organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of 1-(2,4-di­methyl­phen­yl)urea

aDepartment of Chemistry, Kalasalingam University, Krishnankoil 626 126, India, bLaboratory of X-ray Crystallography, Indian Institute of Chemical Technology, Hyderabad 500 067, India, and cDepartment of Physics & International Research Centre, Kalasalingam University, Krishnankoil 626 126, India
*Correspondence e-mail: s_selvanayagam@rediffmail.com, ramalinganc@gmail.com

Edited by H. Stoeckli-Evans, University of Neuchâtel, Switzerland (Received 11 December 2014; accepted 16 December 2014; online 1 January 2015)

In the title urea derivative, C9H12N2O, the dihedral angle between the benzene ring and the mean plane of the urea group, N—C(=O)—N, is 86.6 (1)°. In the crystal, the urea O atom is involved in three N—H⋯O hydrogen bonds. Mol­ecules are linked via pairs of N—H⋯O hydrogen bonds, forming inversion dimers with an R22(8) ring motif. The dimers are linked by further N—H⋯O hydrogen bonds, forming two-dimensional networks lying parallel to (100).

1. Related literature

For general background to urea derivatives and their biological applications and properties, see: Ramalingan & Kwak (2008[Ramalingan, C. & Kwak, Y. W. (2008). Tetrahedron, 64, 5023-5031.]); Ramalingan et al. (2010[Ramalingan, C., Park, S. J., Lee, I. S. & Kwak, Y. W. (2010). Tetrahedron, 66, 2987-2994.]); Yang et al. (2013[Yang, M., Odelberg, S. J., Tong, Z., Li, D. Y. & Looper, R. E. (2013). Tetrahedron, 69, 5744-5750.]); Safari & Gandomi-Ravandi (2014[Safari, J. & Gandomi-Ravandi, S. (2014). J. Mol. Struct. 1074, 71-78.]); Suzuki et al. (2013[Suzuki, H., Utsunomiya, I., Shudo, K., Fukuhara, N., Iwaki, T. & Yasukata, T. (2013). Eur. J. Med. Chem. 69, 262-277.]); Boulahjar et al. (2012[Boulahjar, R., Ouach, A., Matteo, C., Bourg, S., Ravache, M., le Guével, R., Marionneau, S., Oullier, T., Lozach, O., Meijer, L., Guguen-Guillouzo, C., Lazar, S., Akssira, M., Troin, Y., Guillaumet, G. & Routier, S. (2012). J. Med. Chem. 55, 9589-9606.]); Zhang et al. (2014[Zhang, D., Debnath, B., Yu, S., Sanchez, T. W., Christ, F., Liu, Y., Debyser, Z., Neamati, N. & Zhao, G. (2014). Bioorg. Med. Chem. 22, 5446-5453.])

[Scheme 1]

2. Experimental

2.1. Crystal data

  • C9H12N2O

  • Mr = 164.21

  • Monoclinic, P 21 /c

  • a = 14.631 (4) Å

  • b = 7.0633 (19) Å

  • c = 8.786 (2) Å

  • β = 93.530 (4)°

  • V = 906.2 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 292 K

  • 0.20 × 0.18 × 0.16 mm

2.2. Data collection

  • Bruker SMART APEX CCD area-detector diffractometer

  • 8026 measured reflections

  • 1556 independent reflections

  • 1284 reflections with I > 2σ(I)

  • Rint = 0.028

2.3. Refinement

  • R[F2 > 2σ(F2)] = 0.100

  • wR(F2) = 0.349

  • S = 1.59

  • 1556 reflections

  • 119 parameters

  • 2 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.87 e Å−3

  • Δρmin = −0.32 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O1i 0.86 2.23 2.941 (3) 140
N2—H2A⋯O1i 0.86 (1) 2.24 (2) 2.985 (3) 145 (3)
N2—H2B⋯O1ii 0.86 (1) 2.12 (1) 2.977 (3) 173 (4)
Symmetry codes: (i) [x, -y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (ii) -x+1, -y, -z+1.

Data collection: SMART (Bruker, 2001[Bruker (2001). SMART and SAINT . Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2001[Bruker (2001). SMART and SAINT . Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL2013 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: SHELXL2013 and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Urea and its derivatives are important key starting materials for the construction of biologically important heterocycles (Ramalingan & Kwak, 2008; Ramalingan et al., 2010; Yang et al., 2013; Safari & Gandomi-Ravandi, 2014). They display various biological activities viz. antibacterial (Suzuki et al., 2013), antiproliferative and antitumor (Boulahjar et al., 2012), and HIV-1 integrase (Zhang et al., 2014). As a vital reactant and intermediate for the construction of heterocyclic chemical entities of biological importance, the title compound has been synthesized and single crystals were grown by slow evaporation in ethanol.

The single crystal X-ray analysis confirmed the molecular structure, as illustrated in Fig. 1. Methyl carbon atoms, C7 and C8, deviate by -0.000 (1) and -0.040 (1) Å, respectively, from the attached benzene ring. The dihedral angle between benzene ring and the mean plane through the urea atoms (N1/C9/O1/N2) is 86.6 (1)°.

In the crystal, three strong N—H···O hydrogen bonds stabilize the molecular packing (Fig. 2 and Table 1). Molecules are linked via pairs of N-H···O hydrogen bonds forming inversion dimers with an R22(8) ring motif. The dimers are linked by further N-H···O hydrogen bonds forming two-dimensional networks lying parallel to (100); see Table 1 and Fig. 2.

Related literature top

For general background to urea derivatives and their biological applications and properties, see: Ramalingan & Kwak (2008); Ramalingan et al. (2010); Yang et al. (2013); Safari & Gandomi-Ravandi (2014); Suzuki et al. (2013); Boulahjar et al. (2012); Zhang et al. (2014)

Experimental top

To a solution of 2,6-dimethylaniline (0.1 mol) in glacial acetic acid (30 ml), was added distilled water (70 ml). Sodium cyanate (0.1 mol) in medium-hot water (50 ml) was then added in a slow manner with constant stirring. The resulted solution was allowed to stand for 60 min. and then cooled in ice. It was then filtered using a Buchner funnel and the solid obtained was dried using high-vacuum. Single crystals of the title compound were obtained by slow evaporation of a solution in ethanol at room temperature.

Refinement top

Atoms H2A and H2B were located from a difference Fourier map and freely refined. The remaining H atoms were positioned geometrically and allowed to ride on their parent atoms, with N—H = 0.86 Å and C—H = 0.93-0.96 Å and with Uiso(H) = 1.5Ueq(C) for methyl H atoms and = 1.2Ueq (N,C) for other H atoms.

Structure description top

Urea and its derivatives are important key starting materials for the construction of biologically important heterocycles (Ramalingan & Kwak, 2008; Ramalingan et al., 2010; Yang et al., 2013; Safari & Gandomi-Ravandi, 2014). They display various biological activities viz. antibacterial (Suzuki et al., 2013), antiproliferative and antitumor (Boulahjar et al., 2012), and HIV-1 integrase (Zhang et al., 2014). As a vital reactant and intermediate for the construction of heterocyclic chemical entities of biological importance, the title compound has been synthesized and single crystals were grown by slow evaporation in ethanol.

The single crystal X-ray analysis confirmed the molecular structure, as illustrated in Fig. 1. Methyl carbon atoms, C7 and C8, deviate by -0.000 (1) and -0.040 (1) Å, respectively, from the attached benzene ring. The dihedral angle between benzene ring and the mean plane through the urea atoms (N1/C9/O1/N2) is 86.6 (1)°.

In the crystal, three strong N—H···O hydrogen bonds stabilize the molecular packing (Fig. 2 and Table 1). Molecules are linked via pairs of N-H···O hydrogen bonds forming inversion dimers with an R22(8) ring motif. The dimers are linked by further N-H···O hydrogen bonds forming two-dimensional networks lying parallel to (100); see Table 1 and Fig. 2.

For general background to urea derivatives and their biological applications and properties, see: Ramalingan & Kwak (2008); Ramalingan et al. (2010); Yang et al. (2013); Safari & Gandomi-Ravandi (2014); Suzuki et al. (2013); Boulahjar et al. (2012); Zhang et al. (2014)

Computing details top

Data collection: SMART (Bruker, 2001); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT (Bruker, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2013 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and PLATON (Spek, 2009); software used to prepare material for publication: SHELXL2013 (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, with atom labelling. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 2] Fig. 2. A projection of the crystal packing of the title compound, along the a axis. Hydrogen bonds are shown as dashed lines (see Table 1 for details; H atoms not involved in hydrogen bonding have been omitted for clarity).
1-(2,4-Dimethylphenyl)urea top
Crystal data top
C9H12N2OF(000) = 352
Mr = 164.21Dx = 1.204 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 14.631 (4) ÅCell parameters from 6568 reflections
b = 7.0633 (19) Åθ = 2.8–24.6°
c = 8.786 (2) ŵ = 0.08 mm1
β = 93.530 (4)°T = 292 K
V = 906.2 (4) Å3Block, colourless
Z = 40.20 × 0.18 × 0.16 mm
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
Rint = 0.028
Radiation source: fine-focus sealed tubeθmax = 25.0°, θmin = 2.8°
ω scansh = 1717
8026 measured reflectionsk = 88
1556 independent reflectionsl = 1010
1284 reflections with I > 2σ(I)
Refinement top
Refinement on F22 restraints
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.100H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.349 w = 1/[σ2(Fo2) + (0.2P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.59(Δ/σ)max = 0.001
1556 reflectionsΔρmax = 0.87 e Å3
119 parametersΔρmin = 0.32 e Å3
Crystal data top
C9H12N2OV = 906.2 (4) Å3
Mr = 164.21Z = 4
Monoclinic, P21/cMo Kα radiation
a = 14.631 (4) ŵ = 0.08 mm1
b = 7.0633 (19) ÅT = 292 K
c = 8.786 (2) Å0.20 × 0.18 × 0.16 mm
β = 93.530 (4)°
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
1284 reflections with I > 2σ(I)
8026 measured reflectionsRint = 0.028
1556 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.1002 restraints
wR(F2) = 0.349H atoms treated by a mixture of independent and constrained refinement
S = 1.59Δρmax = 0.87 e Å3
1556 reflectionsΔρmin = 0.32 e Å3
119 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.40043 (14)0.1453 (3)0.55423 (18)0.0634 (8)
N10.32526 (19)0.2851 (4)0.3520 (3)0.0709 (10)
H10.31860.29270.25430.085*
N20.4476 (2)0.0982 (4)0.3174 (3)0.0682 (9)
H2A0.437 (2)0.125 (4)0.2228 (15)0.060 (8)*
H2B0.4934 (19)0.036 (5)0.360 (4)0.089 (11)*
C10.1253 (4)0.4077 (12)0.5679 (5)0.1144 (17)
H1A0.07000.35300.59120.137*
C20.1467 (3)0.5877 (12)0.6154 (4)0.122 (2)
C30.2259 (4)0.6656 (8)0.5753 (5)0.1049 (17)
H30.24040.78760.60850.126*
C40.2873 (2)0.5700 (6)0.4854 (4)0.0794 (11)
C50.2652 (2)0.3904 (5)0.4421 (3)0.0666 (10)
C60.1852 (3)0.3106 (8)0.4870 (4)0.0921 (13)
H60.17210.18550.46060.111*
C70.0822 (4)0.7033 (13)0.7118 (7)0.178 (4)
H7A0.08060.64770.81140.267*
H7B0.02160.70300.66300.267*
H7C0.10400.83120.72120.267*
C80.3708 (4)0.6517 (7)0.4485 (7)0.1135 (16)
H8A0.39420.58530.36380.170*
H8B0.41420.64330.53480.170*
H8C0.36120.78220.42170.170*
C90.39175 (19)0.1749 (4)0.4154 (3)0.0519 (8)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0806 (14)0.0787 (15)0.0316 (11)0.0198 (9)0.0094 (9)0.0014 (7)
N10.0824 (18)0.0971 (19)0.0338 (12)0.0270 (14)0.0098 (11)0.0074 (11)
N20.0857 (18)0.0849 (18)0.0353 (14)0.0251 (13)0.0137 (11)0.0013 (10)
C10.090 (3)0.193 (5)0.063 (2)0.031 (3)0.025 (2)0.007 (3)
C20.068 (2)0.245 (7)0.053 (2)0.063 (3)0.0003 (17)0.015 (3)
C30.104 (3)0.123 (3)0.084 (3)0.036 (3)0.019 (3)0.036 (2)
C40.0685 (19)0.105 (3)0.064 (2)0.0184 (17)0.0010 (15)0.0088 (16)
C50.0682 (19)0.090 (2)0.0417 (16)0.0245 (15)0.0069 (13)0.0057 (13)
C60.086 (2)0.128 (3)0.064 (2)0.018 (2)0.0218 (17)0.0214 (19)
C70.106 (4)0.316 (9)0.112 (4)0.091 (5)0.002 (3)0.091 (5)
C80.112 (3)0.101 (3)0.129 (4)0.017 (3)0.024 (3)0.004 (3)
C90.0652 (16)0.0572 (15)0.0342 (14)0.0069 (11)0.0094 (11)0.0013 (9)
Geometric parameters (Å, º) top
O1—C91.236 (3)C3—C41.406 (6)
N1—C91.340 (4)C3—H30.9300
N1—C51.428 (4)C4—C51.358 (6)
N1—H10.8600C4—C81.407 (7)
N2—C91.337 (4)C5—C61.377 (6)
N2—H2A0.857 (10)C6—H60.9300
N2—H2B0.863 (10)C7—H7A0.9600
C1—C61.351 (7)C7—H7B0.9600
C1—C21.368 (10)C7—H7C0.9600
C1—H1A0.9300C8—H8A0.9600
C2—C31.348 (9)C8—H8B0.9600
C2—C71.541 (6)C8—H8C0.9600
C9—N1—C5121.9 (2)C6—C5—N1120.5 (4)
C9—N1—H1119.1C1—C6—C5122.2 (6)
C5—N1—H1119.1C1—C6—H6118.9
C9—N2—H2A117 (2)C5—C6—H6118.9
C9—N2—H2B115 (3)C2—C7—H7A109.5
H2A—N2—H2B128 (4)C2—C7—H7B109.5
C6—C1—C2119.2 (6)H7A—C7—H7B109.5
C6—C1—H1A120.4C2—C7—H7C109.5
C2—C1—H1A120.4H7A—C7—H7C109.5
C3—C2—C1119.0 (4)H7B—C7—H7C109.5
C3—C2—C7119.5 (7)C4—C8—H8A109.5
C1—C2—C7121.5 (6)C4—C8—H8B109.5
C2—C3—C4122.7 (5)H8A—C8—H8B109.5
C2—C3—H3118.7C4—C8—H8C109.5
C4—C3—H3118.7H8A—C8—H8C109.5
C5—C4—C3117.1 (4)H8B—C8—H8C109.5
C5—C4—C8121.0 (4)O1—C9—N2122.5 (2)
C3—C4—C8121.8 (4)O1—C9—N1122.4 (2)
C4—C5—C6119.7 (3)N2—C9—N1115.1 (2)
C4—C5—N1119.8 (3)
C6—C1—C2—C32.3 (7)C8—C4—C5—N12.8 (5)
C6—C1—C2—C7178.3 (4)C9—N1—C5—C490.7 (4)
C1—C2—C3—C40.5 (7)C9—N1—C5—C688.6 (4)
C7—C2—C3—C4178.9 (4)C2—C1—C6—C54.1 (7)
C2—C3—C4—C51.6 (6)C4—C5—C6—C12.9 (6)
C2—C3—C4—C8178.1 (5)N1—C5—C6—C1177.8 (3)
C3—C4—C5—C60.1 (5)C5—N1—C9—O16.1 (5)
C8—C4—C5—C6176.5 (4)C5—N1—C9—N2174.4 (3)
C3—C4—C5—N1179.4 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O1i0.862.232.941 (3)140
N2—H2A···O1i0.86 (1)2.24 (2)2.985 (3)145 (3)
N2—H2B···O1ii0.86 (1)2.12 (1)2.977 (3)173 (4)
Symmetry codes: (i) x, y+1/2, z1/2; (ii) x+1, y, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O1i0.862.232.941 (3)140
N2—H2A···O1i0.86 (1)2.24 (2)2.985 (3)145 (3)
N2—H2B···O1ii0.86 (1)2.12 (1)2.977 (3)173 (4)
Symmetry codes: (i) x, y+1/2, z1/2; (ii) x+1, y, z+1.
 

Acknowledgements

CR and SS thank the Vice Chancellor and the management of Kalasalingam University, Krishnankoil, for their support and encouragement.

References

First citationBoulahjar, R., Ouach, A., Matteo, C., Bourg, S., Ravache, M., le Guével, R., Marionneau, S., Oullier, T., Lozach, O., Meijer, L., Guguen-Guillouzo, C., Lazar, S., Akssira, M., Troin, Y., Guillaumet, G. & Routier, S. (2012). J. Med. Chem. 55, 9589–9606.  CrossRef CAS PubMed Google Scholar
First citationBruker (2001). SMART and SAINT . Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationRamalingan, C. & Kwak, Y. W. (2008). Tetrahedron, 64, 5023–5031.  CrossRef CAS Google Scholar
First citationRamalingan, C., Park, S. J., Lee, I. S. & Kwak, Y. W. (2010). Tetrahedron, 66, 2987–2994.  CrossRef CAS Google Scholar
First citationSafari, J. & Gandomi-Ravandi, S. (2014). J. Mol. Struct. 1074, 71–78.  CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSuzuki, H., Utsunomiya, I., Shudo, K., Fukuhara, N., Iwaki, T. & Yasukata, T. (2013). Eur. J. Med. Chem. 69, 262–277.  CrossRef CAS PubMed Google Scholar
First citationYang, M., Odelberg, S. J., Tong, Z., Li, D. Y. & Looper, R. E. (2013). Tetrahedron, 69, 5744–5750.  CSD CrossRef CAS PubMed Google Scholar
First citationZhang, D., Debnath, B., Yu, S., Sanchez, T. W., Christ, F., Liu, Y., Debyser, Z., Neamati, N. & Zhao, G. (2014). Bioorg. Med. Chem. 22, 5446–5453.  CrossRef CAS PubMed Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds