organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of 5-[bis­­(methyl­sulfon­yl)meth­yl]-1,3-di­methyl-5-(methyl­sulfon­yl)pyrimidine-2,4,6(1H,3H,5H)-trione

aFaculty of Pharmacy and Medical Science, University of Petra, Amman, Jordan, bDepartment of Chemistry, Faculty of Science, University of Jordan, Amman, Jordan, and cInstitut für Anorganische Chemie der Universität Tübingen, Auf der Morgenstelle 18, 72076 Tübingen, Germany
*Correspondence e-mail: eyad782002@yahoo.com

Edited by H. Stoeckli-Evans, University of Neuchâtel, Switzerland (Received 8 December 2014; accepted 16 December 2014; online 1 January 2015)

In the title compound, C10H16N2O9S3, the pyrimidine ring of the 1,3-dimethyl barbituric acid moiety has an envelope conformation with the C atom carrying the methyl­sulfonyl and bis­(methyl­sulfon­yl)methyl substituents as the flap. The dihedral angle between mean plane of the pyrimidine ring and the S/C/S plane is 72.4 (3)°. In the crystal, mol­ecules are linked via C—H⋯O hydrogen bonds, forming a three-dimensional structure.

1. Related literature

For examples of the biological activity of pyrimidines, see: Habibi & Tarameshloo (2011[Habibi, A. & Tarameshloo, Z. (2011). J. Iran. Chem. Soc. 8, 287-291.]); Holtkamp & Meierkord (2007[Holtkamp, M. & Meierkord, H. (2007). Cell. Mol. Life Sci. 64, 2023-2041.]). For aspects of nucleic acid binding, see: Demeunynck et al. (2004[Demeunynck, M., Bailly, C. & David Wilson, W. (2004). In Small Molecule DNA and RNA Binders: From Synthesis to Nucleic Acid Complexes. Weinheim: Wiley-VCH Verlag GmbH & Co. KGaA.]). For drug applications of C5-substituted barbituric and 2-thio­barbituric acids, see: Getova & Georgiev (1989[Getova, D. & Georgiev, V. (1989). Acta Physiol. Pharmacol. Bulg. 15, 83-88.]); Kratt et al. (1990[Kratt, G., Salbeck, G., Bonin, W. & Duewel, D. (1990). Ger. Offen. DE 3 404-408.]); Kotha et al. (2005[Kotha, S., Deb, A. C. & Kumar, R. (2005). Bioorg. Med. Chem. Lett. 15, 1039-1043.]). For the structures of similar compounds, see: Huang & Chen (1986[Huang, X. & Chen, B. (1986). Synthesis, pp. 967-970.]); Ye et al. (1989[Ye, F., Chen, B. & Huang, X. (1989). Synthesis, pp. 317-320.]); Al-Sheikh et al. (2009[Al-Sheikh, A., Sweidan, K., Kuhn, N., Maichle-Mössmer, C. & Steimann, M. (2009). Z. Naturforsch. Teil B, 64, 307-312.]); Awad et al. (2014[Awad, R., Mallah, E., Abu Dayyih, W., Sweidan, K. & Steimann, M. (2014). Acta Cryst. E70, o877.]); Glidewell et al. (1995[Glidewell, C., Lightfoot, P. & Patterson, I. L. J. (1995). Acta Cryst. C51, 1648-1651.]). For the synthesis of the starting material, see: Sweidan et al. (2009[Sweidan, K., Abu-Rayyan, A., Al-Sheikh, A., Maichle-Mösmer, C., Steimann, M. & Kuhn, N. (2009). Z. Naturforsch. Teil B, 64, 106-110.]).

[Scheme 1]

2. Experimental

2.1. Crystal data

  • C10H16N2O9S3

  • Mr = 404.43

  • Triclinic, [P \overline 1]

  • a = 7.9415 (16) Å

  • b = 8.5796 (17) Å

  • c = 12.756 (3) Å

  • α = 77.08 (3)°

  • β = 79.50 (3)°

  • γ = 67.83 (3)°

  • V = 779.9 (3) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.53 mm−1

  • T = 173 K

  • 0.15 × 0.10 × 0.05 mm

2.2. Data collection

  • Stoe IPDS diffractometer

  • 11105 measured reflections

  • 3175 independent reflections

  • 2582 reflections with I > 2σ(I)

  • Rint = 0.069

2.3. Refinement

  • R[F2 > 2σ(F2)] = 0.060

  • wR(F2) = 0.105

  • S = 1.24

  • 3175 reflections

  • 223 parameters

  • H-atom parameters constrained

  • Δρmax = 0.39 e Å−3

  • Δρmin = −0.44 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C5—H5B⋯O8i 0.98 2.51 3.240 (6) 131
C6—H6A⋯O9ii 0.98 2.59 3.380 (5) 138
C8—H8C⋯O8iii 0.98 2.51 3.263 (5) 133
C10—H10A⋯O5iv 0.98 2.50 3.219 (5) 130
Symmetry codes: (i) -x, -y+1, -z; (ii) -x+1, -y+2, -z; (iii) -x, -y+2, -z; (iv) -x+1, -y+1, -z+1.

Data collection: X-AREA (Stoe & Cie, 2008[Stoe & Cie (2008). X-AREA and X-RED32. Stoe & Cie, Darmstadt, Germany.]); cell refinement: X-AREA; data reduction: X-RED32 (Stoe & Cie, 2008[Stoe & Cie (2008). X-AREA and X-RED32. Stoe & Cie, Darmstadt, Germany.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]; molecular graphics: Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Compounds containing pyrimidine play a vital role in biological activity (Habibi & Tarameshloo, 2011; Holtkamp & Meierkord, 2007). This activity differs from molecule to molecule depending on the tautomery and the nature of the substituents (Demeunynck et al., 2004). In view of the pharmaceutical significance of pyrimidines we became interested in obtaining new barbituric acid derivatives. C5-substituted barbituric and 2-thiobarbituric acids have been used for sedative, hypnotics and anticonvulsant drug applications (Getova & Georgiev 1989; Kratt et al., 1990; Kotha et al., 2005). 1,3-dimethyl barbituric acid has a tendency to accept negative charges by delocalization of π electrons and can exhibit zwitterionic nature. The title compound, which was synthesized via the reaction of 1,3-dimethyl-5-bis-(thiomethyl)methylenebarbituric acid and m-chloroperbenzoic acid, may find applications in bio-organic chemistry.

Several noteworthy features are evident in the crystal structure of the title compound, Fig. 1. The three central sulfonyl groups utilize one methyl group which have almost identical S—C bond lengths [S1—C9 1.752 (4) Å, S2—C8 1.744 (4) Å, S3—C10 1.762 (4) Å] and they are slightly shorter than those reported for (PhSO2)2CH2 (1.786 Å; Glidewell et al. 1995) and for bis(methylsulfonyl)methane (1.781 Å; Awad et al. 2014). Interestingly, significant elongation of the (C4—C7) bond length [1.547 (5) Å] may be attributed to interactions between the sulfonyl groups located at position C7.

As a result of crystal packing the geometry of one of the sulfonyl groups is as expected; having one sulfur-oxygen bond slightly shorter than the other [S2—O1 = 1.415 (3) Å, and S1—O3 = 1.434 (3) Å]. The carbonyl groups that are located on the barbituric acid ring have approximately the same bond lengths, varying from 1.200 (4) to 1.211 (4) Å. The pyrimidine ring in barbituric acid moiety is significantly distorted from planarity and has an envelope conformation with atom C as the flap.

In the crystal, molecules are linked via C—H···O hydrogen bonds forming a three-dimensional structure (Table 1 and Fig. 2)

Related literature top

For examples of the biological activity of pyrimidines, see: Habibi & Tarameshloo (2011); Holtkamp & Meierkord (2007). For aspects of nucleic acid binding, see: Demeunynck et al. (2004). For drug applications of C5-substituted barbituric and 2-thiobarbituric acids, see: Getova & Georgiev (1989); Kratt et al. (1990); Kotha et al. (2005). For the structures of similar compounds, see: Huang & Chen (1986); Ye et al. (1989); Al-Sheikh et al. (2009); Awad et al. (2014); Glidewell et al. (1995). For the synthesis of the starting material, see: Sweidan et al. (2009).

Experimental top

The title compound was synthesized by adding m-chloroperbenzoic acid (4.5 g, 20 mmol) to a solution containing 1,3-dimethyl-5-bis-(thiomethyl)methylenebarbituric acid (1.3 g, 5 mmol; Sweidan et al., 2009), in dichloromethane (20 ml) at 213 K. After stirring overnight, the solvent was removed in vacuo. Diethylether (20 ml) was added and the precipitated solid was collected and recrystallized from CH2Cl2/Et2O to give colourless crystals (yield: 1.0 g, 51%).

Refinement top

The C-bound H atoms were included in calculated positions and treated as riding atoms: C—H = 0.98–1.00 Å with Uiso(H) = 1.5Ueq(C) for methyl H atoms and = 1.2Ueq(C) for other H atoms.

Structure description top

Compounds containing pyrimidine play a vital role in biological activity (Habibi & Tarameshloo, 2011; Holtkamp & Meierkord, 2007). This activity differs from molecule to molecule depending on the tautomery and the nature of the substituents (Demeunynck et al., 2004). In view of the pharmaceutical significance of pyrimidines we became interested in obtaining new barbituric acid derivatives. C5-substituted barbituric and 2-thiobarbituric acids have been used for sedative, hypnotics and anticonvulsant drug applications (Getova & Georgiev 1989; Kratt et al., 1990; Kotha et al., 2005). 1,3-dimethyl barbituric acid has a tendency to accept negative charges by delocalization of π electrons and can exhibit zwitterionic nature. The title compound, which was synthesized via the reaction of 1,3-dimethyl-5-bis-(thiomethyl)methylenebarbituric acid and m-chloroperbenzoic acid, may find applications in bio-organic chemistry.

Several noteworthy features are evident in the crystal structure of the title compound, Fig. 1. The three central sulfonyl groups utilize one methyl group which have almost identical S—C bond lengths [S1—C9 1.752 (4) Å, S2—C8 1.744 (4) Å, S3—C10 1.762 (4) Å] and they are slightly shorter than those reported for (PhSO2)2CH2 (1.786 Å; Glidewell et al. 1995) and for bis(methylsulfonyl)methane (1.781 Å; Awad et al. 2014). Interestingly, significant elongation of the (C4—C7) bond length [1.547 (5) Å] may be attributed to interactions between the sulfonyl groups located at position C7.

As a result of crystal packing the geometry of one of the sulfonyl groups is as expected; having one sulfur-oxygen bond slightly shorter than the other [S2—O1 = 1.415 (3) Å, and S1—O3 = 1.434 (3) Å]. The carbonyl groups that are located on the barbituric acid ring have approximately the same bond lengths, varying from 1.200 (4) to 1.211 (4) Å. The pyrimidine ring in barbituric acid moiety is significantly distorted from planarity and has an envelope conformation with atom C as the flap.

In the crystal, molecules are linked via C—H···O hydrogen bonds forming a three-dimensional structure (Table 1 and Fig. 2)

For examples of the biological activity of pyrimidines, see: Habibi & Tarameshloo (2011); Holtkamp & Meierkord (2007). For aspects of nucleic acid binding, see: Demeunynck et al. (2004). For drug applications of C5-substituted barbituric and 2-thiobarbituric acids, see: Getova & Georgiev (1989); Kratt et al. (1990); Kotha et al. (2005). For the structures of similar compounds, see: Huang & Chen (1986); Ye et al. (1989); Al-Sheikh et al. (2009); Awad et al. (2014); Glidewell et al. (1995). For the synthesis of the starting material, see: Sweidan et al. (2009).

Computing details top

Data collection: X-AREA (Stoe & Cie, 2008); cell refinement: X-AREA (Stoe & Cie, 2008); data reduction: X-RED32 (Stoe & Cie, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008; molecular graphics: Mercury (Macrae et al., 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, with atom labelling. Displacement ellipsoids are drawn at the 20% probability level.
[Figure 2] Fig. 2. A view along the a axis of the crystal packing of the title compound. The hydrogen bonds are shown as dashed lines (see Table 1 for details).
5-[Bis(methylsulfonyl)methyl]-1,3-dimethyl-5-(methylsulfonyl)pyrimidine-2,4,6(1H,3H,5H)-trione top
Crystal data top
C10H16N2O9S3Z = 2
Mr = 404.43F(000) = 420
Triclinic, P1Dx = 1.722 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.9415 (16) ÅCell parameters from 30 reflections
b = 8.5796 (17) Åθ = 10.3–20.1°
c = 12.756 (3) ŵ = 0.53 mm1
α = 77.08 (3)°T = 173 K
β = 79.50 (3)°Plate, colourless
γ = 67.83 (3)°0.15 × 0.10 × 0.05 mm
V = 779.9 (3) Å3
Data collection top
Stoe IPDS
diffractometer
2582 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.069
Graphite monochromatorθmax = 26.4°, θmin = 3.1°
phi scansh = 99
11105 measured reflectionsk = 1010
3175 independent reflectionsl = 1515
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.060H-atom parameters constrained
wR(F2) = 0.105 w = 1/[σ2(Fo2) + (0.P)2 + 1.8882P]
where P = (Fo2 + 2Fc2)/3
S = 1.24(Δ/σ)max < 0.001
3175 reflectionsΔρmax = 0.39 e Å3
223 parametersΔρmin = 0.44 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0053 (11)
Crystal data top
C10H16N2O9S3γ = 67.83 (3)°
Mr = 404.43V = 779.9 (3) Å3
Triclinic, P1Z = 2
a = 7.9415 (16) ÅMo Kα radiation
b = 8.5796 (17) ŵ = 0.53 mm1
c = 12.756 (3) ÅT = 173 K
α = 77.08 (3)°0.15 × 0.10 × 0.05 mm
β = 79.50 (3)°
Data collection top
Stoe IPDS
diffractometer
2582 reflections with I > 2σ(I)
11105 measured reflectionsRint = 0.069
3175 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0600 restraints
wR(F2) = 0.105H-atom parameters constrained
S = 1.24Δρmax = 0.39 e Å3
3175 reflectionsΔρmin = 0.44 e Å3
223 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.26932 (13)0.98015 (13)0.40183 (7)0.0206 (2)
S20.04979 (12)1.12489 (12)0.20775 (7)0.0203 (2)
S30.36913 (12)0.56897 (12)0.32733 (8)0.0203 (2)
N10.0632 (4)0.6845 (4)0.1414 (3)0.0199 (7)
N20.3363 (4)0.7382 (4)0.0629 (2)0.0194 (7)
O10.1593 (4)1.2283 (4)0.1838 (3)0.0357 (7)
O20.1389 (4)1.1372 (4)0.4315 (2)0.0322 (7)
O30.3197 (4)0.8360 (4)0.4871 (2)0.0312 (7)
O40.0233 (4)1.0569 (4)0.1216 (2)0.0308 (7)
O50.5284 (4)0.5940 (4)0.3464 (2)0.0289 (7)
O60.3920 (4)0.4469 (4)0.2607 (2)0.0287 (6)
O70.0780 (4)0.7631 (4)0.3019 (2)0.0267 (6)
O80.2123 (4)0.6024 (4)0.0170 (2)0.0255 (6)
O90.4500 (3)0.8776 (3)0.1470 (2)0.0222 (6)
C10.0528 (5)0.7430 (5)0.2337 (3)0.0186 (7)
C20.2063 (5)0.6684 (5)0.0579 (3)0.0177 (7)
C30.3452 (5)0.8054 (5)0.1483 (3)0.0164 (7)
C40.2215 (5)0.7758 (5)0.2529 (3)0.0171 (7)
C50.0927 (5)0.6445 (6)0.1232 (3)0.0275 (9)
H5A0.16830.63060.19200.041*
H5B0.04730.53830.09350.041*
H5C0.16620.73780.07210.041*
C60.4587 (5)0.7625 (5)0.0362 (3)0.0257 (9)
H6A0.41520.88250.07120.039*
H6B0.45910.69010.08590.039*
H6C0.58300.73090.01750.039*
C70.1493 (5)0.9322 (5)0.3113 (3)0.0169 (7)
H70.03900.91840.35870.020*
C80.1646 (5)1.2318 (5)0.2710 (3)0.0272 (9)
H8A0.14921.27150.33380.041*
H8B0.23331.15400.29490.041*
H8C0.23161.33010.21990.041*
C90.4678 (5)1.0156 (5)0.3342 (3)0.0241 (8)
H9A0.52351.05040.38330.036*
H9B0.43631.10600.27110.036*
H9C0.55460.91020.31050.036*
C100.2393 (6)0.5223 (5)0.4497 (3)0.0280 (9)
H10A0.31640.42250.49540.042*
H10B0.13610.49790.43420.042*
H10C0.19300.62060.48740.042*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0214 (5)0.0306 (5)0.0163 (4)0.0142 (4)0.0000 (3)0.0093 (4)
S20.0178 (4)0.0206 (5)0.0194 (5)0.0040 (4)0.0005 (3)0.0038 (4)
S30.0173 (4)0.0210 (5)0.0207 (5)0.0057 (4)0.0023 (4)0.0016 (4)
N10.0153 (15)0.0221 (17)0.0245 (17)0.0071 (13)0.0042 (12)0.0058 (13)
N20.0209 (16)0.0235 (17)0.0146 (15)0.0078 (13)0.0004 (12)0.0070 (13)
O10.0328 (17)0.0331 (18)0.0394 (18)0.0133 (14)0.0022 (14)0.0010 (14)
O20.0262 (15)0.0404 (18)0.0368 (17)0.0127 (13)0.0034 (12)0.0236 (14)
O30.0381 (17)0.0426 (18)0.0188 (14)0.0216 (14)0.0056 (12)0.0014 (12)
O40.0357 (16)0.0259 (16)0.0254 (15)0.0020 (13)0.0083 (12)0.0056 (12)
O50.0196 (14)0.0361 (17)0.0314 (16)0.0106 (12)0.0068 (12)0.0019 (13)
O60.0330 (16)0.0234 (15)0.0272 (15)0.0053 (12)0.0050 (12)0.0059 (12)
O70.0186 (13)0.0409 (18)0.0274 (15)0.0162 (12)0.0049 (11)0.0151 (13)
O80.0302 (15)0.0265 (15)0.0230 (14)0.0091 (12)0.0045 (12)0.0105 (12)
O90.0220 (13)0.0283 (15)0.0216 (14)0.0147 (12)0.0020 (11)0.0083 (11)
C10.0161 (17)0.0206 (19)0.0201 (18)0.0068 (15)0.0023 (14)0.0043 (15)
C20.0185 (17)0.0152 (18)0.0179 (18)0.0024 (14)0.0067 (14)0.0025 (14)
C30.0127 (16)0.0166 (18)0.0185 (18)0.0033 (14)0.0016 (13)0.0035 (14)
C40.0150 (16)0.0226 (19)0.0150 (17)0.0081 (14)0.0004 (13)0.0040 (14)
C50.025 (2)0.033 (2)0.033 (2)0.0163 (18)0.0071 (17)0.0088 (18)
C60.029 (2)0.032 (2)0.0184 (19)0.0129 (18)0.0041 (16)0.0089 (17)
C70.0159 (17)0.023 (2)0.0136 (17)0.0085 (15)0.0010 (13)0.0051 (14)
C80.0178 (18)0.031 (2)0.026 (2)0.0027 (17)0.0022 (16)0.0050 (17)
C90.0219 (19)0.035 (2)0.023 (2)0.0167 (17)0.0028 (15)0.0069 (17)
C100.032 (2)0.031 (2)0.022 (2)0.0180 (19)0.0004 (17)0.0011 (17)
Geometric parameters (Å, º) top
S1—O31.434 (3)O9—C31.207 (4)
S1—O21.436 (3)C1—C41.539 (5)
S1—C91.752 (4)C3—C41.539 (5)
S1—C71.823 (4)C4—C71.547 (5)
S2—O11.415 (3)C5—H5A0.9800
S2—O41.434 (3)C5—H5B0.9800
S2—C81.744 (4)C5—H5C0.9800
S2—C71.876 (4)C6—H6A0.9800
S3—O51.430 (3)C6—H6B0.9800
S3—O61.432 (3)C6—H6C0.9800
S3—C101.762 (4)C7—H71.0000
S3—C41.873 (4)C8—H8A0.9800
N1—C11.358 (5)C8—H8B0.9800
N1—C21.396 (5)C8—H8C0.9800
N1—C51.471 (5)C9—H9A0.9800
N2—C31.365 (5)C9—H9B0.9800
N2—C21.392 (5)C9—H9C0.9800
N2—C61.474 (5)C10—H10A0.9800
O7—C11.211 (4)C10—H10B0.9800
O8—C21.200 (4)C10—H10C0.9800
O3—S1—O2117.09 (19)C7—C4—S3117.1 (2)
O3—S1—C9108.84 (19)N1—C5—H5A109.5
O2—S1—C9109.23 (19)N1—C5—H5B109.5
O3—S1—C7107.80 (17)H5A—C5—H5B109.5
O2—S1—C7102.30 (17)N1—C5—H5C109.5
C9—S1—C7111.45 (17)H5A—C5—H5C109.5
O1—S2—O4118.50 (19)H5B—C5—H5C109.5
O1—S2—C8110.4 (2)N2—C6—H6A109.5
O4—S2—C8108.3 (2)N2—C6—H6B109.5
O1—S2—C7110.32 (17)H6A—C6—H6B109.5
O4—S2—C7104.43 (17)N2—C6—H6C109.5
C8—S2—C7103.80 (18)H6A—C6—H6C109.5
O5—S3—O6118.38 (18)H6B—C6—H6C109.5
O5—S3—C10111.37 (19)C4—C7—S1126.6 (3)
O6—S3—C10108.29 (19)C4—C7—S2106.8 (2)
O5—S3—C4107.38 (17)S1—C7—S2110.83 (19)
O6—S3—C4103.90 (17)C4—C7—H7103.3
C10—S3—C4106.69 (18)S1—C7—H7103.3
C1—N1—C2125.2 (3)S2—C7—H7103.3
C1—N1—C5118.2 (3)S2—C8—H8A109.5
C2—N1—C5116.4 (3)S2—C8—H8B109.5
C3—N2—C2124.9 (3)H8A—C8—H8B109.5
C3—N2—C6116.8 (3)S2—C8—H8C109.5
C2—N2—C6117.7 (3)H8A—C8—H8C109.5
O7—C1—N1123.2 (3)H8B—C8—H8C109.5
O7—C1—C4119.7 (3)S1—C9—H9A109.5
N1—C1—C4117.0 (3)S1—C9—H9B109.5
O8—C2—N2121.6 (3)H9A—C9—H9B109.5
O8—C2—N1120.9 (3)S1—C9—H9C109.5
N2—C2—N1117.4 (3)H9A—C9—H9C109.5
O9—C3—N2123.5 (3)H9B—C9—H9C109.5
O9—C3—C4119.5 (3)S3—C10—H10A109.5
N2—C3—C4116.9 (3)S3—C10—H10B109.5
C1—C4—C3113.4 (3)H10A—C10—H10B109.5
C1—C4—C7106.7 (3)S3—C10—H10C109.5
C3—C4—C7111.2 (3)H10A—C10—H10C109.5
C1—C4—S3105.6 (2)H10B—C10—H10C109.5
C3—C4—S3102.9 (2)
C2—N1—C1—O7176.2 (4)O5—S3—C4—C1179.8 (2)
C5—N1—C1—O70.3 (6)O6—S3—C4—C153.6 (3)
C2—N1—C1—C46.8 (5)C10—S3—C4—C160.7 (3)
C5—N1—C1—C4177.2 (3)O5—S3—C4—C360.6 (3)
C3—N2—C2—O8175.6 (4)O6—S3—C4—C365.6 (3)
C6—N2—C2—O812.9 (5)C10—S3—C4—C3179.9 (2)
C3—N2—C2—N17.1 (5)O5—S3—C4—C761.6 (3)
C6—N2—C2—N1164.4 (3)O6—S3—C4—C7172.2 (3)
C1—N1—C2—O8173.7 (4)C10—S3—C4—C757.9 (3)
C5—N1—C2—O810.2 (5)C1—C4—C7—S1153.1 (3)
C1—N1—C2—N28.9 (5)C3—C4—C7—S182.7 (4)
C5—N1—C2—N2167.1 (3)S3—C4—C7—S135.1 (4)
C2—N2—C3—O9173.7 (3)C1—C4—C7—S273.5 (3)
C6—N2—C3—O92.2 (5)C3—C4—C7—S250.7 (3)
C2—N2—C3—C410.1 (5)S3—C4—C7—S2168.54 (17)
C6—N2—C3—C4178.3 (3)O3—S1—C7—C455.8 (3)
O7—C1—C4—C3160.3 (3)O2—S1—C7—C4179.8 (3)
N1—C1—C4—C322.6 (5)C9—S1—C7—C463.5 (4)
O7—C1—C4—C737.5 (5)O3—S1—C7—S2172.24 (18)
N1—C1—C4—C7145.4 (3)O2—S1—C7—S248.2 (2)
O7—C1—C4—S387.7 (4)C9—S1—C7—S268.4 (2)
N1—C1—C4—S389.3 (3)O1—S2—C7—C4110.8 (3)
O9—C3—C4—C1159.5 (3)O4—S2—C7—C417.5 (3)
N2—C3—C4—C124.2 (5)C8—S2—C7—C4130.9 (3)
O9—C3—C4—C739.3 (4)O1—S2—C7—S130.6 (2)
N2—C3—C4—C7144.4 (3)O4—S2—C7—S1158.95 (19)
O9—C3—C4—S386.9 (4)C8—S2—C7—S187.7 (2)
N2—C3—C4—S389.4 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C5—H5B···O8i0.982.513.240 (6)131
C6—H6A···O9ii0.982.593.380 (5)138
C8—H8C···O8iii0.982.513.263 (5)133
C10—H10A···O5iv0.982.503.219 (5)130
Symmetry codes: (i) x, y+1, z; (ii) x+1, y+2, z; (iii) x, y+2, z; (iv) x+1, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C5—H5B···O8i0.982.513.240 (6)131
C6—H6A···O9ii0.982.593.380 (5)138
C8—H8C···O8iii0.982.513.263 (5)133
C10—H10A···O5iv0.982.503.219 (5)130
Symmetry codes: (i) x, y+1, z; (ii) x+1, y+2, z; (iii) x, y+2, z; (iv) x+1, y+1, z+1.
 

Acknowledgements

We are indebted to the University of Petra, the University of Jordan and the University of Tübingen for their endless help and support.

References

First citationAl-Sheikh, A., Sweidan, K., Kuhn, N., Maichle-Mössmer, C. & Steimann, M. (2009). Z. Naturforsch. Teil B, 64, 307–312.  CAS Google Scholar
First citationAwad, R., Mallah, E., Abu Dayyih, W., Sweidan, K. & Steimann, M. (2014). Acta Cryst. E70, o877.  CSD CrossRef IUCr Journals Google Scholar
First citationDemeunynck, M., Bailly, C. & David Wilson, W. (2004). In Small Molecule DNA and RNA Binders: From Synthesis to Nucleic Acid Complexes. Weinheim: Wiley-VCH Verlag GmbH & Co. KGaA.  Google Scholar
First citationGetova, D. & Georgiev, V. (1989). Acta Physiol. Pharmacol. Bulg. 15, 83–88.  CAS PubMed Google Scholar
First citationGlidewell, C., Lightfoot, P. & Patterson, I. L. J. (1995). Acta Cryst. C51, 1648–1651.  CSD CrossRef Web of Science IUCr Journals Google Scholar
First citationHabibi, A. & Tarameshloo, Z. (2011). J. Iran. Chem. Soc. 8, 287–291.  CrossRef CAS Google Scholar
First citationHoltkamp, M. & Meierkord, H. (2007). Cell. Mol. Life Sci. 64, 2023–2041.  CrossRef PubMed CAS Google Scholar
First citationHuang, X. & Chen, B. (1986). Synthesis, pp. 967–970.  CrossRef Google Scholar
First citationKotha, S., Deb, A. C. & Kumar, R. (2005). Bioorg. Med. Chem. Lett. 15, 1039–1043.  CrossRef PubMed CAS Google Scholar
First citationKratt, G., Salbeck, G., Bonin, W. & Duewel, D. (1990). Ger. Offen. DE 3 404-408.  Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStoe & Cie (2008). X-AREA and X-RED32. Stoe & Cie, Darmstadt, Germany.  Google Scholar
First citationSweidan, K., Abu-Rayyan, A., Al-Sheikh, A., Maichle-Mösmer, C., Steimann, M. & Kuhn, N. (2009). Z. Naturforsch. Teil B, 64, 106–110.  CAS Google Scholar
First citationYe, F., Chen, B. & Huang, X. (1989). Synthesis, pp. 317–320.  CrossRef Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds