organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of (E)-1-(4′-methyl-[1,1′-biphen­yl]-4-yl)-3-(3-nitro­phen­yl)prop-2-en-1-one

aDepartment of Chemistry, Annamalai University, Annamalai Nagar 608 002, Tamilnadu, India, bDepartment of Physics, Kunthavai Naachiar Government Arts College (W) (Autonomous), Thanjavur 613 007, Tamilnadu, India, and cPostgraduate Research Department of Physics, Rajah Serfoji Government College (Autonomous), Thanjavur 613 005, Tamilnadu, India
*Correspondence e-mail: thiruvalluvar.a@gmail.com

Edited by H. Stoeckli-Evans, University of Neuchâtel, Switzerland (Received 14 December 2014; accepted 16 December 2014; online 1 January 2015)

In the title compound, C22H17NO3, the mol­ecule has an E conformation about the C=C bond, and the C—C=C—C torsion angle is −177.7 (3)°. The planes of the terminal benzene rings are twisted by 41.62 (16)°, while the biphenyl unit is non-planar, the dihedral angle between the planes of the rings being 38.02 (15)°. The dihedral angle between the nitro­phenyl ring and the inner benzene ring is 5.29 (16)°. In the crystal, mol­ecules are linked by two weak C—H⋯π inter­actions, forming rectangular tubes propagating along the b-axis direction.

1. Related literature

For the synthesis, anti­microbial, anti­oxidant activities and growth and characterization of π-conjugated organic non-linear optical chalcone derivatives, see: Rajendra Prasad et al. (2008[Rajendra Prasad, Y., LakshnaRao, A. & Rambabu, R. (2008). J. Chem. 5, 461-466.]); Lahsasni et al. (2014[Lahsasni, S. A., Al Korbi, F. H. & Aljaber, N. A. (2014). Chem. Cent. J. doi: 10.1186/1752-153X-8-32.]); Prabhu et al. (2013[Prabhu, A. N., Upadhyaya, V., Jayarama, A. & Subrahmanya Bhat, K. (2013). Mater. Chem. Phys. 138, 179-185.]). For the analysis of Bovine serum albumin in the presence of some phenyl-substituted chalcones, see: Garg et al. (2013[Garg, S., Ravish, I. & Raghav, N. (2013). Int. J. Pharm. Pharm. Sci. 5, 372-375.]). For the crystal structures of related compounds, see: Shanthi et al. (2014[Shanthi, D., Vidhya Sagar, T., Kayalvizhi, M., Vasuki, G. & Thiruvalluvar, A. (2014). Acta Cryst. E70, o809-o810.]); Vidhyasagar et al. (2015[Vidhyasagar, T., Rajeswari, K., Shanthi, D., Kayalvizhi, M., Vasuki, G. & Thiruvalluvar, A. (2015). Acta Cryst. E71, 1-3.]).

[Scheme 1]

2. Experimental

2.1. Crystal data

  • C22H17NO3

  • Mr = 343.37

  • Monoclinic, C 2/c

  • a = 17.8214 (10) Å

  • b = 6.1630 (3) Å

  • c = 32.3569 (19) Å

  • β = 103.165 (2)°

  • V = 3460.5 (3) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 293 K

  • 0.30 × 0.20 × 0.20 mm

2.2. Data collection

  • Bruker Kappa APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2004[Bruker (2004). APEX2, SAINT, XPREP and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.646, Tmax = 0.745

  • 17009 measured reflections

  • 2902 independent reflections

  • 2058 reflections with I > 2σ(I)

  • Rint = 0.053

2.3. Refinement

  • R[F2 > 2σ(F2)] = 0.067

  • wR(F2) = 0.177

  • S = 1.08

  • 2902 reflections

  • 236 parameters

  • H-atom parameters constrained

  • Δρmax = 0.37 e Å−3

  • Δρmin = −0.22 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 and Cg3 are the centroids of rings C1–C6 and C16–C21, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
C3—H3⋯Cg3i 0.93 2.99 3.531 (4) 119
C21—H21⋯Cg1ii 0.93 2.94 3.607 (3) 129
Symmetry codes: (i) [-x+{\script{1\over 2}}, -y-{\script{1\over 2}}, -z]; (ii) [-x+{\script{1\over 2}}, -y+{\script{1\over 2}}, -z].

