | N1—C5—H5B | 109.5 |
O3—S1—C7 | 107.80 (17) | H5A—C5—H5B | 109.5 |
O2—S1—C7 | 102.30 (17) | N1—C5—H5C | 109.5 |
C9—S1—C7 | 111.45 (17) | H5A—C5—H5C | 109.5 |
O1—S2—O4 | 118.50 (19) | H5B—C5—H5C | 109.5 |
O1—S2—C8 | 110.4 (2) | N2—C6—H6A | 109.5 |
O4—S2—C8 | 108.3 (2) | N2—C6—H6B | 109.5 |
O1—S2—C7 | 110.32 (17) | H6A—C6—H6B | 109.5 |
O4—S2—C7 | 104.43 (17) | N2—C6—H6C | 109.5 |
C8—S2—C7 | 103.80 (18) | H6A—C6—H6C | 109.5 |
O5—S3—O6 | 118.38 (18) | H6B—C6—H6C | 109.5 |
O5—S3—C10 | 111.37 (19) | C4—C7—S1 | 126.6 (3) |
O6—S3—C10 | 108.29 (19) | C4—C7—S2 | 106.8 (2) |
O5—S3—C4 | 107.38 (17) | S1—C7—S2 | 110.83 (19) |
O6—S3—C4 | 103.90 (17) | C4—C7—H7 | 103.3 |
C10—S3—C4 | 106.69 (18) | S1—C7—H7 | 103.3 |
C1—N1—C2 | 125.2 (3) | S2—C7—H7 | 103.3 |
C1—N1—C5 | 118.2 (3) | S2—C8—H8A | 109.5 |
C2—N1—C5 | 116.4 (3) | S2—C8—H8B | 109.5 |
C3—N2—C2 | 124.9 (3) | H8A—C8—H8B | 109.5 |
C3—N2—C6 | 116.8 (3) | S2—C8—H8C | 109.5 |
C2—N2—C6 | 117.7 (3) | H8A—C8—H8C | 109.5 |
O7—C1—N1 | 123.2 (3) | H8B—C8—H8C | 109.5 |
O7—C1—C4 | 119.7 (3) | S1—C9—H9A | 109.5 |
N1—C1—C4 | 117.0 (3) | S1—C9—H9B | 109.5 |
O8—C2—N2 | 121.6 (3) | H9A—C9—H9B | 109.5 |
O8—C2—N1 | 120.9 (3) | S1—C9—H9C | 109.5 |
N2—C2—N1 | 117.4 (3) | H9A—C9—H9C | 109.5 |
O9—C3—N2 | 123.5 (3) | H9B—C9—H9C | 109.5 |
O9—C3—C4 | 119.5 (3) | S3—C10—H10A | 109.5 |
N2—C3—C4 | 116.9 (3) | S3—C10—H10B | 109.5 |
C1—C4—C3 | 113.4 (3) | H10A—C10—H10B | 109.5 |
C1—C4—C7 | 106.7 (3) | S3—C10—H10C | 109.5 |
C3—C4—C7 | 111.2 (3) | H10A—C10—H10C | 109.5 |
C1—C4—S3 | 105.6 (2) | H10B—C10—H10C | 109.5 |
C3—C4—S3 | 102.9 (2) | ||
C2—N1—C1—O7 | 176.2 (4) | O5—S3—C4—C1 | 179.8 (2) |
C5—N1—C1—O7 | 0.3 (6) | O6—S3—C4—C1 | 53.6 (3) |
C2—N1—C1—C4 | −6.8 (5) | C10—S3—C4—C1 | −60.7 (3) |
C5—N1—C1—C4 | 177.2 (3) | O5—S3—C4—C3 | 60.6 (3) |
C3—N2—C2—O8 | −175.6 (4) | O6—S3—C4—C3 | −65.6 (3) |
C6—N2—C2—O8 | 12.9 (5) | C10—S3—C4—C3 | −179.9 (2) |
C3—N2—C2—N1 | 7.1 (5) | O5—S3—C4—C7 | −61.6 (3) |
C6—N2—C2—N1 | −164.4 (3) | O6—S3—C4—C7 | 172.2 (3) |
C1—N1—C2—O8 | 173.7 (4) | C10—S3—C4—C7 | 57.9 (3) |
C5—N1—C2—O8 | −10.2 (5) | C1—C4—C7—S1 | 153.1 (3) |
C1—N1—C2—N2 | −8.9 (5) | C3—C4—C7—S1 | −82.7 (4) |
C5—N1—C2—N2 | 167.1 (3) | S3—C4—C7—S1 | 35.1 (4) |
C2—N2—C3—O9 | −173.7 (3) | C1—C4—C7—S2 | −73.5 (3) |
C6—N2—C3—O9 | −2.2 (5) | C3—C4—C7—S2 | 50.7 (3) |
C2—N2—C3—C4 | 10.1 (5) | S3—C4—C7—S2 | 168.54 (17) |
C6—N2—C3—C4 | −178.3 (3) | O3—S1—C7—C4 | −55.8 (3) |
O7—C1—C4—C3 | −160.3 (3) | O2—S1—C7—C4 | −179.8 (3) |
N1—C1—C4—C3 | 22.6 (5) | C9—S1—C7—C4 | 63.5 (4) |
O7—C1—C4—C7 | −37.5 (5) | O3—S1—C7—S2 | 172.24 (18) |
N1—C1—C4—C7 | 145.4 (3) | O2—S1—C7—S2 | 48.2 (2) |
O7—C1—C4—S3 | 87.7 (4) | C9—S1—C7—S2 | −68.4 (2) |
N1—C1—C4—S3 | −89.3 (3) | O1—S2—C7—C4 | −110.8 (3) |
O9—C3—C4—C1 | 159.5 (3) | O4—S2—C7—C4 | 17.5 (3) |
N2—C3—C4—C1 | −24.2 (5) | C8—S2—C7—C4 | 130.9 (3) |
O9—C3—C4—C7 | 39.3 (4) | O1—S2—C7—S1 | 30.6 (2) |
N2—C3—C4—C7 | −144.4 (3) | O4—S2—C7—S1 | 158.95 (19) |
O9—C3—C4—S3 | −86.9 (4) | C8—S2—C7—S1 | −87.7 (2) |
N2—C3—C4—S3 | 89.4 (3) |
D—H···A | D—H | H···A | D···A | D—H···A |
C5—H5B···O8i | 0.98 | 2.51 | 3.240 (6) | 131 |
C6—H6A···O9ii | 0.98 | 2.59 | 3.380 (5) | 138 |
C8—H8C···O8iii | 0.98 | 2.51 | 3.263 (5) | 133 |
C10—H10A···O5iv | 0.98 | 2.50 | 3.219 (5) | 130 |
Symmetry codes: (i) −x, −y+1, −z; (ii) −x+1, −y+2, −z; (iii) −x, −y+2, −z; (iv) −x+1, −y+1, −z+1. |
D—H···A | D—H | H···A | D···A | D—H···A |
C5—H5B···O8i | 0.98 | 2.51 | 3.240 (6) | 131 |
C6—H6A···O9ii | 0.98 | 2.59 | 3.380 (5) | 138 |
C8—H8C···O8iii | 0.98 | 2.51 | 3.263 (5) | 133 |
C10—H10A···O5iv | 0.98 | 2.50 | 3.219 (5) | 130 |
Symmetry codes: (i) −x, −y+1, −z; (ii) −x+1, −y+2, −z; (iii) −x, −y+2, −z; (iv) −x+1, −y+1, −z+1. |
Acknowledgements
We are indebted to the University of Petra, the University of Jordan and the University of Tübingen for their endless help and support.
References
Al-Sheikh, A., Sweidan, K., Kuhn, N., Maichle-Mössmer, C. & Steimann, M. (2009). Z. Naturforsch. Teil B, 64, 307–312. CAS Google Scholar
Awad, R., Mallah, E., Abu Dayyih, W., Sweidan, K. & Steimann, M. (2014). Acta Cryst. E70, o877. CSD CrossRef IUCr Journals Google Scholar
Demeunynck, M., Bailly, C. & David Wilson, W. (2004). In Small Molecule DNA and RNA Binders: From Synthesis to Nucleic Acid Complexes. Weinheim: Wiley-VCH Verlag GmbH & Co. KGaA. Google Scholar
Getova, D. & Georgiev, V. (1989). Acta Physiol. Pharmacol. Bulg. 15, 83–88. CAS PubMed Google Scholar
Glidewell, C., Lightfoot, P. & Patterson, I. L. J. (1995). Acta Cryst. C51, 1648–1651. CSD CrossRef Web of Science IUCr Journals Google Scholar
Habibi, A. & Tarameshloo, Z. (2011). J. Iran. Chem. Soc. 8, 287–291. CrossRef CAS Google Scholar
Holtkamp, M. & Meierkord, H. (2007). Cell. Mol. Life Sci. 64, 2023–2041. CrossRef PubMed CAS Google Scholar
Huang, X. & Chen, B. (1986). Synthesis, pp. 967–970. CrossRef Google Scholar
Kotha, S., Deb, A. C. & Kumar, R. (2005). Bioorg. Med. Chem. Lett. 15, 1039–1043. CrossRef PubMed CAS Google Scholar
Kratt, G., Salbeck, G., Bonin, W. & Duewel, D. (1990). Ger. Offen. DE 3 404-408. Google Scholar
Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Spek, A. L. (2009). Acta Cryst. D65, 148–155. Web of Science CrossRef CAS IUCr Journals Google Scholar
Stoe & Cie (2008). X-AREA and X-RED32. Stoe & Cie, Darmstadt, Germany. Google Scholar
Sweidan, K., Abu-Rayyan, A., Al-Sheikh, A., Maichle-Mösmer, C., Steimann, M. & Kuhn, N. (2009). Z. Naturforsch. Teil B, 64, 106–110. CAS Google Scholar
Ye, F., Chen, B. & Huang, X. (1989). Synthesis, pp. 317–320. CrossRef Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Compounds containing pyrimidine play a vital role in biological activity (Habibi & Tarameshloo, 2011; Holtkamp & Meierkord, 2007). This activity differs from molecule to molecule depending on the tautomery and the nature of the substituents (Demeunynck et al., 2004). In view of the pharmaceutical significance of pyrimidines we became interested in obtaining new barbituric acid derivatives. C5-substituted barbituric and 2-thiobarbituric acids have been used for sedative, hypnotics and anticonvulsant drug applications (Getova & Georgiev 1989; Kratt et al., 1990; Kotha et al., 2005). 1,3-dimethyl barbituric acid has a tendency to accept negative charges by delocalization of π electrons and can exhibit zwitterionic nature. The title compound, which was synthesized via the reaction of 1,3-dimethyl-5-bis-(thiomethyl)methylenebarbituric acid and m-chloroperbenzoic acid, may find applications in bio-organic chemistry.
Several noteworthy features are evident in the crystal structure of the title compound, Fig. 1. The three central sulfonyl groups utilize one methyl group which have almost identical S—C bond lengths [S1—C9 1.752 (4) Å, S2—C8 1.744 (4) Å, S3—C10 1.762 (4) Å] and they are slightly shorter than those reported for (PhSO2)2CH2 (1.786 Å; Glidewell et al. 1995) and for bis(methylsulfonyl)methane (1.781 Å; Awad et al. 2014). Interestingly, significant elongation of the (C4—C7) bond length [1.547 (5) Å] may be attributed to interactions between the sulfonyl groups located at position C7.
As a result of crystal packing the geometry of one of the sulfonyl groups is as expected; having one sulfur-oxygen bond slightly shorter than the other [S2—O1 = 1.415 (3) Å, and S1—O3 = 1.434 (3) Å]. The carbonyl groups that are located on the barbituric acid ring have approximately the same bond lengths, varying from 1.200 (4) to 1.211 (4) Å. The pyrimidine ring in barbituric acid moiety is significantly distorted from planarity and has an envelope conformation with atom C as the flap.
In the crystal, molecules are linked via C—H···O hydrogen bonds forming a three-dimensional structure (Table 1 and Fig. 2)