Data collection: APEX2 (Bruker, 2004[Bruker (2004). APEX2, SAINT, XPREP and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: APEX2 and SAINT (Bruker, 2004[Bruker (2004). APEX2, SAINT, XPREP and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT and XPREP (Bruker, 2004[Bruker (2004). APEX2, SAINT, XPREP and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); program(s) used to solve structure: SIR2002 (Burla et al., 2003[Burla, M. C., Camalli, M., Carrozzini, B., Cascarano, G. L., Giacovazzo, C., Polidori, G. & Spagna, R. (2003). J. Appl. Cryst. 36, 1103.]); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: SHELXL2014, PLATON publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

Synthesis and antimicrobial activity of some chalcones derivatives have been reported (Rajendra Prasad et al., 2008). The synthesis, characterization and evaluation of antioxidant activities of some novel chalcone analogues have been reported (Lahsasni et al., 2014). The analysis of Bovine serum albumin in the presence of some phenyl substituted chalcones have been reported (Garg et al., 2013). The growth and characterization of π conjugated organic non-linear optical chalcone derivatives were reported (Prabhu et al., 2013). The crystal structures of related compounds were reported (Shanthi et al., 2014; Vidhyasagar et al., 2015). As part of our on-going research on biphenyl chalcone derivatives, the title compound, was synthesized and its crystal structure is reported on herein.

In the title compound, Fig. 1, the molecule exists as an E conformer with the C5—C7—C8—C9 torsion angle being -177.7 (3)°. In the molecule, the terminal benzene rings (C1—C6 and C16—C21) are twisted by an angle of 41.62 (16)°, while the biphenyl part (C10—C15 and C16—C21) is non-planar, the dihedral angle between the rings being 38.02 (15)°. The dihedral angle between the nitrophenyl ring (C1—C6) and the inner phenyl ring (C10—C15) is 5.29 (16)°.

In the crystal, there are two weak C3—H3···π and C21—H21···π interactions (Table 1 and Fig. 2) involving the terminal methylbenzene ring (C16—C21) and the terminal nitrobenzene ring (C1—C6), respectively. This results in the formation of rectangular tubes propagating along [010]. No classic hydrogen bonds are observed.

Related literature top

For the synthesis, antimicrobial, antioxidant activities and growth and characterization of π-conjugated organic non-linear optical chalcone derivatives, see: Rajendra Prasad et al. (2008); Lahsasni et al. (2014); Prabhu et al. (2013). For the analysis of Bovine serum albumin in the presence of some phenyl-substituted chalcones, see: Garg et al. (2013). For the crystal structures of related compounds, see: Shanthi et al. (2014); Vidhyasagar et al. (2015).

Experimental top

A mixture of 4-acetyl-4'-methylbiphenyl (3.43 g, 10 mmol) and 3-nitro benzaldehyde (1.07 g, 10 mmol) in ethanol (25 ml) in the presence of NaOH (10 ml 30%) were heated in a water bath for 30 min. and then allowed to cool. The solid that separated was filtered and recrystallized from ethanol. The yellow crystals of the title compound, used for the X-ray diffraction study, were grown by slow evaporation of a solution in acetone (yield: 2.5 g, 70%).

Refinement top

All H-atoms were positioned geometrically and allowed to ride on their parent atoms, with C—H = 0.93 - 0.96 Å with Uiso(H) = 1.5Ueq(C) for methyl H atoms and = 1.2Ueq(C) for other H atoms.

Structure description top

Synthesis and antimicrobial activity of some chalcones derivatives have been reported (Rajendra Prasad et al., 2008). The synthesis, characterization and evaluation of antioxidant activities of some novel chalcone analogues have been reported (Lahsasni et al., 2014). The analysis of Bovine serum albumin in the presence of some phenyl substituted chalcones have been reported (Garg et al., 2013). The growth and characterization of π conjugated organic non-linear optical chalcone derivatives were reported (Prabhu et al., 2013). The crystal structures of related compounds were reported (Shanthi et al., 2014; Vidhyasagar et al., 2015). As part of our on-going research on biphenyl chalcone derivatives, the title compound, was synthesized and its crystal structure is reported on herein.

In the title compound, Fig. 1, the molecule exists as an E conformer with the C5—C7—C8—C9 torsion angle being -177.7 (3)°. In the molecule, the terminal benzene rings (C1—C6 and C16—C21) are twisted by an angle of 41.62 (16)°, while the biphenyl part (C10—C15 and C16—C21) is non-planar, the dihedral angle between the rings being 38.02 (15)°. The dihedral angle between the nitrophenyl ring (C1—C6) and the inner phenyl ring (C10—C15) is 5.29 (16)°.

In the crystal, there are two weak C3—H3···π and C21—H21···π interactions (Table 1 and Fig. 2) involving the terminal methylbenzene ring (C16—C21) and the terminal nitrobenzene ring (C1—C6), respectively. This results in the formation of rectangular tubes propagating along [010]. No classic hydrogen bonds are observed.

For the synthesis, antimicrobial, antioxidant activities and growth and characterization of π-conjugated organic non-linear optical chalcone derivatives, see: Rajendra Prasad et al. (2008); Lahsasni et al. (2014); Prabhu et al. (2013). For the analysis of Bovine serum albumin in the presence of some phenyl-substituted chalcones, see: Garg et al. (2013). For the crystal structures of related compounds, see: Shanthi et al. (2014); Vidhyasagar et al. (2015).

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: APEX2 and SAINT (Bruker, 2004); data reduction: SAINT and XPREP (Bruker, 2004); program(s) used to solve structure: SIR2002 (Burla et al., 2003); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and PLATON (Spek, 2009); software used to prepare material for publication: SHELXL2014 (Sheldrick, 2008), PLATON (Spek, 2009) and publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, with atom labelling. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 2] Fig. 2. The partial packing of the title compound, showing the two weak C—H···π interactions (see Table 1 for details).
(E)-1-(4'-Methyl-[1,1'-biphenyl]-4-yl)-3-(3-nitrophenyl)prop-2-en-1-one top
Crystal data top
C22H17NO3F(000) = 1440
Mr = 343.37Dx = 1.318 Mg m3
Monoclinic, C2/cMelting point: 462.3 K
Hall symbol: -C 2ycMo Kα radiation, λ = 0.71073 Å
a = 17.8214 (10) ÅCell parameters from 5055 reflections
b = 6.1630 (3) Åθ = 2.4–23.5°
c = 32.3569 (19) ŵ = 0.09 mm1
β = 103.165 (2)°T = 293 K
V = 3460.5 (3) Å3Block, yellow
Z = 80.30 × 0.20 × 0.20 mm
Data collection top
Bruker Kappa APEXII CCD
diffractometer
2902 independent reflections
Radiation source: fine-focus sealed tube2058 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.053
ω and φ scanθmax = 24.7°, θmin = 2.4°
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
h = 2020
Tmin = 0.646, Tmax = 0.745k = 77
17009 measured reflectionsl = 3737
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.067H-atom parameters constrained
wR(F2) = 0.177 w = 1/[σ2(Fo2) + (0.0622P)2 + 6.9426P]
where P = (Fo2 + 2Fc2)/3
S = 1.08(Δ/σ)max < 0.001
2902 reflectionsΔρmax = 0.37 e Å3
236 parametersΔρmin = 0.22 e Å3
Crystal data top
C22H17NO3V = 3460.5 (3) Å3
Mr = 343.37Z = 8
Monoclinic, C2/cMo Kα radiation
a = 17.8214 (10) ŵ = 0.09 mm1
b = 6.1630 (3) ÅT = 293 K
c = 32.3569 (19) Å0.30 × 0.20 × 0.20 mm
β = 103.165 (2)°
Data collection top
Bruker Kappa APEXII CCD
diffractometer
2902 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
2058 reflections with I > 2σ(I)
Tmin = 0.646, Tmax = 0.745Rint = 0.053
17009 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0670 restraints
wR(F2) = 0.177H-atom parameters constrained
S = 1.08Δρmax = 0.37 e Å3
2902 reflectionsΔρmin = 0.22 e Å3
236 parameters
Special details top

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.5576 (2)0.0419 (5)0.18992 (10)0.1050 (16)
O20.57708 (17)0.2525 (5)0.15451 (8)0.0826 (11)
O30.39470 (16)0.5129 (4)0.01333 (8)0.0742 (10)
N10.55103 (17)0.0708 (6)0.16008 (9)0.0619 (11)
C10.50961 (16)0.0197 (5)0.12946 (9)0.0448 (10)
C20.48178 (19)0.2286 (6)0.13485 (11)0.0571 (12)
C30.4412 (2)0.3050 (5)0.10630 (12)0.0619 (14)
C40.42788 (19)0.1752 (5)0.07404 (11)0.0543 (12)
C50.45527 (18)0.0367 (5)0.06918 (9)0.0442 (10)
C60.49828 (17)0.1111 (5)0.09729 (9)0.0427 (10)
C70.43736 (19)0.1877 (5)0.03729 (9)0.0517 (11)
C80.38766 (19)0.1586 (5)0.01312 (10)0.0524 (11)
C90.37335 (18)0.3262 (5)0.01629 (10)0.0495 (11)
C100.33265 (17)0.2675 (5)0.05025 (9)0.0411 (10)
C110.30439 (18)0.0609 (5)0.05492 (10)0.0481 (11)
C120.26955 (18)0.0165 (5)0.08822 (10)0.0479 (11)
C130.26254 (17)0.1744 (5)0.11789 (9)0.0398 (9)
C140.2909 (2)0.3785 (5)0.11259 (10)0.0527 (11)
C150.32487 (19)0.4245 (5)0.07947 (10)0.0525 (11)
C160.22680 (17)0.1252 (5)0.15388 (9)0.0411 (10)
C170.23877 (18)0.0738 (5)0.17499 (10)0.0484 (11)
C180.20358 (19)0.1232 (5)0.20751 (10)0.0527 (11)
C190.15524 (19)0.0243 (6)0.22083 (10)0.0529 (11)
C200.14488 (18)0.2233 (6)0.20100 (10)0.0542 (11)
C210.17998 (18)0.2742 (5)0.16818 (10)0.0491 (11)
C220.1162 (2)0.0328 (8)0.25609 (12)0.0813 (18)
H20.490010.315040.156950.0685*
H30.422620.446480.108850.0742*
H40.400140.230040.055260.0652*
H60.519300.249910.094160.0512*
H70.464180.318380.033840.0616*
H80.360980.028050.014810.0628*
H110.308850.047820.035690.0576*
H120.250410.121990.090770.0572*
H140.286870.487470.131860.0631*
H150.342980.563980.076690.0626*
H170.271270.175330.166880.0578*
H180.212370.257690.220780.0632*
H200.113600.325860.209840.0650*
H210.172070.410320.155530.0588*
H22A0.151720.108920.278060.1225*
H22B0.072340.123460.245140.1225*
H22C0.099530.097660.267550.1225*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.131 (3)0.115 (3)0.090 (2)0.020 (2)0.069 (2)0.045 (2)
O20.102 (2)0.080 (2)0.0823 (19)0.0289 (17)0.0551 (17)0.0140 (16)
O30.104 (2)0.0562 (16)0.0751 (17)0.0230 (15)0.0470 (16)0.0017 (13)
N10.0566 (18)0.072 (2)0.063 (2)0.0032 (16)0.0260 (15)0.0152 (17)
C10.0358 (16)0.051 (2)0.0489 (18)0.0039 (15)0.0121 (14)0.0019 (15)
C20.052 (2)0.051 (2)0.067 (2)0.0034 (17)0.0106 (17)0.0158 (18)
C30.062 (2)0.0386 (19)0.083 (3)0.0083 (17)0.012 (2)0.0014 (18)
C40.056 (2)0.049 (2)0.058 (2)0.0107 (16)0.0130 (16)0.0048 (16)
C50.0493 (18)0.0413 (18)0.0405 (16)0.0064 (15)0.0069 (14)0.0018 (14)
C60.0444 (17)0.0391 (17)0.0449 (17)0.0019 (14)0.0109 (14)0.0005 (14)
C70.064 (2)0.050 (2)0.0460 (18)0.0110 (16)0.0227 (16)0.0018 (15)
C80.060 (2)0.053 (2)0.0498 (19)0.0167 (17)0.0244 (17)0.0032 (16)
C90.053 (2)0.052 (2)0.0444 (18)0.0119 (16)0.0133 (15)0.0002 (15)
C100.0451 (17)0.0422 (18)0.0381 (16)0.0045 (14)0.0139 (13)0.0057 (14)
C110.058 (2)0.0442 (18)0.0455 (18)0.0050 (16)0.0189 (16)0.0059 (14)
C120.057 (2)0.0345 (17)0.056 (2)0.0096 (15)0.0207 (16)0.0027 (14)
C130.0437 (17)0.0346 (16)0.0430 (16)0.0010 (13)0.0136 (14)0.0000 (13)
C140.074 (2)0.0369 (18)0.0525 (19)0.0066 (17)0.0257 (18)0.0051 (15)
C150.069 (2)0.0367 (18)0.055 (2)0.0110 (16)0.0211 (17)0.0010 (15)
C160.0449 (18)0.0383 (17)0.0405 (16)0.0025 (14)0.0109 (14)0.0005 (13)
C170.055 (2)0.0412 (18)0.0533 (19)0.0002 (15)0.0214 (16)0.0005 (15)
C180.063 (2)0.050 (2)0.0464 (19)0.0043 (17)0.0155 (17)0.0082 (15)
C190.051 (2)0.064 (2)0.0443 (18)0.0056 (17)0.0122 (15)0.0019 (17)
C200.052 (2)0.065 (2)0.0488 (19)0.0109 (17)0.0180 (16)0.0065 (17)
C210.0530 (19)0.0433 (19)0.0508 (18)0.0059 (16)0.0117 (16)0.0006 (15)
C220.084 (3)0.110 (4)0.059 (2)0.005 (3)0.035 (2)0.002 (2)
Geometric parameters (Å, º) top
O1—N11.217 (4)C17—C181.376 (5)
O2—N11.210 (5)C18—C191.387 (5)
O3—C91.223 (4)C19—C201.377 (5)
N1—C11.473 (4)C19—C221.507 (5)
C1—C21.376 (5)C20—C211.386 (5)
C1—C61.367 (4)C2—H20.9300
C2—C31.379 (5)C3—H30.9300
C3—C41.378 (5)C4—H40.9300
C4—C51.391 (4)C6—H60.9300
C5—C61.394 (4)C7—H70.9300
C5—C71.477 (4)C8—H80.9300
C7—C81.321 (5)C11—H110.9300
C8—C91.466 (4)C12—H120.9300
C9—C101.493 (4)C14—H140.9300
C10—C111.390 (4)C15—H150.9300
C10—C151.382 (4)C17—H170.9300
C11—C121.388 (5)C18—H180.9300
C12—C131.392 (4)C20—H200.9300
C13—C141.381 (4)C21—H210.9300
C13—C161.480 (4)C22—H22A0.9600
C14—C151.375 (5)C22—H22B0.9600
C16—C171.396 (4)C22—H22C0.9600
C16—C211.389 (4)
O1—N1—O2122.9 (3)C19—C20—C21121.5 (3)
O1—N1—C1118.1 (3)C16—C21—C20121.1 (3)
O2—N1—C1119.0 (3)C1—C2—H2121.00
N1—C1—C2119.4 (3)C3—C2—H2121.00
N1—C1—C6118.2 (3)C2—C3—H3119.00
C2—C1—C6122.4 (3)C4—C3—H3119.00
C1—C2—C3117.6 (3)C3—C4—H4120.00
C2—C3—C4121.1 (3)C5—C4—H4120.00
C3—C4—C5121.0 (3)C1—C6—H6120.00
C4—C5—C6117.8 (3)C5—C6—H6120.00
C4—C5—C7123.0 (3)C5—C7—H7116.00
C6—C5—C7119.1 (3)C8—C7—H7116.00
C1—C6—C5120.1 (3)C7—C8—H8119.00
C5—C7—C8127.5 (3)C9—C8—H8119.00
C7—C8—C9121.9 (3)C10—C11—H11120.00
O3—C9—C8120.6 (3)C12—C11—H11120.00
O3—C9—C10119.9 (3)C11—C12—H12119.00
C8—C9—C10119.5 (3)C13—C12—H12119.00
C9—C10—C11123.4 (3)C13—C14—H14119.00
C9—C10—C15118.4 (3)C15—C14—H14119.00
C11—C10—C15118.2 (3)C10—C15—H15119.00
C10—C11—C12120.2 (3)C14—C15—H15119.00
C11—C12—C13121.6 (3)C16—C17—H17119.00
C12—C13—C14117.3 (3)C18—C17—H17119.00
C12—C13—C16121.4 (3)C17—C18—H18119.00
C14—C13—C16121.3 (3)C19—C18—H18119.00
C13—C14—C15121.6 (3)C19—C20—H20119.00
C10—C15—C14121.3 (3)C21—C20—H20119.00
C13—C16—C17121.3 (3)C16—C21—H21119.00
C13—C16—C21121.7 (3)C20—C21—H21119.00
C17—C16—C21117.0 (3)C19—C22—H22A110.00
C16—C17—C18121.5 (3)C19—C22—H22B110.00
C17—C18—C19121.1 (3)C19—C22—H22C109.00
C18—C19—C20117.8 (3)H22A—C22—H22B109.00
C18—C19—C22120.6 (3)H22A—C22—H22C109.00
C20—C19—C22121.7 (3)H22B—C22—H22C109.00
O1—N1—C1—C21.7 (5)C15—C10—C11—C120.0 (5)
O1—N1—C1—C6176.3 (3)C9—C10—C15—C14177.2 (3)
O2—N1—C1—C2178.1 (3)C11—C10—C15—C140.7 (5)
O2—N1—C1—C63.9 (5)C10—C11—C12—C130.7 (5)
N1—C1—C2—C3178.0 (3)C11—C12—C13—C140.8 (5)
C6—C1—C2—C30.0 (5)C11—C12—C13—C16178.7 (3)
N1—C1—C6—C5176.0 (3)C12—C13—C14—C150.1 (5)
C2—C1—C6—C51.9 (5)C16—C13—C14—C15179.3 (3)
C1—C2—C3—C41.2 (5)C12—C13—C16—C1737.9 (4)
C2—C3—C4—C50.3 (5)C12—C13—C16—C21142.1 (3)
C3—C4—C5—C61.7 (5)C14—C13—C16—C17141.5 (3)
C3—C4—C5—C7175.0 (3)C14—C13—C16—C2138.5 (5)
C4—C5—C6—C12.7 (5)C13—C14—C15—C100.6 (5)
C7—C5—C6—C1174.1 (3)C13—C16—C17—C18177.7 (3)
C4—C5—C7—C88.8 (5)C21—C16—C17—C182.3 (5)
C6—C5—C7—C8167.9 (3)C13—C16—C21—C20177.9 (3)
C5—C7—C8—C9177.7 (3)C17—C16—C21—C202.1 (5)
C7—C8—C9—O315.0 (5)C16—C17—C18—C190.6 (5)
C7—C8—C9—C10164.7 (3)C17—C18—C19—C201.3 (5)
O3—C9—C10—C11177.9 (3)C17—C18—C19—C22179.2 (3)
O3—C9—C10—C154.4 (5)C18—C19—C20—C211.4 (5)
C8—C9—C10—C112.4 (5)C22—C19—C20—C21179.1 (3)
C8—C9—C10—C15175.3 (3)C19—C20—C21—C160.3 (5)
C9—C10—C11—C12177.7 (3)
Hydrogen-bond geometry (Å, º) top
Cg1 and Cg3 are the centroids of rings C1–C6 and C16–C21, respectively.
D—H···AD—HH···AD···AD—H···A
C3—H3···Cg3i0.932.993.531 (4)119
C21—H21···Cg1ii0.932.943.607 (3)129
Symmetry codes: (i) x+1/2, y1/2, z; (ii) x+1/2, y+1/2, z.
Hydrogen-bond geometry (Å, º) top
Cg1 and Cg3 are the centroids of rings C1–C6 and C16–C21, respectively.
D—H···AD—HH···AD···AD—H···A
C3—H3···Cg3i0.932.993.531 (4)119
C21—H21···Cg1ii0.932.943.607 (3)129
Symmetry codes: (i) x+1/2, y1/2, z; (ii) x+1/2, y+1/2, z.
 

Acknowledgements

The authors are grateful to the Sophisticated Analytical Instrument Facility (SAIF), IITM, Chennai 600 036, Tamilnadu, India, for the single-crystal X-ray data.

References

First citationBruker (2004). APEX2, SAINT, XPREP and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBurla, M. C., Camalli, M., Carrozzini, B., Cascarano, G. L., Giacovazzo, C., Polidori, G. & Spagna, R. (2003). J. Appl. Cryst. 36, 1103.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGarg, S., Ravish, I. & Raghav, N. (2013). Int. J. Pharm. Pharm. Sci. 5, 372–375.  CAS Google Scholar
First citationLahsasni, S. A., Al Korbi, F. H. & Aljaber, N. A. (2014). Chem. Cent. J. doi: 10.1186/1752-153X-8-32.  Google Scholar
First citationPrabhu, A. N., Upadhyaya, V., Jayarama, A. & Subrahmanya Bhat, K. (2013). Mater. Chem. Phys. 138, 179–185.  CrossRef CAS Google Scholar
First citationRajendra Prasad, Y., LakshnaRao, A. & Rambabu, R. (2008). J. Chem. 5, 461–466.  Google Scholar
First citationShanthi, D., Vidhya Sagar, T., Kayalvizhi, M., Vasuki, G. & Thiruvalluvar, A. (2014). Acta Cryst. E70, o809–o810.  CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationVidhyasagar, T., Rajeswari, K., Shanthi, D., Kayalvizhi, M., Vasuki, G. & Thiruvalluvar, A. (2015). Acta Cryst. E71, 1–3.  CSD CrossRef IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds