research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Coordination of bis­­(pyrazol-1-yl)amine to palladium(II): influence of the co-ligands and counter-ions on the mol­ecular and crystal structures1

aDepartamento de Ingenierías Química Electrónica y Biomédica, División de Ciencias e Ingenierías, Campus León, Universidad de Guanajuato, Loma del Bosque 103, Lomas del Campestre, León, Guanajuato 37150, Mexico, and bDEP Facultad de Ciencias Químicas, UANL, Guerrero y Progreso S/N, Col. Treviño, 64570 Monterrey, N.L., Mexico
*Correspondence e-mail: sylvain_bernes@Hotmail.com

Edited by M. Weil, Vienna University of Technology, Austria (Received 10 October 2014; accepted 26 November 2014; online 1 January 2015)

The structures of a series of complexes with general formula n[Pd(pza)X]Y·mH2O (n = 1, 2; X = Cl, Br, I, N3, NCS; Y = NO3, I, N3, [Pd(SCN)4]; m = 0, 0.5, 1) have been determined, where pza is the tridentate ligand bis­[2-(3,5-di­methyl­pyrazol-1-yl)eth­yl]amine, C14H23N5. In all complexes, {bis­[2-(3,5-di­methyl­pyrazol-1-yl-κN2)eth­yl]amine-κN}chlorido­palladium nitrate, [Pd(pza)Cl]NO3, (1), {bis­[2-(3,5-di­methyl­pyrazol-1-yl-κN2)eth­yl]amine-κN}bromido­palladium nitrate, [Pd(pza)Br]NO3, (2), {bis­[2-(3,5-di­methyl­pyrazol-1-yl-κN2)eth­yl]amine-κN}iodido­palladium iodide hemihydrate, [Pd(pza)I]I·0.5H2O, (3), azido{bis­[2-(3,5-di­methyl­pyrazol-1-yl-κN2)eth­yl]amine-κN}palladium azide monohydrate, [Pd(pza)N3]N3·H2O, (4), and bis­[{bis­[2-(3,5-di­methyl­pyrazol-1-yl-κN2)eth­yl]amine-κN}(thio­cyanato-κN)palladium] tetra­kis­(thio­cyanato-κS)palladate, [Pd(pza)NCS]2[Pd(SCN)4], (5), the [Pd(pza)X]+ complex cation displays a square-planar coordination geometry, and the pza ligand is twisted, approximating twofold rotation symmetry. Although the pza ligand is found with the same conformation along the series, the dihedral angle between pyrazole rings depends on the co-ligand X. This angle span the range 79.0 (3)–88.6 (1)° for the studied complexes. In (3), two complex cations, two I anions and one water mol­ecule of crystallization are present in the asymmetric unit. In (5), the central amine group of pza is disordered over two positions [occupancy ratio 0.770 (18):0.230 (18)]. The complex [Pd(SCN)4]2− anion of this compound exhibits inversion symmetry and shows the Pd2+ transition metal cation likewise in a square-planar coordination environment. Compound (5) is also a rare occurrence of a non-polymeric compound in which the pseudohalide ligand NCS behaves both as thio­cyanate and iso­thio­cyanate, i.e. is coordinating either through the N atom (in the cation) or the S atom (in the anion).

1. Chemical context

The coordination chemistry of transition metals having a d8 shell is clearly dominated by the square-planar geometry, which gives strong crystal field stabilization, because filled orbitals dz2 and degenerated orbitals (dxz dyz) do not inter­act directly with orbitals of the ligands. This holds true for group 10 metal complexes, for which the tetra­hedral geometry is considered as an oddity (Alvarez et al., 2005[Alvarez, S., Alemany, P., Casanova, D., Cirera, J., Llunell, M. & Avnir, D. (2005). Coord. Chem. Rev. 249, 1693-1708.]).

[Scheme 1]

We synthesized a series of such square-planar complexes, with general formula n[Pd(pza)X]Y·mH2O, in which pza is the tridentate ligand bis-[2-(3,5-di­methyl­pyrazol-1-yl)eth­yl]amine, and X, Y are halide, pseudohalide, nitrate, or a complex anion. This series was first considered within a larger project related to a systematic study of modifications of cis-platin, obtained through the substitution of NH3 ligands by N-heterocyclic systems, like imidazole- and pyrazole-based ligands. The PdII synthetic chemistry may be easily transferred to PtII, with the advantage that PdII starting materials are somewhat cheaper than their PtII analogues. On the other hand, regarding the chemical crystallography, PdII complexes are almost always isostructural to their PtII analogues. Finally, any new PdII complex is also of potential inter­est for studies about the fundamental aspects of the catalysis of the Heck reaction type.

We thus focused our efforts on the crystallographic characterization of the PdII complexes obtained as single crystals, with the hope of rationalizing the effect of the co-ligand X and counter-ion Y on the mol­ecular and crystal structures of the complex [Pd(pza)X]+ cations. An earlier report of the crystal structure of the starting material, [Pd(pza)Cl]Cl·2H2O has been given (Mendoza et al., 2006[Mendoza, M. de los A., Bernès, S. & Mendoza-Díaz, G. (2006). Acta Cryst. E62, m2934-m2936.]), and we now report on the characterization of [Pd(pza)Cl]NO3 (1), [Pd(pza)Br]NO3 (2), [Pd(pza)I]I·0.5(H2O) (3), [Pd(pza)N3]N3·H2O (4), and 2[Pd(pza)NCS][Pd(SCN)4] (5).

2. Structural commentary: mol­ecular and crystal structures

Complex (1) is a result of the substitution of the counter-ion Y = Cl in the starting material, i.e. in the dihydrate [Pd(pza)Cl]Cl·2H2O by a nitrate, but crystallizes as an anhydrous species, [Pd(pza)Cl]NO3 (Fig. 1[link]). As expected, the square-planar coordination of the metal cation is retained, and the conformation of the pza ligand is not affected by the counter-ion substitution. The cation conformation may be characterized by the dihedral angle between the pyrazole mean planes, 85.1 (3)° versus 87.62 (11)° in the chloride salt (Mendoza et al., 2006[Mendoza, M. de los A., Bernès, S. & Mendoza-Díaz, G. (2006). Acta Cryst. E62, m2934-m2936.]). A least-squares fit between the [Pd(pza)Cl]+ cations in the chloride and nitrate salts gives an r.m.s. deviation of 0.124 Å. However, the crystal structures are different because the water mol­ecules in the chloride dihydrate are determinant for the supra­molecular arrangement through hydrogen-bonding and inter­molecular contacts. In (1), the nitrate ion inter­acts with the central amine group of the pza ligand, with a N10—H10⋯O1 separation of 1.98 Å. Other inter-ion contacts beyond the asymmetric unit are unexceptional, and the observed crystal structure is basically a consequence of Coulombic inter­actions rather than hydrogen bonds (Table 1[link]).

Table 1
Hydrogen-bond geometry (Å, °) for (1)[link]

D—H⋯A D—H H⋯A DA D—H⋯A
C4—H4A⋯N20i 0.93 2.66 3.510 (10) 153
C7—H7C⋯Cl1 0.96 2.81 3.410 (10) 121
C8—H8A⋯O3ii 0.97 2.28 3.222 (10) 163
N10—H10⋯N20 0.90 2.57 3.453 (10) 167
N10—H10⋯O1 0.90 1.98 2.857 (9) 164
N10—H10⋯O2 0.90 2.45 3.186 (10) 140
C14—H14A⋯Cl1iii 0.93 2.82 3.629 (9) 146
C16—H16A⋯O1iv 0.96 2.64 3.572 (12) 164
C17—H17A⋯O3ii 0.96 2.53 3.491 (12) 175
C17—H17C⋯Cl1 0.96 2.79 3.367 (10) 119
C18—H18A⋯O2 0.97 2.51 3.364 (11) 146
C18—H18B⋯O1iv 0.97 2.61 3.428 (11) 142
C19—H19A⋯O3iv 0.97 2.47 3.112 (11) 124
Symmetry codes: (i) [-x+{\script{3\over 2}}, y+{\script{1\over 2}}, -z+{\script{3\over 2}}]; (ii) [x-{\script{1\over 2}}, -y+{\script{3\over 2}}, z-{\script{1\over 2}}]; (iii) [-x+{\script{3\over 2}}, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iv) [-x+{\script{3\over 2}}, y-{\script{1\over 2}}, -z+{\script{3\over 2}}].
[Figure 1]
Figure 1
View of the mol­ecular structure of complex (1), corresponding to X = Cl and Y = NO3, with displacement ellipsoids for non-H atoms drawn at the 30% probability level. The inset is an overlay (Mercury; Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]) of the cations in (1) and (2), in which X = Br.

Complex (2), with X = Br and Y = NO3 is isostructural with the X = Cl analogue (1). However, a slight relaxation of the folded pza ligand is observed, with a dihedral angle between pyrazole rings of 83.6 (2)°. An overlay between cations in (1) and (2) gives a small deviation of 0.049 Å (Fig. 1[link], inset). The nitrate anion inter­acts with the complex cation in (2) with a distance N10—H10⋯O1 = 1.98 Å (Table 2[link]). Thus, the nature of the halogen co-ligand X in [Pd(pza)X]NO3 seems to be unimportant for the resulting crystal structure.

Table 2
Hydrogen-bond geometry (Å, °) for (2)[link]

D—H⋯A D—H H⋯A DA D—H⋯A
C4—H4A⋯N20i 0.93 2.66 3.540 (7) 159
C7—H7C⋯Br1 0.96 3.06 3.500 (8) 110
C8—H8A⋯O3ii 0.97 2.30 3.219 (9) 157
N10—H10⋯N20 0.90 2.54 3.427 (6) 169
N10—H10⋯O1 0.90 1.98 2.857 (7) 166
N10—H10⋯O2 0.90 2.43 3.181 (8) 142
C14—H14A⋯Br1iii 0.93 2.88 3.687 (6) 146
C16—H16A⋯O1iv 0.96 2.65 3.511 (10) 150
C17—H17A⋯O3ii 0.96 2.55 3.485 (10) 164
C17—H17C⋯Br1 0.96 2.98 3.459 (8) 112
C18—H18A⋯O2 0.97 2.52 3.358 (9) 144
C18—H18B⋯O1iv 0.97 2.65 3.468 (8) 142
C19—H19B⋯O3iv 0.97 2.47 3.099 (9) 122
Symmetry codes: (i) [-x+{\script{3\over 2}}, y+{\script{1\over 2}}, -z+{\script{3\over 2}}]; (ii) [x-{\script{1\over 2}}, -y+{\script{3\over 2}}, z-{\script{1\over 2}}]; (iii) [-x+{\script{3\over 2}}, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iv) [-x+{\script{3\over 2}}, y-{\script{1\over 2}}, -z+{\script{3\over 2}}].

Complex (3), built up with X = Y = iodide, crystallized as a hemihydrate, with two cation complexes and two free iodide ions in the asymmetric unit (Fig. 2[link]). The square-planar geometry of PdII is retained, as well as the pza conformation. However, the relaxation of folding, observed with X = Br in compound (2), is amplified with X = I: the angle between the pyrazole rings is now 79.0 (3) and 83.3 (3)°, for the Pd1 and Pd2 cations, respectively. There seems to be a regular trend for [Pd(pza)X]+ cations: the smaller the ionic radius of the co-ligand X, the closer the angle between the pyrazole rings is to 90°. A possible rationalization of this observation is that methyl groups substituting pyrazole rings at position 3 inter­act with the co-ligand X. This destabilizing steric inter­action favors the twisting of pza, which in general adopts a non-crystallographic twofold rotation symmetry. However, the large iodide anion forces the separation between methyl groups, compared to the small chloride ion. In order to keep the coordination geometry around PdII as planar as possible, the heterocycles in pza then make a slight rotation motion, which is reflected in the deviation from orthogonality of these terminal rings. In other words, the combined twisting and folding motions of the pza ligand lead to as planar as possible a coordination environment for PdII. Counter-ions Y and lattice water mol­ecules have only slight influences, if any, on the cation conformation. In the case of (3), the water mol­ecule behaves both as a donor and acceptor group for hydrogen bonding. O—H⋯I bonds are formed with the non-coordin­ating iodide anions, and the central amine group of pza forms a N—H⋯O bond with the same water mol­ecule (Table 3[link]). However, as for previous complexes (1) and (2), no extended supra­molecular structures are formed in the crystal.

Table 3
Hydrogen-bond geometry (Å, °) for (3)[link]

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯I3 0.85 2.68 3.497 (7) 161
O1—H2⋯I4 0.85 2.66 3.443 (10) 155
N10—H10A⋯I3i 0.90 2.94 3.653 (6) 137
N30—H30A⋯O1ii 0.90 2.22 3.011 (9) 146
N30—H30A⋯I4ii 0.90 3.30 3.853 (6) 122
Symmetry codes: (i) -x+1, -y+2, -z+1; (ii) -x+1, -y+1, -z.
[Figure 2]
Figure 2
View of the mol­ecular structure of complex (3), corresponding to X = Y = I, with displacement ellipsoids for non-H atoms drawn at the 30% probability level.

Using the pseudohalide X = Y = azide, compound (4) was crystallized as an hydrate, [Pd(pza)N3]N3·H2O (Fig. 3[link]). The nitro­gen atoms in the coordinating N3 ligand are not steric­ally demanding as the iodide ion in (3) and, as a consequence, the pyrazole rings come back in a more orthogonal arrangement, identical to that observed in [Pd(pza)Cl]+. The dihedral angle between pyrazole rings is 87.3 (1)° in (4). The strongest hydrogen bond is found between the amine group of pza and the free azide ion, the N10—H10⋯N32 separation being 1.95 Å and the angle for the contact 171° (Table 4[link]).

Table 4
Hydrogen-bond geometry (Å, °) for (4)[link]

D—H⋯A D—H H⋯A DA D—H⋯A
N10—H10⋯N32 0.90 1.95 2.838 (11) 171
N10—H10⋯N31 0.90 2.66 3.460 (13) 148
O1—H11⋯N32i 0.84 2.67 3.295 (19) 132
O1—H12⋯N30 0.85 2.38 3.08 (2) 140
Symmetry code: (i) x+1, y, z.
[Figure 3]
Figure 3
View of the mol­ecular structure of complex (4), corresponding to X = Y = N3, with displacement ellipsoids for non-H atoms drawn at the 30% probability level.

Finally, in the fifth compound (5), the counter-ion Y is a complex anion, namely [Pd(SCN)4]2−. The formula for (5) is 2[Pd(pza)NCS][Pd(SCN)4], and the anion is located about an inversion centre, while the cation is in a general position (Fig. 4[link]). The pza ligand in [Pd(pza)NCS]+, in contrast to previous compounds, has the amine group N10 disordered over two positions, N10A and N10B, with occupancies 0.770 (18) and 0.230 (18), respectively. The same type of disorder was previously reported for an AuIII complex (Segapelo et al., 2011[Segapelo, T. V., Guzei, I. A., Spencer, L. C. & Darkwa, J. (2011). Inorg. Chem. Commun. 14, 1706-1710.]). In spite of this disorder, the general conformation of pza is identical to that observed in compounds (1)–(4), approximating the non-crystallographic twofold rotation symmetry. The co-ligand X = NCS coordin­ates through its N atom, and the local environment of the metal is very similar to that resulting from azide coord­in­ation in complex (4). The dihedral angle between pyrazole rings should thus be close to 90°. The actual value is 88.6 (1)°. The anion [Pd(SCN)4]2− is also square-planar, but with the ligands coordinating in a κS-fashion, while in the cation, the NCS ligand is bound in a κN-fashion to the metal cation. If complexes with bridging thio­cyanate ligands are not considered, very few structures are known in which the ambidentate ligand NCS is bonded in two modes (κS- and κN-) to the same transition metal. In the case of PdII, classified as a soft acid in the Pearson's HSAB concept, the soft base SCN should have a preference for the κS-coordination. Apparently, only a few non-polymeric crystal structures have been reported including both coordination modes of SCN to this metal (e.g. Paviglianiti et al., 1989[Paviglianiti, A. J., Minn, D. J., Fultz, W. C. & Burmeister, J. L. (1989). Inorg. Chim. Acta, 159, 65-82.]; Chang et al., 2005[Chang, X., Lee, K.-E., Jeon, S. I., Kim, Y.-J., Lee, H.-K. & Lee, S. W. (2005). Dalton Trans. pp. 3722-3731.]). In the crystal structure, weak hydrogen bonds between the disordered amino group and the NCS groups of neighbouring cations and anions are observed (Table 5[link]).

Table 5
Hydrogen-bond geometry (Å, °) for (5)[link]

D—H⋯A D—H H⋯A DA D—H⋯A
N10A—H10A⋯N24i 0.90 2.01 2.889 (9) 166
N10B—H10B⋯S1ii 0.90 2.71 3.52 (2) 151
Symmetry codes: (i) x, y, z-1; (ii) x-1, y, z.
[Figure 4]
Figure 4
View of the mol­ecular structure of complex (5), corresponding to X = NCS and Y = [Pd(SCN)4]2−, with displacement ellipsoids for non-H atoms at the 30% probability level. Only one position for the disordered amine group in the cation has been retained (N10A). In the anion, unlabelled atoms are generated by symmetry code (−x + 1, −y + 2, −z + 2).

3. Database survey

The ligand pza has been widely used in coordination chemistry. The current release of the CSD (Version 5.35 with all updates; Groom & Allen, 2014[Groom, C. R. & Allen, F. H. (2014). Angew. Chem. Int. Ed. 53, 662-671.]) affords 39 entries distributed over 18 articles. With PdII, two structures are reported to date, which are pseudopolymorphs with X = Y = Cl (Mendoza et al., 2006[Mendoza, M. de los A., Bernès, S. & Mendoza-Díaz, G. (2006). Acta Cryst. E62, m2934-m2936.]; Guzei et al., 2010[Guzei, I. A., Spencer, L. C., Miti, N. & Darkwa, J. (2010). Acta Cryst. E66, m1243.]). Other transition metals have been coordinated by pza and structures are available for CoII (van Berkel et al., 1994[Berkel, P. M. van, Driessen, W. L., Hämäläinen, R., Reedijk, J. & Turpeinen, U. (1994). Inorg. Chem. 33, 5920-5926.]; Massoud et al., 2012a[Massoud, S. S., Le Quan, L., Gatterer, K., Albering, J. H., Fischer, R. C. & Mautner, F. A. (2012a). Polyhedron, 31, 601-606.], 2013[Massoud, S. S., Louka, F. R., Obaid, Y. K., Vicente, R., Ribas, J., Fischer, R. C. & Mautner, F. A. (2013). Dalton Trans. 42, 3968-3978.]), NiII (Ajellal et al., 2006[Ajellal, N., Kuhn, M. C. A., Boff, A. D. G., Hörner, M., Thomas, C. M., Carpentier, J.-F. & Casagrande, O. L. Jr (2006). Organometallics, 25, 1213-1216.]; Massoud et al., 2012a[Massoud, S. S., Le Quan, L., Gatterer, K., Albering, J. H., Fischer, R. C. & Mautner, F. A. (2012a). Polyhedron, 31, 601-606.], 2013[Massoud, S. S., Louka, F. R., Obaid, Y. K., Vicente, R., Ribas, J., Fischer, R. C. & Mautner, F. A. (2013). Dalton Trans. 42, 3968-3978.]), CuII (van Berkel et al., 1994[Berkel, P. M. van, Driessen, W. L., Hämäläinen, R., Reedijk, J. & Turpeinen, U. (1994). Inorg. Chem. 33, 5920-5926.]; Martens et al., 1995[Martens, C. F., Schenning, A. P. H. J., Feiters, M. C., Berens, H. W., van der Linden, J. G. M., Admiraal, G., Beurskens, P. T., Kooijman, H., Spek, A. L. & Nolte, R. J. M. (1995). Inorg. Chem. 34, 4735-4744.]; Kim et al., 2000[Kim, J. H., Roh, S.-G. & Jeong, J. H. (2000). Acta Cryst. C56, e543-e544.]; Monzani et al., 2000[Monzani, E., Koolhaas, G. J. A. A., Spandre, A., Leggieri, E., Casella, L., Gullotti, M., Nardin, G., Randaccio, L., Fontani, M., Zanello, P. & Reedijk, J. (2000). J. Biol. Inorg. Chem. 5, 251-261.]; Riklin et al., 2001[Riklin, M., Tran, D., Bu, X., Laverman, L. E. & Ford, P. C. (2001). J. Chem. Soc. Dalton Trans. pp. 1813-1819.]; Massoud et al., 2012a[Massoud, S. S., Le Quan, L., Gatterer, K., Albering, J. H., Fischer, R. C. & Mautner, F. A. (2012a). Polyhedron, 31, 601-606.],b[Massoud, S. S., Vicente, R., Fontenot, P. R., Gallo, A. A., Mikuriya, M., Albering, J. H. & Mautner, F. A. (2012b). Polyhedron, 46, 66-73.], 2013[Massoud, S. S., Louka, F. R., Obaid, Y. K., Vicente, R., Ribas, J., Fischer, R. C. & Mautner, F. A. (2013). Dalton Trans. 42, 3968-3978.]), ZnII (Burth & Vahrenkamp, 1998[Burth, R. & Vahrenkamp, H. (1998). Inorg. Chim. Acta, 282, 193-199.]; Lian et al., 2007a[Lian, B., Thomas, C. M., Casagrande, O. L. Jr, Lehmann, C. W., Roisnel, T. & Carpentier, J.-F. (2007a). Inorg. Chem. 46, 328-340.]; Lee et al., 2007[Lee, R. E., Park, Y. D. & Jeong, J. H. (2007). Acta Cryst. E63, m2679.]; Massoud et al., 2013[Massoud, S. S., Louka, F. R., Obaid, Y. K., Vicente, R., Ribas, J., Fischer, R. C. & Mautner, F. A. (2013). Dalton Trans. 42, 3968-3978.]), CdII (Griffith et al., 1987[Griffith, E. A. H., Charles, N. G., Lewinski, K., Amma, E. L. & Rodesiler, P. F. (1987). Inorg. Chem. 26, 3983-3989.]; Massoud et al., 2013[Massoud, S. S., Louka, F. R., Obaid, Y. K., Vicente, R., Ribas, J., Fischer, R. C. & Mautner, F. A. (2013). Dalton Trans. 42, 3968-3978.]), ReI (Alves et al., 2002[Alves, S., Paulo, A., Correia, J. D. G., Domingos, Â. & Santos, I. (2002). J. Chem. Soc. Dalton Trans. pp. 4714-4719.]) and AuIII (Segapelo et al., 2011[Segapelo, T. V., Guzei, I. A., Spencer, L. C. & Darkwa, J. (2011). Inorg. Chem. Commun. 14, 1706-1710.]). The pza ligand generally behaves as a tridentate ligand, with exceptions for some ZnII compounds, in which one pyrazole ring is not coordinating to the metal (Burth & Vahrenkamp, 1998[Burth, R. & Vahrenkamp, H. (1998). Inorg. Chim. Acta, 282, 193-199.]; Lian et al., 2007a[Lian, B., Thomas, C. M., Casagrande, O. L. Jr, Lehmann, C. W., Roisnel, T. & Carpentier, J.-F. (2007a). Inorg. Chem. 46, 328-340.]; Lee et al., 2007[Lee, R. E., Park, Y. D. & Jeong, J. H. (2007). Acta Cryst. E63, m2679.]). Few complexes have also been prepared with s- and p-metals, viz. LiI (Lian et al., 2007a[Lian, B., Thomas, C. M., Casagrande, O. L. Jr, Lehmann, C. W., Roisnel, T. & Carpentier, J.-F. (2007a). Inorg. Chem. 46, 328-340.]), MgII (Lian et al., 2007b[Lian, B., Thomas, C. M., Casagrande, O. L. Jr, Roisnel, T. & Carpentier, J.-F. (2007b). Polyhedron, 26, 3817-3824.]), and AlIII (Lian et al., 2007a[Lian, B., Thomas, C. M., Casagrande, O. L. Jr, Lehmann, C. W., Roisnel, T. & Carpentier, J.-F. (2007a). Inorg. Chem. 46, 328-340.]).

The conformation observed for pza is determined by the coordination number of the metal centre. For example, hexa-coordinated transition metals like NiII or CdII favor the facial coordination of pza, which is then found in a folded conformation, while coordination numbers 5 and 4 promote some defolding. The ligand pza with the dihedral angle between pyrazole rings very close to 0° has been observed in CoII complexes (Massoud et al., 2012a[Massoud, S. S., Le Quan, L., Gatterer, K., Albering, J. H., Fischer, R. C. & Mautner, F. A. (2012a). Polyhedron, 31, 601-606.], 2013[Massoud, S. S., Louka, F. R., Obaid, Y. K., Vicente, R., Ribas, J., Fischer, R. C. & Mautner, F. A. (2013). Dalton Trans. 42, 3968-3978.]). A conformation for pza close to that observed in (1)–(5) has been reported with MgII (Lian et al., 2007b[Lian, B., Thomas, C. M., Casagrande, O. L. Jr, Roisnel, T. & Carpentier, J.-F. (2007b). Polyhedron, 26, 3817-3824.]) and AuIII (Segapelo et al., 2011[Segapelo, T. V., Guzei, I. A., Spencer, L. C. & Darkwa, J. (2011). Inorg. Chem. Commun. 14, 1706-1710.]).

4. Synthesis and crystallization

Complexes (1)–(5) were synthesized starting from [Pd(pza)Cl]Cl·2H2O (Mendoza et al., 2006[Mendoza, M. de los A., Bernès, S. & Mendoza-Díaz, G. (2006). Acta Cryst. E62, m2934-m2936.]), by substitution of co-ligands and counter-ions, as depicted in Fig. 5[link].

[Figure 5]
Figure 5
General synthetic scheme for complexes (1)–(5).

Synthesis of (1). [Pd(pza)Cl]Cl·2H2O (1 mmol) was dissolved in CH3CN, and a solution of AgNO3 (1 mmol in CH3CN) was added slowly. The mixture was stirred for 1 h at room temperature. After elimination by filtration of the white precipitate of AgCl, the mixture was further stirred for 1 h. Evaporation of the solvent afforded complex (1) as a brown–yellow solid, in 82% yield, and crystals were obtained by recrystallization from CH3CN.

Synthesis of (2). [Pd(pza)Cl]Cl·2H2O (1 mmol) was dissolved in CH3CN, and a solution of AgNO3 (2 mmol in CH3CN) was added slowly. The mixture was stirred for 2 h at room temperature, and the precipitated AgCl was removed by filtration. An aqueous solution of NaBr (1 mmol) was then added, and NaNO3 precipitates, which was removed by filtration. The solution was further stirred for 5 h. Evaporation of the solvent afforded complex (2) as a yellow solid, in 76% yield, and crystals were obtained by recrystallization from CH3CN.

Synthesis of (3). [Pd(pza)Cl]Cl·2H2O (1 mmol) was dissolved in CH3CN (5 ml) and a solution of 2 mmol of NaBF4 in CH3CN was added slowly. After elimination of NaCl by filtration, a solution of 2 mmol of NEt4I in CH3CN was added slowly, and the mixture, which turned red, was stirred for 6 h at room temperature. Evaporation of the solvent afforded complex (3) as a red solid, in 82% yield, and crystals were obtained by recrystallization from CH3CN. Alternatively, complex (3) may be obtained in 89% yield by reacting an aqueous solution of [Pd(pza)Cl]Cl·2H2O (1 mmol) and NaI (2 mmol) for 6 h at room temperature.

Synthesis of (4). [Pd(pza)Cl]Cl·2H2O (1 mmol) was dissolved in CH3CN. A solution of NaN3 (2 mmol, CH3CN/H2O mixture 4:1, v/v) was added slowly. The formed precipitate of NaCl was eliminated by filtration, and the mixture was further stirred at room temperature for 10 h. Evaporation of the solvent afforded complex (4) as a yellow solid, in 61% yield, and crystals were obtained by recrystallization from CH3CN.

Synthesis of (5). [Pd(pza)Cl]Cl·2H2O (1 mmol) was dissolved in H2O, and an aqueous solution of 2 mmol of KNCS was added slowly. The mixture was stirred for 10 h at room temperature. The formed pink solid, (5), was separated by filtration and dried in reduced pressure at 313 K. Yield: 48%. Crystals were obtained by recrystallization from a mixture of CH3CN and CH2Cl2 (2:1, v/v).

5. Refinement

Crystal data, data collection and structure refinement details for (1)–(5) are summarized in Table 6[link]. Data collection and refinement are routine works, except for a positional disorder found in (5) for sites N10A/N10B, for which the s.o.f. converged to 0.770 (18) and 0.230 (18), respectively. All H atoms bonded to C and N atoms were placed in calculated positions and refined as riding atoms, with fixed bond lengths of 0.93, 0.96, 0.97, and 0.90 Å for aromatic, methyl, methyl­ene, and amine groups, respectively. In (3) and (4), H atoms for water mol­ecules were found in difference maps, and first refined with free coordinates and restrained distances O—H = 0.85 (2) and H⋯H = 1.34 (4) Å. In the final cycles, water H atoms were fixed and refined as riding atoms. Isotropic displacement parameters for all H atoms were calculated as Uiso(H) = xUeq(carrier atom), with x = 1.2 (methyl­ene, aromatic, and amine groups) or x = 1.5 (methyl and water).

Table 6
Experimental details

  (1) (2) (3) (4) (5)
Crystal data
Chemical formula [PdCl(C14H23N5)]NO3 [PdBr(C14H23N5)]NO3 [PdI(C14H2N5)]I·0.5H2O [Pd(N3)(C14H23N5)]N3·H2O [Pd(NCS)(C14H23N5)]2[Pd(NCS)4]
Mr 465.23 509.69 630.58 469.85 1190.43
Crystal system, space group Monoclinic, P21/n Monoclinic, P21/n Triclinic, P[\overline{1}] Monoclinic, P21/c Triclinic, P[\overline{1}]
Temperature (K) 298 298 299 296 298
a, b, c (Å) 11.046 (2), 12.2941 (15), 14.0978 (16) 10.934 (6), 12.443 (4), 14.112 (6) 12.013 (4), 12.089 (4), 15.162 (5) 8.132 (3), 22.851 (5), 11.372 (3) 9.0286 (17), 10.532 (2), 13.066 (3)
α, β, γ (°) 90, 94.740 (16), 90 90, 94.76 (4), 90 106.17 (2), 97.34 (3), 106.79 (3) 90, 109.03 (2), 90 94.838 (14), 100.947 (12), 103.989 (13)
V3) 1907.9 (5) 1913.4 (14) 1972.0 (11) 1997.8 (10) 1172.5 (4)
Z 4 4 4 4 1
Radiation type Mo Kα Mo Kα Mo Kα Mo Kα Mo Kα
μ (mm−1) 1.14 3.08 4.08 0.96 1.45
Crystal size (mm) 0.40 × 0.12 × 0.10 0.60 × 0.40 × 0.18 0.20 × 0.15 × 0.04 0.50 × 0.40 × 0.40 0.40 × 0.40 × 0.12
 
Data collection
Diffractometer Siemens P4 Siemens P4 Siemens P4 Siemens P4 Siemens P4
Absorption correction ψ scan (XSCANS; Siemens, 1996[Siemens (1996). XSCANS. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.]) ψ scan (XSCANS; Siemens, 1996[Siemens (1996). XSCANS. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.]) ψ scan (XSCANS; Siemens, 1996[Siemens (1996). XSCANS. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.]) ψ scan (XSCANS; Siemens, 1996[Siemens (1996). XSCANS. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.]) ψ scan (XSCANS; Siemens, 1996[Siemens (1996). XSCANS. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.469, 0.517 0.206, 0.352 0.446, 0.523 0.266, 0.366 0.256, 0.378
No. of measured, independent and observed [I > 2σ(I)] reflections 4513, 3372, 2110 12224, 4962, 3329 8975, 6835, 4559 8431, 4032, 3528 8889, 5367, 4874
Rint 0.044 0.080 0.043 0.056 0.038
(sin θ/λ)max−1) 0.596 0.677 0.595 0.623 0.650
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.060, 0.158, 1.05 0.051, 0.148, 1.05 0.040, 0.101, 1.03 0.036, 0.097, 1.08 0.039, 0.107, 1.06
No. of reflections 3372 4962 6835 4032 5367
No. of parameters 230 231 414 248 282
H-atom treatment H-atom parameters constrained H-atom parameters constrained H-atom parameters constrained H-atom parameters constrained H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 1.45, −1.11 1.10, −1.01 0.85, −1.04 0.55, −1.04 0.83, −1.06
Computer programs: XSCANS (Siemens, 1996[Siemens (1996). XSCANS. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.]), SHELXS2014, SHELXL2014 and SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) and Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]).

Supporting information


Computing details top

For all compounds, data collection: XSCANS (Siemens, 1996); cell refinement: XSCANS (Siemens, 1996); data reduction: XSCANS (Siemens, 1996); program(s) used to solve structure: SHELXS2014 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2008). Molecular graphics: SHELXTL (Sheldrick, 2008) for (1), (3), (4), (5); SHELXTL (Sheldrick, 2008) and Mercury (Macrae et al., 2008) for (2). For all compounds, software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

(1) {Bis[2-(3,5-dimethylpyrazol-1-yl-κN2)ethyl]amine-κN}chloridopalladium nitrate top
Crystal data top
[PdCl(C14H23N5)]NO3F(000) = 944
Mr = 465.23Dx = 1.620 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 11.046 (2) ÅCell parameters from 51 reflections
b = 12.2941 (15) Åθ = 4.2–11.4°
c = 14.0978 (16) ŵ = 1.14 mm1
β = 94.740 (16)°T = 298 K
V = 1907.9 (5) Å3Irregular, yellow
Z = 40.40 × 0.12 × 0.10 mm
Data collection top
Siemens P4
diffractometer
2110 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tube, FN4Rint = 0.044
Graphite monochromatorθmax = 25.1°, θmin = 2.2°
ω scansh = 132
Absorption correction: ψ scan
(XSCANS; Siemens, 1996)
k = 141
Tmin = 0.469, Tmax = 0.517l = 1616
4513 measured reflections2 standard reflections every 98 reflections
3372 independent reflections intensity decay: 2.5%
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.060Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.158H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.0649P)2 + 4.1623P]
where P = (Fo2 + 2Fc2)/3
3372 reflections(Δ/σ)max = 0.001
230 parametersΔρmax = 1.45 e Å3
0 restraintsΔρmin = 1.11 e Å3
0 constraints
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Pd10.72319 (6)0.71729 (4)0.48704 (4)0.0531 (2)
Cl10.8178 (2)0.79157 (19)0.36252 (16)0.0787 (7)
N10.6837 (6)0.8628 (5)0.5434 (4)0.0526 (15)
N20.5729 (6)0.8737 (5)0.5775 (4)0.0590 (17)
C30.5644 (8)0.9712 (7)0.6217 (6)0.063 (2)
C40.6727 (8)1.0222 (7)0.6145 (6)0.062 (2)
H4A0.69351.09130.63720.074*
C50.7454 (8)0.9534 (6)0.5679 (6)0.057 (2)
C60.4531 (9)1.0055 (9)0.6675 (8)0.094 (3)
H6A0.38330.99820.62270.141*
H6B0.46141.08000.68740.141*
H6C0.44330.96030.72190.141*
C70.8714 (9)0.9703 (8)0.5461 (8)0.087 (3)
H7A0.92080.91130.57170.131*
H7B0.90101.03750.57400.131*
H7C0.87520.97340.47840.131*
C80.4865 (8)0.7861 (7)0.5628 (6)0.071 (2)
H8A0.47580.76890.49550.086*
H8B0.40860.80940.58270.086*
C90.5280 (9)0.6844 (8)0.6183 (7)0.085 (3)
H9A0.51630.69500.68510.102*
H9B0.47820.62320.59560.102*
N100.6567 (6)0.6590 (5)0.6082 (4)0.0592 (17)
H100.69720.69690.65530.071*
N110.7516 (6)0.5655 (5)0.4398 (4)0.0592 (17)
N120.8073 (7)0.4924 (5)0.5011 (4)0.0668 (19)
C130.8283 (8)0.3993 (7)0.4553 (6)0.066 (2)
C140.7855 (8)0.4148 (6)0.3638 (6)0.065 (2)
H14A0.78960.36450.31480.078*
C150.7349 (7)0.5173 (6)0.3546 (5)0.0550 (19)
C160.8887 (11)0.3031 (8)0.5040 (7)0.096 (3)
H16A0.84630.28370.55830.145*
H16B0.97140.32100.52440.145*
H16C0.88720.24290.46050.145*
C170.6704 (9)0.5709 (8)0.2707 (6)0.081 (3)
H17A0.59870.60630.28960.121*
H17B0.64780.51730.22300.121*
H17C0.72290.62380.24530.121*
C180.8104 (10)0.5127 (7)0.6030 (5)0.078 (3)
H18A0.86760.57070.62010.094*
H18B0.83800.44770.63730.094*
C190.6873 (11)0.5438 (7)0.6310 (6)0.080 (3)
H19A0.62680.49690.59820.096*
H19B0.68450.53230.69890.096*
N200.8548 (9)0.7786 (5)0.7798 (5)0.069 (2)
O10.7422 (7)0.7795 (6)0.7736 (5)0.0859 (19)
O20.9057 (8)0.7441 (7)0.7123 (6)0.105 (2)
O30.9127 (7)0.8085 (5)0.8529 (5)0.097 (2)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Pd10.0779 (5)0.0434 (3)0.0381 (3)0.0043 (3)0.0053 (3)0.0013 (3)
Cl10.0987 (17)0.0776 (15)0.0621 (13)0.0096 (13)0.0200 (12)0.0223 (11)
N10.056 (4)0.045 (4)0.057 (4)0.001 (3)0.009 (3)0.004 (3)
N20.065 (5)0.060 (4)0.052 (4)0.002 (4)0.004 (3)0.003 (3)
C30.072 (6)0.063 (5)0.053 (5)0.019 (5)0.003 (4)0.006 (4)
C40.068 (6)0.047 (4)0.070 (5)0.006 (4)0.005 (4)0.012 (4)
C50.065 (6)0.046 (4)0.061 (5)0.002 (4)0.006 (4)0.010 (4)
C60.082 (7)0.102 (8)0.100 (8)0.024 (6)0.010 (6)0.029 (6)
C70.095 (8)0.063 (6)0.105 (8)0.015 (5)0.021 (6)0.005 (5)
C80.070 (6)0.083 (6)0.060 (5)0.007 (5)0.004 (4)0.010 (5)
C90.095 (8)0.088 (7)0.071 (6)0.030 (6)0.011 (5)0.007 (5)
N100.083 (5)0.053 (4)0.042 (3)0.014 (4)0.006 (3)0.003 (3)
N110.097 (5)0.044 (3)0.036 (3)0.015 (4)0.004 (3)0.000 (3)
N120.098 (6)0.050 (4)0.050 (4)0.013 (4)0.010 (4)0.003 (3)
C130.081 (6)0.050 (5)0.069 (6)0.010 (4)0.015 (5)0.003 (4)
C140.080 (6)0.052 (5)0.064 (5)0.009 (5)0.014 (5)0.007 (4)
C150.063 (5)0.061 (5)0.041 (4)0.006 (4)0.002 (4)0.008 (4)
C160.131 (9)0.073 (7)0.089 (7)0.039 (6)0.028 (7)0.012 (5)
C170.100 (7)0.096 (7)0.045 (5)0.023 (6)0.003 (5)0.010 (5)
C180.137 (9)0.047 (5)0.046 (5)0.008 (6)0.017 (5)0.004 (4)
C190.147 (9)0.057 (5)0.037 (4)0.013 (6)0.007 (5)0.005 (4)
N200.102 (7)0.045 (4)0.058 (5)0.003 (5)0.004 (5)0.003 (4)
O10.086 (5)0.094 (5)0.077 (4)0.004 (4)0.003 (4)0.018 (4)
O20.115 (6)0.110 (6)0.091 (5)0.002 (4)0.005 (5)0.024 (4)
O30.136 (6)0.073 (4)0.075 (4)0.005 (4)0.039 (4)0.004 (3)
Geometric parameters (Å, º) top
Pd1—N112.015 (6)N10—C191.485 (10)
Pd1—N12.019 (6)N10—H100.9000
Pd1—N102.045 (6)N11—C151.339 (9)
Pd1—Cl12.305 (2)N11—N121.357 (8)
N1—C51.337 (9)N12—C131.344 (10)
N1—N21.358 (9)N12—C181.455 (10)
N2—C31.358 (10)C13—C141.351 (11)
N2—C81.442 (10)C13—C161.496 (12)
C3—C41.362 (11)C14—C151.380 (11)
C3—C61.495 (12)C14—H14A0.9300
C4—C51.372 (11)C15—C171.484 (11)
C4—H4A0.9300C16—H16A0.9600
C5—C71.465 (12)C16—H16B0.9600
C6—H6A0.9600C16—H16C0.9600
C6—H6B0.9600C17—H17A0.9600
C6—H6C0.9600C17—H17B0.9600
C7—H7A0.9600C17—H17C0.9600
C7—H7B0.9600C18—C191.497 (13)
C7—H7C0.9600C18—H18A0.9700
C8—C91.525 (13)C18—H18B0.9700
C8—H8A0.9700C19—H19A0.9700
C8—H8B0.9700C19—H19B0.9700
C9—N101.473 (11)N20—O21.219 (10)
C9—H9A0.9700N20—O31.223 (9)
C9—H9B0.9700N20—O11.239 (9)
N11—Pd1—N1174.3 (3)C19—N10—Pd1115.1 (5)
N11—Pd1—N1091.6 (3)C9—N10—H10104.1
N1—Pd1—N1083.0 (3)C19—N10—H10104.1
N11—Pd1—Cl191.30 (19)Pd1—N10—H10104.1
N1—Pd1—Cl194.30 (19)C15—N11—N12107.5 (6)
N10—Pd1—Cl1172.9 (2)C15—N11—Pd1133.8 (5)
C5—N1—N2106.4 (6)N12—N11—Pd1118.5 (4)
C5—N1—Pd1135.9 (6)C13—N12—N11110.2 (6)
N2—N1—Pd1117.2 (5)C13—N12—C18128.9 (7)
C3—N2—N1110.4 (7)N11—N12—C18119.2 (6)
C3—N2—C8130.9 (8)N12—C13—C14106.1 (7)
N1—N2—C8118.7 (7)N12—C13—C16122.8 (8)
N2—C3—C4106.1 (7)C14—C13—C16131.1 (8)
N2—C3—C6122.5 (9)C13—C14—C15109.0 (7)
C4—C3—C6131.3 (8)C13—C14—H14A125.5
C3—C4—C5107.7 (7)C15—C14—H14A125.5
C3—C4—H4A126.1N11—C15—C14107.2 (7)
C5—C4—H4A126.1N11—C15—C17122.7 (7)
N1—C5—C4109.3 (7)C14—C15—C17130.1 (7)
N1—C5—C7122.6 (8)C13—C16—H16A109.5
C4—C5—C7128.1 (8)C13—C16—H16B109.5
C3—C6—H6A109.5H16A—C16—H16B109.5
C3—C6—H6B109.5C13—C16—H16C109.5
H6A—C6—H6B109.5H16A—C16—H16C109.5
C3—C6—H6C109.5H16B—C16—H16C109.5
H6A—C6—H6C109.5C15—C17—H17A109.5
H6B—C6—H6C109.5C15—C17—H17B109.5
C5—C7—H7A109.5H17A—C17—H17B109.5
C5—C7—H7B109.5C15—C17—H17C109.5
H7A—C7—H7B109.5H17A—C17—H17C109.5
C5—C7—H7C109.5H17B—C17—H17C109.5
H7A—C7—H7C109.5N12—C18—C19110.9 (7)
H7B—C7—H7C109.5N12—C18—H18A109.5
N2—C8—C9111.8 (7)C19—C18—H18A109.5
N2—C8—H8A109.3N12—C18—H18B109.5
C9—C8—H8A109.3C19—C18—H18B109.5
N2—C8—H8B109.3H18A—C18—H18B108.1
C9—C8—H8B109.3N10—C19—C18112.5 (7)
H8A—C8—H8B107.9N10—C19—H19A109.1
N10—C9—C8112.1 (7)C18—C19—H19A109.1
N10—C9—H9A109.2N10—C19—H19B109.1
C8—C9—H9A109.2C18—C19—H19B109.1
N10—C9—H9B109.2H19A—C19—H19B107.8
C8—C9—H9B109.2O2—N20—O3121.2 (10)
H9A—C9—H9B107.9O2—N20—O1118.2 (8)
C9—N10—C19112.7 (7)O3—N20—O1120.5 (9)
C9—N10—Pd1115.0 (5)
C5—N1—N2—C31.1 (8)C15—N11—N12—C131.2 (10)
Pd1—N1—N2—C3173.7 (5)Pd1—N11—N12—C13174.5 (6)
C5—N1—N2—C8179.0 (7)C15—N11—N12—C18165.2 (8)
Pd1—N1—N2—C86.4 (8)Pd1—N11—N12—C1819.0 (10)
N1—N2—C3—C40.1 (9)N11—N12—C13—C140.4 (10)
C8—N2—C3—C4179.8 (8)C18—N12—C13—C14165.2 (9)
N1—N2—C3—C6179.2 (8)N11—N12—C13—C16180.0 (9)
C8—N2—C3—C60.9 (13)C18—N12—C13—C1615.3 (15)
N2—C3—C4—C51.2 (9)N12—C13—C14—C151.8 (10)
C6—C3—C4—C5178.0 (9)C16—C13—C14—C15178.6 (10)
N2—N1—C5—C41.8 (8)N12—N11—C15—C142.3 (9)
Pd1—N1—C5—C4172.4 (6)Pd1—N11—C15—C14172.5 (6)
N2—N1—C5—C7177.9 (7)N12—N11—C15—C17176.7 (8)
Pd1—N1—C5—C77.3 (12)Pd1—N11—C15—C178.5 (13)
C3—C4—C5—N12.0 (9)C13—C14—C15—N112.6 (10)
C3—C4—C5—C7177.8 (8)C13—C14—C15—C17176.4 (9)
C3—N2—C8—C9113.1 (9)C13—N12—C18—C19115.9 (10)
N1—N2—C8—C967.0 (9)N11—N12—C18—C1947.7 (10)
N2—C8—C9—N1045.8 (10)C9—N10—C19—C18168.9 (7)
C8—C9—N10—C19159.6 (7)Pd1—N10—C19—C1834.4 (8)
C8—C9—N10—Pd125.0 (9)N12—C18—C19—N1078.4 (9)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C4—H4A···N20i0.932.663.510 (10)153
C7—H7C···Cl10.962.813.410 (10)121
C8—H8A···O3ii0.972.283.222 (10)163
N10—H10···N200.902.573.453 (10)167
N10—H10···O10.901.982.857 (9)164
N10—H10···O20.902.453.186 (10)140
C14—H14A···Cl1iii0.932.823.629 (9)146
C16—H16A···O1iv0.962.643.572 (12)164
C17—H17A···O3ii0.962.533.491 (12)175
C17—H17C···Cl10.962.793.367 (10)119
C18—H18A···O20.972.513.364 (11)146
C18—H18B···O1iv0.972.613.428 (11)142
C19—H19A···O3iv0.972.473.112 (11)124
Symmetry codes: (i) x+3/2, y+1/2, z+3/2; (ii) x1/2, y+3/2, z1/2; (iii) x+3/2, y1/2, z+1/2; (iv) x+3/2, y1/2, z+3/2.
(2) {Bis[2-(3,5-dimethylpyrazol-1-yl-κN2)ethyl]amine-κN}bromidopalladium nitrate top
Crystal data top
[PdBr(C14H23N5)]NO3F(000) = 1016
Mr = 509.69Dx = 1.769 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 10.934 (6) ÅCell parameters from 70 reflections
b = 12.443 (4) Åθ = 5.0–12.5°
c = 14.112 (6) ŵ = 3.08 mm1
β = 94.76 (4)°T = 298 K
V = 1913.4 (14) Å3Prism, yellow
Z = 40.60 × 0.40 × 0.18 mm
Data collection top
Siemens P4
diffractometer
3329 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.080
Graphite monochromatorθmax = 28.8°, θmin = 2.2°
ω scansh = 1414
Absorption correction: ψ scan
(XSCANS; Siemens, 1996)
k = 1616
Tmin = 0.206, Tmax = 0.352l = 1919
12224 measured reflections3 standard reflections every 97 reflections
4962 independent reflections intensity decay: 2.5%
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.051H-atom parameters constrained
wR(F2) = 0.148 w = 1/[σ2(Fo2) + (0.0488P)2 + 3.056P]
where P = (Fo2 + 2Fc2)/3
S = 1.05(Δ/σ)max = 0.001
4962 reflectionsΔρmax = 1.10 e Å3
231 parametersΔρmin = 1.01 e Å3
0 restraintsExtinction correction: SHELXL2014, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 constraintsExtinction coefficient: 0.0042 (5)
Primary atom site location: structure-invariant direct methods
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Pd10.72527 (4)0.72194 (3)0.49024 (3)0.04869 (16)
Br10.82828 (6)0.79805 (6)0.36061 (5)0.0713 (2)
N10.6855 (4)0.8654 (4)0.5458 (3)0.0527 (10)
N20.5720 (4)0.8754 (4)0.5774 (3)0.0559 (11)
C30.5614 (6)0.9701 (5)0.6223 (4)0.0653 (15)
C40.6697 (6)1.0215 (5)0.6178 (5)0.0683 (16)
H4A0.68901.08980.64120.082*
C50.7463 (6)0.9545 (4)0.5723 (4)0.0590 (14)
C60.4475 (7)1.0010 (7)0.6655 (6)0.095 (3)
H6A0.37950.99880.61790.143*
H6B0.45611.07240.69080.143*
H6C0.43300.95170.71570.143*
C70.8768 (6)0.9714 (6)0.5555 (6)0.089 (2)
H7A0.92170.90600.56860.134*
H7B0.91051.02730.59660.134*
H7C0.88270.99170.49040.134*
C80.4863 (6)0.7883 (5)0.5612 (5)0.0694 (17)
H8A0.47910.77040.49400.083*
H8B0.40620.81140.57810.083*
C90.5245 (6)0.6902 (6)0.6176 (5)0.0741 (18)
H9A0.51080.70220.68380.089*
H9B0.47400.62990.59490.089*
N100.6556 (4)0.6634 (4)0.6103 (3)0.0566 (11)
H100.69560.70070.65790.068*
N110.7515 (5)0.5725 (4)0.4438 (3)0.0590 (12)
N120.8088 (5)0.5000 (4)0.5054 (3)0.0607 (12)
C130.8290 (6)0.4082 (4)0.4598 (4)0.0596 (14)
C140.7837 (6)0.4222 (5)0.3675 (4)0.0617 (14)
H14A0.78530.37200.31880.074*
C150.7353 (5)0.5240 (5)0.3597 (4)0.0577 (13)
C160.8890 (8)0.3118 (6)0.5076 (6)0.091 (2)
H16A0.83660.28330.55290.137*
H16B0.96620.33250.53980.137*
H16C0.90240.25810.46080.137*
C170.6657 (7)0.5744 (6)0.2765 (4)0.081 (2)
H17A0.60150.61860.29790.121*
H17B0.63050.51940.23510.121*
H17C0.72010.61790.24270.121*
C180.8102 (7)0.5208 (5)0.6062 (4)0.0715 (18)
H18A0.86710.57870.62330.086*
H18B0.83840.45710.64120.086*
C190.6851 (7)0.5506 (5)0.6330 (4)0.0704 (18)
H19A0.68110.53900.70060.084*
H19B0.62460.50450.59940.084*
N200.8449 (4)0.7830 (3)0.7852 (3)0.0351 (8)
O10.7422 (7)0.7835 (4)0.7749 (4)0.1053 (19)
O20.9013 (7)0.7448 (6)0.7245 (6)0.125 (2)
O30.9009 (7)0.8139 (5)0.8568 (5)0.113 (2)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Pd10.0552 (3)0.0486 (2)0.0429 (2)0.00212 (18)0.00814 (16)0.00166 (16)
Br10.0761 (4)0.0797 (4)0.0608 (4)0.0144 (3)0.0225 (3)0.0231 (3)
N10.048 (2)0.057 (3)0.054 (2)0.002 (2)0.012 (2)0.002 (2)
N20.048 (2)0.069 (3)0.051 (2)0.006 (2)0.008 (2)0.004 (2)
C30.070 (4)0.067 (4)0.058 (3)0.018 (3)0.002 (3)0.011 (3)
C40.082 (4)0.057 (3)0.065 (4)0.005 (3)0.005 (3)0.012 (3)
C50.068 (3)0.048 (3)0.061 (3)0.004 (3)0.004 (3)0.003 (3)
C60.078 (5)0.120 (6)0.089 (5)0.034 (5)0.013 (4)0.034 (5)
C70.071 (4)0.079 (4)0.120 (6)0.021 (4)0.022 (4)0.013 (5)
C80.050 (3)0.088 (5)0.072 (4)0.002 (3)0.014 (3)0.007 (3)
C90.069 (4)0.081 (4)0.075 (4)0.024 (4)0.024 (3)0.009 (4)
N100.066 (3)0.061 (3)0.044 (2)0.011 (2)0.010 (2)0.003 (2)
N110.077 (3)0.055 (2)0.045 (2)0.011 (2)0.005 (2)0.002 (2)
N120.080 (3)0.049 (2)0.052 (3)0.008 (2)0.003 (2)0.001 (2)
C130.064 (3)0.049 (3)0.066 (3)0.009 (3)0.010 (3)0.002 (3)
C140.069 (3)0.058 (3)0.059 (3)0.010 (3)0.008 (3)0.010 (3)
C150.057 (3)0.062 (3)0.054 (3)0.009 (3)0.004 (3)0.008 (3)
C160.110 (6)0.067 (4)0.096 (5)0.032 (4)0.010 (5)0.008 (4)
C170.095 (5)0.093 (5)0.052 (3)0.032 (4)0.009 (3)0.009 (3)
C180.107 (5)0.050 (3)0.055 (3)0.006 (4)0.011 (3)0.007 (3)
C190.109 (5)0.057 (3)0.046 (3)0.011 (4)0.017 (3)0.007 (3)
N200.051 (2)0.0202 (15)0.0322 (17)0.0047 (17)0.0085 (16)0.0046 (13)
O10.145 (6)0.093 (4)0.079 (4)0.003 (4)0.014 (4)0.016 (3)
O20.115 (5)0.117 (5)0.139 (6)0.022 (4)0.021 (5)0.010 (5)
O30.140 (5)0.090 (4)0.103 (4)0.014 (4)0.027 (4)0.006 (3)
Geometric parameters (Å, º) top
Pd1—N112.000 (5)N10—C191.470 (8)
Pd1—N12.012 (4)N10—H100.9000
Pd1—N102.048 (4)N11—C151.330 (7)
Pd1—Br12.4194 (11)N11—N121.368 (6)
N1—C51.330 (7)N12—C131.339 (7)
N1—N21.359 (6)N12—C181.444 (7)
N2—C31.347 (7)C13—C141.366 (8)
N2—C81.438 (7)C13—C161.500 (8)
C3—C41.352 (9)C14—C151.373 (8)
C3—C61.482 (9)C14—H14A0.9300
C4—C51.378 (8)C15—C171.484 (8)
C4—H4A0.9300C16—H16A0.9600
C5—C71.480 (9)C16—H16B0.9600
C6—H6A0.9600C16—H16C0.9600
C6—H6B0.9600C17—H17A0.9600
C6—H6C0.9600C17—H17B0.9600
C7—H7A0.9600C17—H17C0.9600
C7—H7B0.9600C18—C191.496 (10)
C7—H7C0.9600C18—H18A0.9700
C8—C91.498 (9)C18—H18B0.9700
C8—H8A0.9700C19—H19A0.9700
C8—H8B0.9700C19—H19B0.9700
C9—N101.484 (8)N20—O21.195 (8)
C9—H9A0.9700N20—O31.200 (7)
C9—H9B0.9700N20—O11.121 (8)
N11—Pd1—N1173.81 (19)C19—N10—Pd1115.5 (4)
N11—Pd1—N1090.80 (19)C9—N10—H10104.1
N1—Pd1—N1083.45 (19)C19—N10—H10104.1
N11—Pd1—Br191.58 (14)Pd1—N10—H10104.1
N1—Pd1—Br194.40 (13)C15—N11—N12106.7 (4)
N10—Pd1—Br1173.21 (14)C15—N11—Pd1134.7 (4)
C5—N1—N2106.3 (5)N12—N11—Pd1118.4 (3)
C5—N1—Pd1136.9 (4)C13—N12—N11110.0 (4)
N2—N1—Pd1116.2 (4)C13—N12—C18129.6 (5)
N1—N2—C3110.5 (5)N11—N12—C18118.4 (5)
N1—N2—C8118.7 (5)C14—C13—N12106.8 (5)
C3—N2—C8130.8 (5)C14—C13—C16129.9 (6)
C4—C3—N2106.4 (5)N12—C13—C16123.3 (6)
C4—C3—C6131.8 (6)C13—C14—C15107.5 (5)
N2—C3—C6121.9 (6)C13—C14—H14A126.2
C3—C4—C5107.7 (5)C15—C14—H14A126.2
C3—C4—H4A126.1N11—C15—C14109.0 (5)
C5—C4—H4A126.1N11—C15—C17122.3 (5)
N1—C5—C4109.0 (6)C14—C15—C17128.5 (5)
N1—C5—C7122.6 (6)C13—C16—H16A109.5
C4—C5—C7128.3 (6)C13—C16—H16B109.5
C3—C6—H6A109.5H16A—C16—H16B109.5
C3—C6—H6B109.5C13—C16—H16C109.5
H6A—C6—H6B109.5H16A—C16—H16C109.5
C3—C6—H6C109.5H16B—C16—H16C109.5
H6A—C6—H6C109.5C15—C17—H17A109.5
H6B—C6—H6C109.5C15—C17—H17B109.5
C5—C7—H7A109.5H17A—C17—H17B109.5
C5—C7—H7B109.5C15—C17—H17C109.5
H7A—C7—H7B109.5H17A—C17—H17C109.5
C5—C7—H7C109.5H17B—C17—H17C109.5
H7A—C7—H7C109.5N12—C18—C19111.0 (5)
H7B—C7—H7C109.5N12—C18—H18A109.4
N2—C8—C9112.3 (5)C19—C18—H18A109.4
N2—C8—H8A109.1N12—C18—H18B109.4
C9—C8—H8A109.1C19—C18—H18B109.4
N2—C8—H8B109.1H18A—C18—H18B108.0
C9—C8—H8B109.1C18—C19—N10111.8 (5)
H8A—C8—H8B107.9C18—C19—H19A109.3
N10—C9—C8112.0 (5)N10—C19—H19A109.3
N10—C9—H9A109.2C18—C19—H19B109.3
C8—C9—H9A109.2N10—C19—H19B109.3
N10—C9—H9B109.2H19A—C19—H19B107.9
C8—C9—H9B109.2O2—N20—O3118.3 (6)
H9A—C9—H9B107.9O2—N20—O1118.7 (5)
C9—N10—C19113.3 (5)O3—N20—O1122.9 (6)
C9—N10—Pd1113.9 (4)
C5—N1—N2—C30.7 (6)C15—N11—N12—C130.7 (7)
Pd1—N1—N2—C3173.2 (4)Pd1—N11—N12—C13174.0 (4)
C5—N1—N2—C8178.2 (5)C15—N11—N12—C18164.6 (6)
Pd1—N1—N2—C85.6 (6)Pd1—N11—N12—C1820.7 (7)
N1—N2—C3—C40.8 (7)N11—N12—C13—C140.1 (7)
C8—N2—C3—C4179.5 (6)C18—N12—C13—C14163.1 (7)
N1—N2—C3—C6178.8 (6)N11—N12—C13—C16179.2 (6)
C8—N2—C3—C60.2 (10)C18—N12—C13—C1616.0 (11)
N2—C3—C4—C51.9 (7)N12—C13—C14—C150.5 (7)
C6—C3—C4—C5177.6 (7)C16—C13—C14—C15178.5 (7)
N2—N1—C5—C41.9 (6)N12—N11—C15—C141.0 (7)
Pd1—N1—C5—C4172.0 (4)Pd1—N11—C15—C14172.4 (5)
N2—N1—C5—C7176.5 (6)N12—N11—C15—C17174.4 (6)
Pd1—N1—C5—C76.3 (10)Pd1—N11—C15—C1712.1 (10)
C3—C4—C5—N12.4 (7)C13—C14—C15—N110.9 (7)
C3—C4—C5—C7175.8 (7)C13—C14—C15—C17174.1 (7)
N1—N2—C8—C968.0 (7)C13—N12—C18—C19114.3 (7)
C3—N2—C8—C9110.6 (7)N11—N12—C18—C1947.7 (7)
N2—C8—C9—N1047.3 (7)N12—C18—C19—N1079.3 (6)
C8—C9—N10—C19158.6 (5)C9—N10—C19—C18168.4 (5)
C8—C9—N10—Pd123.9 (7)Pd1—N10—C19—C1834.5 (6)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C4—H4A···N20i0.932.663.540 (7)159
C7—H7C···Br10.963.063.500 (8)110
C8—H8A···O3ii0.972.303.219 (9)157
N10—H10···N200.902.543.427 (6)169
N10—H10···O10.901.982.857 (7)166
N10—H10···O20.902.433.181 (8)142
C14—H14A···Br1iii0.932.883.687 (6)146
C16—H16A···O1iv0.962.653.511 (10)150
C17—H17A···O3ii0.962.553.485 (10)164
C17—H17C···Br10.962.983.459 (8)112
C18—H18A···O20.972.523.358 (9)144
C18—H18B···O1iv0.972.653.468 (8)142
C19—H19B···O3iv0.972.473.099 (9)122
Symmetry codes: (i) x+3/2, y+1/2, z+3/2; (ii) x1/2, y+3/2, z1/2; (iii) x+3/2, y1/2, z+1/2; (iv) x+3/2, y1/2, z+3/2.
(3) {Bis[2-(3,5-dimethylpyrazol-1-yl-κN2)ethyl]amine-κN}iodidopalladium iodide hemihydrate top
Crystal data top
[PdI(C14H2N5)]I·0.5H2OZ = 4
Mr = 630.58F(000) = 1196
Triclinic, P1Dx = 2.124 Mg m3
a = 12.013 (4) ÅMo Kα radiation, λ = 0.71073 Å
b = 12.089 (4) ÅCell parameters from 68 reflections
c = 15.162 (5) Åθ = 4.2–12.0°
α = 106.17 (2)°µ = 4.08 mm1
β = 97.34 (3)°T = 299 K
γ = 106.79 (3)°Plate, orange
V = 1972.0 (11) Å30.20 × 0.15 × 0.04 mm
Data collection top
Siemens P4
diffractometer
4559 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.043
Graphite monochromatorθmax = 25.0°, θmin = 1.8°
ω scansh = 143
Absorption correction: ψ scan
(XSCANS; Siemens, 1996)
k = 1313
Tmin = 0.446, Tmax = 0.523l = 1818
8975 measured reflections3 standard reflections every 97 reflections
6835 independent reflections intensity decay: 1.5%
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.040Hydrogen site location: mixed
wR(F2) = 0.101H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0324P)2 + 6.3989P]
where P = (Fo2 + 2Fc2)/3
6835 reflections(Δ/σ)max = 0.001
414 parametersΔρmax = 0.85 e Å3
0 restraintsΔρmin = 1.04 e Å3
0 constraints
Special details top

Refinement. Geometry of the water molecule first regularized with soft restraints: DFIX 0.85 0.02 O1 H1 O1 H2 DANG 1.34 0.04 H1 H2 then fixed in last l.s. cycles.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Pd10.64608 (5)0.84173 (5)0.70510 (4)0.03566 (15)
I10.75703 (5)0.76282 (6)0.57898 (4)0.05531 (17)
N10.6227 (5)0.7009 (6)0.7556 (4)0.0393 (15)
N20.6504 (5)0.7285 (6)0.8519 (4)0.0405 (15)
C30.6317 (7)0.6248 (8)0.8731 (6)0.045 (2)
C40.5940 (7)0.5293 (8)0.7912 (6)0.047 (2)
H4A0.57680.44680.78440.057*
C50.5864 (7)0.5794 (7)0.7195 (6)0.045 (2)
C60.6539 (9)0.6222 (10)0.9712 (6)0.067 (3)
H6A0.73550.66981.00250.101*
H6B0.63820.53910.96970.101*
H6C0.60220.65601.00470.101*
C70.5422 (8)0.5142 (8)0.6166 (6)0.062 (3)
H7A0.52530.56930.58630.093*
H7B0.47070.44600.60520.093*
H7C0.60190.48520.59170.093*
C80.6637 (7)0.8494 (7)0.9118 (5)0.046 (2)
H8A0.73470.90820.90630.055*
H8B0.67380.85190.97690.055*
C90.5567 (7)0.8842 (8)0.8854 (6)0.049 (2)
H9A0.48450.81560.87490.058*
H9B0.55580.95230.93710.058*
N100.5581 (5)0.9190 (6)0.7995 (4)0.0389 (15)
H10A0.60050.99960.82060.047*
N110.6523 (5)0.9860 (5)0.6634 (4)0.0355 (14)
N120.5449 (5)1.0022 (6)0.6428 (4)0.0417 (15)
C130.5610 (7)1.1056 (7)0.6222 (5)0.0433 (19)
C140.6808 (7)1.1565 (8)0.6286 (6)0.051 (2)
H14A0.71831.22760.61610.061*
C150.7350 (7)1.0819 (7)0.6569 (5)0.0405 (18)
C160.4620 (8)1.1495 (8)0.5978 (7)0.059 (2)
H16A0.39281.08080.56030.089*
H16B0.48541.20380.56260.089*
H16C0.44381.19220.65450.089*
C170.8642 (7)1.0992 (9)0.6824 (6)0.057 (2)
H17A0.88451.09920.74570.085*
H17B0.91071.17600.67800.085*
H17C0.88061.03370.63980.085*
C180.4389 (6)0.9129 (7)0.6494 (6)0.047 (2)
H18A0.43110.83240.60810.056*
H18B0.36940.93190.62760.056*
C190.4409 (7)0.9094 (7)0.7490 (6)0.047 (2)
H19A0.41810.97630.78430.057*
H19B0.38210.83340.74610.057*
Pd20.89057 (5)0.31577 (5)0.31013 (4)0.03801 (16)
I20.78206 (5)0.41030 (5)0.43265 (4)0.06044 (19)
N210.8807 (5)0.1716 (6)0.3554 (4)0.0408 (15)
N220.8361 (5)0.0562 (6)0.2895 (4)0.0413 (15)
C230.8361 (7)0.0288 (8)0.3313 (6)0.0441 (19)
C240.8777 (7)0.0336 (8)0.4249 (6)0.053 (2)
H24A0.88510.00050.47230.064*
C250.9072 (6)0.1582 (8)0.4373 (5)0.0428 (19)
C260.7980 (8)0.1613 (8)0.2781 (7)0.061 (2)
H26A0.72640.18450.23090.091*
H26B0.78300.20700.32050.091*
H26C0.85980.17830.24820.091*
C270.9661 (8)0.2630 (8)0.5245 (6)0.059 (2)
H27A1.00390.33450.50900.089*
H27B1.02510.24530.56180.089*
H27C0.90780.27770.55970.089*
C280.8342 (7)0.0419 (7)0.1900 (5)0.045 (2)
H28A0.77300.06970.16480.055*
H28B0.81520.04390.15410.055*
C290.9540 (7)0.1153 (7)0.1807 (5)0.0435 (19)
H29A1.01630.10510.22170.052*
H29B0.96180.08450.11630.052*
N300.9695 (5)0.2441 (5)0.2048 (4)0.0380 (15)
H30A0.92980.24980.15270.046*
N310.9132 (5)0.4530 (6)0.2548 (5)0.0436 (16)
N321.0221 (5)0.4929 (6)0.2337 (5)0.0437 (16)
C331.0186 (7)0.5512 (8)0.1718 (6)0.051 (2)
C340.9048 (8)0.5537 (8)0.1536 (7)0.061 (2)
H34A0.87530.59020.11390.073*
C350.8427 (7)0.4922 (8)0.2053 (7)0.054 (2)
C361.1245 (8)0.5984 (9)0.1333 (7)0.070 (3)
H36A1.18920.65650.18410.104*
H36B1.10400.63750.08970.104*
H36C1.14820.53140.10140.104*
C370.7122 (8)0.4641 (10)0.2050 (8)0.079 (3)
H37A0.69210.41980.24760.118*
H37B0.66560.41530.14250.118*
H37C0.69570.53920.22450.118*
C381.1151 (6)0.4525 (7)0.2691 (5)0.044 (2)
H38A1.11850.46270.33520.053*
H38B1.19140.50330.26410.053*
C391.0946 (6)0.3211 (7)0.2160 (6)0.0430 (19)
H39A1.11200.31410.15440.052*
H39B1.14810.29230.24970.052*
I30.44634 (6)0.76946 (6)0.10827 (4)0.06206 (19)
I40.00003 (8)0.83190 (7)0.05319 (5)0.0843 (2)
O10.2414 (8)0.8235 (8)0.0455 (6)0.112 (3)
H10.30200.81270.01840.168*
H20.19670.82270.00630.168*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Pd10.0346 (3)0.0398 (3)0.0366 (3)0.0169 (3)0.0098 (3)0.0139 (3)
I10.0580 (4)0.0757 (4)0.0464 (3)0.0390 (3)0.0199 (3)0.0212 (3)
N10.046 (4)0.040 (4)0.036 (4)0.021 (3)0.004 (3)0.015 (3)
N20.041 (4)0.041 (4)0.039 (4)0.014 (3)0.008 (3)0.013 (3)
C30.039 (4)0.056 (5)0.060 (5)0.024 (4)0.026 (4)0.035 (5)
C40.051 (5)0.041 (5)0.059 (6)0.023 (4)0.018 (4)0.022 (4)
C50.041 (4)0.041 (5)0.058 (5)0.017 (4)0.014 (4)0.020 (4)
C60.078 (7)0.090 (8)0.058 (6)0.040 (6)0.027 (5)0.045 (6)
C70.065 (6)0.044 (5)0.057 (6)0.017 (5)0.004 (5)0.002 (4)
C80.054 (5)0.050 (5)0.030 (4)0.015 (4)0.009 (4)0.013 (4)
C90.062 (6)0.050 (5)0.045 (5)0.028 (4)0.028 (4)0.017 (4)
N100.035 (3)0.033 (3)0.048 (4)0.011 (3)0.013 (3)0.012 (3)
N110.031 (3)0.039 (4)0.040 (4)0.015 (3)0.009 (3)0.015 (3)
N120.035 (4)0.044 (4)0.051 (4)0.018 (3)0.009 (3)0.017 (3)
C130.047 (5)0.043 (5)0.042 (5)0.019 (4)0.012 (4)0.013 (4)
C140.048 (5)0.049 (5)0.053 (5)0.007 (4)0.009 (4)0.025 (4)
C150.040 (4)0.042 (5)0.038 (4)0.006 (4)0.008 (3)0.017 (4)
C160.065 (6)0.059 (6)0.071 (6)0.038 (5)0.013 (5)0.030 (5)
C170.032 (4)0.071 (6)0.061 (6)0.006 (4)0.010 (4)0.027 (5)
C180.029 (4)0.042 (5)0.065 (6)0.011 (4)0.003 (4)0.018 (4)
C190.038 (4)0.037 (5)0.066 (6)0.011 (4)0.020 (4)0.015 (4)
Pd20.0361 (3)0.0380 (3)0.0417 (3)0.0144 (3)0.0132 (3)0.0122 (3)
I20.0549 (4)0.0480 (3)0.0688 (4)0.0130 (3)0.0295 (3)0.0026 (3)
N210.042 (4)0.040 (4)0.038 (4)0.014 (3)0.009 (3)0.009 (3)
N220.039 (4)0.046 (4)0.039 (4)0.014 (3)0.010 (3)0.015 (3)
C230.034 (4)0.054 (5)0.051 (5)0.018 (4)0.013 (4)0.023 (4)
C240.043 (5)0.060 (6)0.055 (6)0.011 (4)0.007 (4)0.027 (5)
C250.030 (4)0.060 (6)0.036 (4)0.006 (4)0.009 (3)0.022 (4)
C260.062 (6)0.042 (5)0.084 (7)0.016 (4)0.018 (5)0.029 (5)
C270.063 (6)0.063 (6)0.043 (5)0.006 (5)0.013 (4)0.019 (5)
C280.048 (5)0.045 (5)0.040 (5)0.018 (4)0.006 (4)0.008 (4)
C290.052 (5)0.050 (5)0.038 (4)0.028 (4)0.012 (4)0.017 (4)
N300.040 (4)0.041 (4)0.037 (3)0.020 (3)0.009 (3)0.014 (3)
N310.036 (4)0.038 (4)0.062 (4)0.015 (3)0.018 (3)0.019 (3)
N320.034 (4)0.045 (4)0.056 (4)0.014 (3)0.012 (3)0.020 (3)
C330.052 (5)0.047 (5)0.067 (6)0.020 (4)0.019 (4)0.032 (5)
C340.063 (6)0.058 (6)0.088 (7)0.036 (5)0.023 (5)0.044 (5)
C350.041 (5)0.042 (5)0.085 (7)0.018 (4)0.010 (5)0.026 (5)
C360.062 (6)0.080 (7)0.091 (7)0.028 (5)0.034 (6)0.053 (6)
C370.048 (6)0.082 (8)0.124 (9)0.031 (5)0.019 (6)0.052 (7)
C380.027 (4)0.060 (6)0.046 (5)0.013 (4)0.009 (3)0.020 (4)
C390.034 (4)0.054 (5)0.052 (5)0.023 (4)0.013 (4)0.025 (4)
I30.0659 (4)0.0564 (4)0.0662 (4)0.0252 (3)0.0144 (3)0.0195 (3)
I40.1379 (7)0.0760 (5)0.0587 (4)0.0551 (5)0.0243 (4)0.0319 (4)
O10.123 (7)0.129 (7)0.089 (6)0.055 (6)0.014 (5)0.047 (5)
Geometric parameters (Å, º) top
Pd1—N111.999 (6)Pd2—N312.026 (6)
Pd1—N12.018 (6)Pd2—N302.071 (6)
Pd1—N102.061 (6)Pd2—I22.5987 (11)
Pd1—I12.5910 (11)N21—C251.307 (9)
N1—C51.330 (10)N21—N221.374 (8)
N1—N21.376 (8)N22—C231.349 (10)
N2—C31.343 (10)N22—C281.467 (9)
N2—C81.440 (10)C23—C241.355 (11)
C3—C41.356 (11)C23—C261.480 (12)
C3—C61.487 (11)C24—C251.395 (12)
C4—C51.389 (11)C24—H24A0.9300
C4—H4A0.9300C25—C271.472 (11)
C5—C71.483 (11)C26—H26A0.9600
C6—H6A0.9600C26—H26B0.9600
C6—H6B0.9600C26—H26C0.9600
C6—H6C0.9600C27—H27A0.9600
C7—H7A0.9600C27—H27B0.9600
C7—H7B0.9600C27—H27C0.9600
C7—H7C0.9600C28—C291.504 (11)
C8—C91.505 (11)C28—H28A0.9700
C8—H8A0.9700C28—H28B0.9700
C8—H8B0.9700C29—N301.446 (9)
C9—N101.477 (10)C29—H29A0.9700
C9—H9A0.9700C29—H29B0.9700
C9—H9B0.9700N30—C391.481 (9)
N10—C191.471 (10)N30—H30A0.9000
N10—H10A0.9000N31—C351.331 (10)
N11—C151.329 (9)N31—N321.370 (8)
N11—N121.371 (8)N32—C331.326 (10)
N12—C131.337 (10)N32—C381.442 (9)
N12—C181.448 (10)C33—C341.371 (12)
C13—C141.371 (11)C33—C361.496 (12)
C13—C161.481 (11)C34—C351.370 (12)
C14—C151.381 (11)C34—H34A0.9300
C14—H14A0.9300C35—C371.503 (12)
C15—C171.488 (11)C36—H36A0.9600
C16—H16A0.9600C36—H36B0.9600
C16—H16B0.9600C36—H36C0.9600
C16—H16C0.9600C37—H37A0.9600
C17—H17A0.9600C37—H37B0.9600
C17—H17B0.9600C37—H37C0.9600
C17—H17C0.9600C38—C391.497 (11)
C18—C191.519 (11)C38—H38A0.9700
C18—H18A0.9700C38—H38B0.9700
C18—H18B0.9700C39—H39A0.9700
C19—H19A0.9700C39—H39B0.9700
C19—H19B0.9700O1—H10.8507
Pd2—N212.023 (6)O1—H20.8502
N11—Pd1—N1172.4 (2)N21—Pd2—N3089.6 (2)
N11—Pd1—N1082.6 (2)N31—Pd2—N3083.6 (2)
N1—Pd1—N1090.1 (2)N21—Pd2—I293.85 (17)
N11—Pd1—I191.33 (17)N31—Pd2—I293.00 (18)
N1—Pd1—I195.91 (17)N30—Pd2—I2175.52 (17)
N10—Pd1—I1173.96 (17)C25—N21—N22106.8 (6)
C5—N1—N2105.8 (6)C25—N21—Pd2135.2 (6)
C5—N1—Pd1136.5 (5)N22—N21—Pd2118.0 (5)
N2—N1—Pd1117.6 (5)C23—N22—N21110.3 (6)
C3—N2—N1109.8 (6)C23—N22—C28126.8 (7)
C3—N2—C8129.0 (7)N21—N22—C28119.3 (6)
N1—N2—C8119.1 (6)N22—C23—C24106.1 (7)
N2—C3—C4108.0 (7)N22—C23—C26123.0 (7)
N2—C3—C6123.6 (8)C24—C23—C26131.0 (8)
C4—C3—C6128.3 (8)C23—C24—C25107.6 (8)
C3—C4—C5106.1 (7)C23—C24—H24A126.2
C3—C4—H4A126.9C25—C24—H24A126.2
C5—C4—H4A126.9N21—C25—C24109.1 (7)
N1—C5—C4110.1 (7)N21—C25—C27122.5 (8)
N1—C5—C7121.7 (7)C24—C25—C27128.3 (8)
C4—C5—C7128.2 (8)C23—C26—H26A109.5
C3—C6—H6A109.5C23—C26—H26B109.5
C3—C6—H6B109.5H26A—C26—H26B109.5
H6A—C6—H6B109.5C23—C26—H26C109.5
C3—C6—H6C109.5H26A—C26—H26C109.5
H6A—C6—H6C109.5H26B—C26—H26C109.5
H6B—C6—H6C109.5C25—C27—H27A109.5
C5—C7—H7A109.5C25—C27—H27B109.5
C5—C7—H7B109.5H27A—C27—H27B109.5
H7A—C7—H7B109.5C25—C27—H27C109.5
C5—C7—H7C109.5H27A—C27—H27C109.5
H7A—C7—H7C109.5H27B—C27—H27C109.5
H7B—C7—H7C109.5N22—C28—C29109.8 (6)
N2—C8—C9111.2 (6)N22—C28—H28A109.7
N2—C8—H8A109.4C29—C28—H28A109.7
C9—C8—H8A109.4N22—C28—H28B109.7
N2—C8—H8B109.4C29—C28—H28B109.7
C9—C8—H8B109.4H28A—C28—H28B108.2
H8A—C8—H8B108.0N30—C29—C28111.9 (6)
N10—C9—C8111.5 (6)N30—C29—H29A109.2
N10—C9—H9A109.3C28—C29—H29A109.2
C8—C9—H9A109.3N30—C29—H29B109.2
N10—C9—H9B109.3C28—C29—H29B109.2
C8—C9—H9B109.3H29A—C29—H29B107.9
H9A—C9—H9B108.0C29—N30—C39112.6 (6)
C19—N10—C9114.8 (6)C29—N30—Pd2117.1 (5)
C19—N10—Pd1109.8 (5)C39—N30—Pd2113.2 (5)
C9—N10—Pd1116.8 (4)C29—N30—H30A104.0
C19—N10—H10A104.6C39—N30—H30A104.0
C9—N10—H10A104.6Pd2—N30—H30A104.0
Pd1—N10—H10A104.6C35—N31—N32104.9 (6)
C15—N11—N12106.5 (6)C35—N31—Pd2136.2 (6)
C15—N11—Pd1137.8 (5)N32—N31—Pd2114.9 (5)
N12—N11—Pd1115.4 (4)C33—N32—N31111.6 (6)
C13—N12—N11110.1 (6)C33—N32—C38129.8 (7)
C13—N12—C18131.7 (6)N31—N32—C38117.9 (6)
N11—N12—C18118.1 (6)N32—C33—C34106.4 (7)
N12—C13—C14107.1 (7)N32—C33—C36122.2 (8)
N12—C13—C16123.2 (7)C34—C33—C36131.4 (8)
C14—C13—C16129.7 (8)C35—C34—C33106.8 (8)
C13—C14—C15106.8 (7)C35—C34—H34A126.6
C13—C14—H14A126.6C33—C34—H34A126.6
C15—C14—H14A126.6N31—C35—C34110.4 (7)
N11—C15—C14109.4 (7)N31—C35—C37122.7 (8)
N11—C15—C17121.0 (7)C34—C35—C37126.9 (8)
C14—C15—C17129.5 (7)C33—C36—H36A109.5
C13—C16—H16A109.5C33—C36—H36B109.5
C13—C16—H16B109.5H36A—C36—H36B109.5
H16A—C16—H16B109.5C33—C36—H36C109.5
C13—C16—H16C109.5H36A—C36—H36C109.5
H16A—C16—H16C109.5H36B—C36—H36C109.5
H16B—C16—H16C109.5C35—C37—H37A109.5
C15—C17—H17A109.5C35—C37—H37B109.5
C15—C17—H17B109.5H37A—C37—H37B109.5
H17A—C17—H17B109.5C35—C37—H37C109.5
C15—C17—H17C109.5H37A—C37—H37C109.5
H17A—C17—H17C109.5H37B—C37—H37C109.5
H17B—C17—H17C109.5N32—C38—C39111.9 (6)
N12—C18—C19112.9 (6)N32—C38—H38A109.2
N12—C18—H18A109.0C39—C38—H38A109.2
C19—C18—H18A109.0N32—C38—H38B109.2
N12—C18—H18B109.0C39—C38—H38B109.2
C19—C18—H18B109.0H38A—C38—H38B107.9
H18A—C18—H18B107.8N30—C39—C38110.8 (6)
N10—C19—C18113.5 (6)N30—C39—H39A109.5
N10—C19—H19A108.9C38—C39—H39A109.5
C18—C19—H19A108.9N30—C39—H39B109.5
N10—C19—H19B108.9C38—C39—H39B109.5
C18—C19—H19B108.9H39A—C39—H39B108.1
H19A—C19—H19B107.7H1—O1—H2103.6
N21—Pd2—N31173.1 (2)
C5—N1—N2—C30.4 (8)C25—N21—N22—C230.5 (8)
Pd1—N1—N2—C3178.9 (5)Pd2—N21—N22—C23179.8 (5)
C5—N1—N2—C8164.4 (6)C25—N21—N22—C28160.6 (6)
Pd1—N1—N2—C816.2 (8)Pd2—N21—N22—C2819.8 (8)
N1—N2—C3—C41.1 (8)N21—N22—C23—C241.9 (8)
C8—N2—C3—C4164.1 (7)C28—N22—C23—C24160.1 (7)
N1—N2—C3—C6179.5 (7)N21—N22—C23—C26177.3 (7)
C8—N2—C3—C617.5 (12)C28—N22—C23—C2619.1 (12)
N2—C3—C4—C52.2 (9)N22—C23—C24—C252.5 (9)
C6—C3—C4—C5179.5 (8)C26—C23—C24—C25176.6 (8)
N2—N1—C5—C41.8 (8)N22—N21—C25—C241.1 (8)
Pd1—N1—C5—C4177.4 (6)Pd2—N21—C25—C24178.5 (6)
N2—N1—C5—C7176.5 (7)N22—N21—C25—C27175.3 (7)
Pd1—N1—C5—C74.2 (12)Pd2—N21—C25—C275.1 (12)
C3—C4—C5—N12.6 (9)C23—C24—C25—N212.3 (9)
C3—C4—C5—C7175.7 (8)C23—C24—C25—C27173.8 (8)
C3—N2—C8—C9109.2 (8)C23—N22—C28—C29108.1 (8)
N1—N2—C8—C952.5 (9)N21—N22—C28—C2948.3 (9)
N2—C8—C9—N1076.7 (8)N22—C28—C29—N3078.6 (8)
C8—C9—N10—C19158.1 (7)C28—C29—N30—C39167.7 (6)
C8—C9—N10—Pd127.4 (8)C28—C29—N30—Pd233.9 (8)
C15—N11—N12—C131.1 (8)C35—N31—N32—C331.7 (9)
Pd1—N11—N12—C13175.7 (5)Pd2—N31—N32—C33159.5 (6)
C15—N11—N12—C18177.0 (6)C35—N31—N32—C38173.3 (7)
Pd1—N11—N12—C182.3 (8)Pd2—N31—N32—C3812.0 (8)
N11—N12—C13—C140.7 (9)N31—N32—C33—C342.0 (10)
C18—N12—C13—C14178.4 (8)C38—N32—C33—C34172.3 (8)
N11—N12—C13—C16179.4 (7)N31—N32—C33—C36176.9 (8)
C18—N12—C13—C161.7 (13)C38—N32—C33—C366.6 (14)
N12—C13—C14—C152.1 (9)N32—C33—C34—C351.5 (11)
C16—C13—C14—C15177.9 (8)C36—C33—C34—C35177.3 (10)
N12—N11—C15—C142.4 (8)N32—N31—C35—C340.7 (10)
Pd1—N11—C15—C14175.2 (6)Pd2—N31—C35—C34154.4 (7)
N12—N11—C15—C17175.1 (7)N32—N31—C35—C37177.6 (9)
Pd1—N11—C15—C172.3 (12)Pd2—N31—C35—C3722.5 (14)
C13—C14—C15—N112.9 (9)C33—C34—C35—N310.5 (11)
C13—C14—C15—C17174.4 (8)C33—C34—C35—C37176.3 (10)
C13—N12—C18—C19113.8 (9)C33—N32—C38—C3995.7 (10)
N11—N12—C18—C1963.7 (9)N31—N32—C38—C3974.1 (8)
C9—N10—C19—C18164.8 (6)C29—N30—C39—C38162.3 (6)
Pd1—N10—C19—C1830.8 (7)Pd2—N30—C39—C3826.7 (7)
N12—C18—C19—N1041.1 (9)N32—C38—C39—N3046.9 (9)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···I30.852.683.497 (7)161
O1—H2···I40.852.663.443 (10)155
N10—H10A···I3i0.902.943.653 (6)137
N30—H30A···O1ii0.902.223.011 (9)146
N30—H30A···I4ii0.903.303.853 (6)122
Symmetry codes: (i) x+1, y+2, z+1; (ii) x+1, y+1, z.
(4) Azido{bis[2-(3,5-dimethylpyrazol-1-yl-κN2)ethyl]amine-κN}palladium azide monohydrate top
Crystal data top
[Pd(N3)(C14H23N5)]N3·H2OF(000) = 960
Mr = 469.85Dx = 1.562 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 8.132 (3) ÅCell parameters from 65 reflections
b = 22.851 (5) Åθ = 4.7–12.6°
c = 11.372 (3) ŵ = 0.96 mm1
β = 109.03 (2)°T = 296 K
V = 1997.8 (10) Å3Prism, yellow
Z = 40.5 × 0.4 × 0.4 mm
Data collection top
Siemens P4
diffractometer
3528 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tube, FN4Rint = 0.056
Graphite monochromatorθmax = 26.3°, θmin = 1.8°
2θ/ω scansh = 1010
Absorption correction: ψ scan
(XSCANS; Siemens, 1996)
k = 281
Tmin = 0.266, Tmax = 0.366l = 1314
8431 measured reflections3 standard reflections every 97 reflections
4032 independent reflections intensity decay: 1%
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.036Hydrogen site location: mixed
wR(F2) = 0.097H-atom parameters constrained
S = 1.08 w = 1/[σ2(Fo2) + (0.0346P)2 + 1.7119P]
where P = (Fo2 + 2Fc2)/3
4032 reflections(Δ/σ)max = 0.001
248 parametersΔρmax = 0.55 e Å3
0 restraintsΔρmin = 1.04 e Å3
0 constraints
Special details top

Refinement. Geometry of the water molecule first regularized with soft restraints: DFIX 0.85 0.02 O1 H1 O1 H2 DANG 1.34 0.04 H1 H2 then fixed in last l.s. cycles.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Pd10.35885 (3)0.66267 (2)0.24025 (2)0.04508 (11)
N10.1428 (3)0.62778 (11)0.1211 (2)0.0464 (6)
N20.0024 (3)0.62721 (12)0.1552 (3)0.0517 (6)
C30.1283 (4)0.59569 (14)0.0740 (3)0.0537 (8)
C40.0629 (4)0.57587 (15)0.0140 (3)0.0565 (8)
H4A0.12120.55340.08320.068*
C50.1059 (4)0.59528 (13)0.0184 (3)0.0464 (7)
C60.3035 (5)0.5885 (2)0.0869 (5)0.0792 (12)
H6A0.29310.56700.16160.119*
H6B0.37770.56750.01640.119*
H6C0.35260.62630.09130.119*
C70.2369 (5)0.58174 (18)0.0428 (4)0.0643 (9)
H7A0.18150.56200.12010.096*
H7B0.32560.55700.01050.096*
H7C0.28850.61740.05840.096*
C80.0001 (6)0.65831 (19)0.2670 (4)0.0703 (11)
H8A0.11650.65940.27230.084*
H8B0.03750.69830.26260.084*
C90.1213 (7)0.6293 (3)0.3823 (4)0.0890 (15)
H9A0.13890.65530.45280.107*
H9B0.06750.59380.39880.107*
N100.2933 (5)0.61468 (16)0.3697 (3)0.0689 (9)
H100.27930.57810.33850.083*
N110.5755 (4)0.69476 (13)0.3678 (2)0.0563 (7)
N120.6733 (4)0.65951 (14)0.4606 (3)0.0622 (8)
C130.8151 (5)0.6887 (2)0.5324 (3)0.0683 (10)
C140.8074 (5)0.7426 (2)0.4839 (4)0.0738 (12)
H14A0.88890.77220.51310.089*
C150.6568 (5)0.74619 (17)0.3827 (3)0.0597 (9)
C160.9454 (7)0.6607 (3)0.6430 (4)0.0970 (17)
H16A1.04660.68520.67210.146*
H16B0.97780.62310.61990.146*
H16C0.89520.65600.70800.146*
C170.5864 (7)0.79739 (18)0.3015 (5)0.0816 (13)
H17A0.64040.83250.34260.122*
H17B0.46300.79970.28470.122*
H17C0.61030.79310.22470.122*
C180.6068 (7)0.6028 (2)0.4785 (4)0.0870 (15)
H18A0.68580.58460.55240.104*
H18B0.59940.57790.40780.104*
C190.4296 (7)0.6086 (3)0.4921 (4)0.0988 (18)
H19A0.40580.57440.53430.119*
H19B0.42780.64270.54270.119*
N200.4246 (4)0.70475 (14)0.1065 (3)0.0600 (7)
N210.3172 (4)0.71867 (13)0.0122 (3)0.0589 (7)
N220.2246 (6)0.7317 (2)0.0830 (4)0.1040 (15)
N300.542 (2)0.4721 (5)0.2466 (9)0.203 (6)
N310.416 (2)0.4860 (4)0.2612 (6)0.157 (6)
N320.2861 (19)0.4965 (4)0.2913 (8)0.183 (6)
O10.9351 (15)0.4889 (3)0.3750 (6)0.244 (5)
H110.96910.49490.31360.366*
H120.83150.50150.35710.366*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Pd10.04258 (15)0.05370 (16)0.03330 (14)0.01038 (9)0.00459 (10)0.00120 (9)
N10.0367 (12)0.0553 (15)0.0446 (13)0.0056 (11)0.0099 (11)0.0003 (11)
N20.0407 (14)0.0581 (16)0.0564 (16)0.0047 (11)0.0159 (12)0.0024 (12)
C30.0363 (15)0.0486 (17)0.071 (2)0.0015 (13)0.0100 (15)0.0008 (15)
C40.0394 (16)0.0531 (18)0.065 (2)0.0003 (13)0.0004 (15)0.0092 (15)
C50.0367 (14)0.0488 (16)0.0464 (16)0.0012 (12)0.0033 (12)0.0028 (13)
C60.0398 (19)0.083 (3)0.116 (4)0.0074 (18)0.027 (2)0.006 (3)
C70.0514 (19)0.073 (2)0.065 (2)0.0005 (17)0.0144 (17)0.0200 (18)
C80.063 (2)0.088 (3)0.071 (3)0.0140 (19)0.036 (2)0.013 (2)
C90.084 (3)0.127 (4)0.062 (2)0.029 (3)0.031 (2)0.009 (3)
N100.072 (2)0.082 (2)0.0445 (15)0.0231 (17)0.0080 (15)0.0131 (15)
N110.0532 (16)0.0667 (17)0.0399 (14)0.0133 (13)0.0028 (12)0.0016 (12)
N120.0562 (18)0.078 (2)0.0396 (15)0.0063 (14)0.0024 (13)0.0018 (13)
C130.050 (2)0.100 (3)0.0449 (18)0.001 (2)0.0018 (15)0.022 (2)
C140.056 (2)0.091 (3)0.064 (2)0.021 (2)0.0061 (18)0.028 (2)
C150.0526 (19)0.068 (2)0.0548 (19)0.0141 (16)0.0129 (16)0.0172 (16)
C160.068 (3)0.147 (5)0.053 (2)0.012 (3)0.012 (2)0.014 (3)
C170.090 (3)0.060 (2)0.084 (3)0.021 (2)0.014 (3)0.003 (2)
C180.091 (3)0.085 (3)0.057 (2)0.012 (2)0.014 (2)0.023 (2)
C190.098 (4)0.135 (4)0.047 (2)0.042 (3)0.001 (2)0.033 (2)
N200.0526 (16)0.078 (2)0.0443 (15)0.0160 (14)0.0094 (14)0.0058 (14)
N210.0582 (17)0.0623 (17)0.0562 (18)0.0005 (14)0.0188 (15)0.0111 (14)
N220.093 (3)0.124 (4)0.077 (3)0.006 (3)0.004 (2)0.048 (3)
N300.361 (17)0.170 (8)0.121 (6)0.016 (10)0.140 (9)0.001 (5)
N310.296 (17)0.101 (5)0.044 (3)0.072 (9)0.014 (6)0.004 (3)
N320.293 (15)0.094 (5)0.087 (6)0.068 (7)0.041 (6)0.019 (4)
O10.406 (14)0.215 (7)0.160 (6)0.041 (8)0.159 (8)0.020 (5)
Geometric parameters (Å, º) top
Pd1—N12.002 (3)N11—C151.332 (5)
Pd1—N202.014 (3)N11—N121.360 (4)
Pd1—N112.020 (3)N12—C131.351 (5)
Pd1—N102.041 (3)N12—C181.443 (5)
N1—C51.334 (4)C13—C141.342 (6)
N1—N21.358 (4)C13—C161.498 (6)
N2—C31.343 (4)C14—C151.383 (5)
N2—C81.451 (5)C14—H14A0.9300
C3—C41.355 (5)C15—C171.485 (6)
C3—C61.488 (5)C16—H16A0.9600
C4—C51.373 (5)C16—H16B0.9600
C4—H4A0.9300C16—H16C0.9600
C5—C71.483 (5)C17—H17A0.9600
C6—H6A0.9600C17—H17B0.9600
C6—H6B0.9600C17—H17C0.9600
C6—H6C0.9600C18—C191.504 (8)
C7—H7A0.9600C18—H18A0.9700
C7—H7B0.9600C18—H18B0.9700
C7—H7C0.9600C19—H19A0.9700
C8—C91.512 (7)C19—H19B0.9700
C8—H8A0.9700N20—N211.184 (4)
C8—H8B0.9700N21—N221.139 (5)
C9—N101.490 (6)N30—N311.129 (16)
C9—H9A0.9700N31—N321.239 (17)
C9—H9B0.9700O1—H110.8421
N10—C191.477 (5)O1—H120.8503
N10—H100.9000
N1—Pd1—N2093.98 (11)C9—N10—Pd1115.0 (3)
N1—Pd1—N11176.78 (11)C19—N10—H10104.1
N20—Pd1—N1189.15 (12)C9—N10—H10104.1
N1—Pd1—N1084.03 (12)Pd1—N10—H10104.1
N20—Pd1—N10175.99 (14)C15—N11—N12106.5 (3)
N11—Pd1—N1092.80 (12)C15—N11—Pd1133.8 (3)
C5—N1—N2106.1 (2)N12—N11—Pd1119.7 (2)
C5—N1—Pd1135.4 (2)C13—N12—N11110.2 (3)
N2—N1—Pd1117.6 (2)C13—N12—C18130.0 (4)
C3—N2—N1110.3 (3)N11—N12—C18119.3 (3)
C3—N2—C8131.0 (3)C14—C13—N12106.7 (4)
N1—N2—C8118.7 (3)C14—C13—C16131.4 (4)
N2—C3—C4107.0 (3)N12—C13—C16121.8 (5)
N2—C3—C6122.1 (4)C13—C14—C15107.9 (4)
C4—C3—C6130.9 (3)C13—C14—H14A126.1
C3—C4—C5107.1 (3)C15—C14—H14A126.1
C3—C4—H4A126.5N11—C15—C14108.7 (4)
C5—C4—H4A126.5N11—C15—C17122.8 (3)
N1—C5—C4109.5 (3)C14—C15—C17128.5 (4)
N1—C5—C7122.4 (3)C13—C16—H16A109.5
C4—C5—C7128.0 (3)C13—C16—H16B109.5
C3—C6—H6A109.5H16A—C16—H16B109.5
C3—C6—H6B109.5C13—C16—H16C109.5
H6A—C6—H6B109.5H16A—C16—H16C109.5
C3—C6—H6C109.5H16B—C16—H16C109.5
H6A—C6—H6C109.5C15—C17—H17A109.5
H6B—C6—H6C109.5C15—C17—H17B109.5
C5—C7—H7A109.5H17A—C17—H17B109.5
C5—C7—H7B109.5C15—C17—H17C109.5
H7A—C7—H7B109.5H17A—C17—H17C109.5
C5—C7—H7C109.5H17B—C17—H17C109.5
H7A—C7—H7C109.5N12—C18—C19110.5 (4)
H7B—C7—H7C109.5N12—C18—H18A109.5
N2—C8—C9111.4 (4)C19—C18—H18A109.5
N2—C8—H8A109.4N12—C18—H18B109.5
C9—C8—H8A109.4C19—C18—H18B109.5
N2—C8—H8B109.4H18A—C18—H18B108.1
C9—C8—H8B109.4N10—C19—C18111.1 (4)
H8A—C8—H8B108.0N10—C19—H19A109.4
N10—C9—C8112.5 (3)C18—C19—H19A109.4
N10—C9—H9A109.1N10—C19—H19B109.4
C8—C9—H9A109.1C18—C19—H19B109.4
N10—C9—H9B109.1H19A—C19—H19B108.0
C8—C9—H9B109.1N21—N20—Pd1120.9 (2)
H9A—C9—H9B107.8N22—N21—N20174.2 (4)
C19—N10—C9111.7 (4)N30—N31—N32171.4 (11)
C19—N10—Pd1116.0 (3)H11—O1—H12108.2
C5—N1—N2—C31.0 (4)C15—N11—N12—C130.4 (4)
Pd1—N1—N2—C3171.8 (2)Pd1—N11—N12—C13177.6 (3)
C5—N1—N2—C8178.7 (3)C15—N11—N12—C18172.2 (4)
Pd1—N1—N2—C87.9 (4)Pd1—N11—N12—C189.9 (5)
N1—N2—C3—C40.2 (4)N11—N12—C13—C140.5 (5)
C8—N2—C3—C4179.8 (4)C18—N12—C13—C14172.0 (5)
N1—N2—C3—C6178.9 (3)N11—N12—C13—C16179.2 (4)
C8—N2—C3—C61.5 (6)C18—N12—C13—C167.7 (7)
N2—C3—C4—C51.3 (4)N12—C13—C14—C151.2 (5)
C6—C3—C4—C5179.8 (4)C16—C13—C14—C15178.5 (5)
N2—N1—C5—C41.8 (4)N12—N11—C15—C141.1 (4)
Pd1—N1—C5—C4170.1 (2)Pd1—N11—C15—C14176.5 (3)
N2—N1—C5—C7175.5 (3)N12—N11—C15—C17177.7 (4)
Pd1—N1—C5—C77.2 (5)Pd1—N11—C15—C174.7 (6)
C3—C4—C5—N11.9 (4)C13—C14—C15—N111.4 (5)
C3—C4—C5—C7175.2 (3)C13—C14—C15—C17177.3 (4)
C3—N2—C8—C9111.5 (5)C13—N12—C18—C19117.0 (5)
N1—N2—C8—C968.1 (4)N11—N12—C18—C1953.8 (5)
N2—C8—C9—N1046.9 (5)C9—N10—C19—C18171.5 (4)
C8—C9—N10—C19157.6 (4)Pd1—N10—C19—C1837.1 (6)
C8—C9—N10—Pd122.7 (5)N12—C18—C19—N1080.6 (5)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N10—H10···N320.901.952.838 (11)171
N10—H10···N310.902.663.460 (13)148
O1—H11···N32i0.842.673.295 (19)132
O1—H12···N300.852.383.08 (2)140
Symmetry code: (i) x+1, y, z.
(5) Bis[{bis[2-(3,5-dimethylpyrazol-1-yl-κN2)ethyl]amine-κN}(thiocyanato-κN)palladium] tetrakis(thiocyanato-κS)palladate top
Crystal data top
[Pd(NCS)(C14H23N5)]2[Pd(NCS)4]Z = 1
Mr = 1190.43F(000) = 596
Triclinic, P1Dx = 1.686 Mg m3
a = 9.0286 (17) ÅMo Kα radiation, λ = 0.71073 Å
b = 10.532 (2) ÅCell parameters from 75 reflections
c = 13.066 (3) Åθ = 4.7–12.4°
α = 94.838 (14)°µ = 1.45 mm1
β = 100.947 (12)°T = 298 K
γ = 103.989 (13)°Irregular_Plate, pink
V = 1172.5 (4) Å30.40 × 0.40 × 0.12 mm
Data collection top
Siemens P4
diffractometer
4874 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tube, FN4Rint = 0.038
Graphite monochromatorθmax = 27.5°, θmin = 2.0°
2θ/ω scansh = 116
Absorption correction: ψ scan
(XSCANS; Siemens, 1996)
k = 1313
Tmin = 0.256, Tmax = 0.378l = 1616
8889 measured reflections3 standard reflections every 97 reflections
5367 independent reflections intensity decay: 1%
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.039Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.107H-atom parameters constrained
S = 1.06 w = 1/[σ2(Fo2) + (0.0569P)2 + 1.1014P]
where P = (Fo2 + 2Fc2)/3
5367 reflections(Δ/σ)max < 0.001
282 parametersΔρmax = 0.83 e Å3
0 restraintsΔρmin = 1.06 e Å3
0 constraints
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Pd10.36057 (3)0.61306 (2)0.33358 (2)0.03862 (9)
S10.88007 (13)0.60961 (16)0.47191 (8)0.0735 (4)
N10.3690 (3)0.4656 (3)0.2291 (2)0.0420 (6)
N20.2424 (3)0.3584 (3)0.2003 (2)0.0453 (6)
C30.2603 (4)0.2765 (4)0.1225 (3)0.0526 (8)
C40.4009 (5)0.3330 (4)0.0994 (3)0.0545 (9)
H4A0.44430.29870.04790.065*
C50.4667 (4)0.4500 (4)0.1663 (2)0.0448 (7)
C60.1425 (6)0.1487 (5)0.0757 (4)0.0814 (15)
H6A0.04690.16610.04150.122*
H6B0.12280.09570.13040.122*
H6C0.18220.10240.02530.122*
C70.6181 (5)0.5472 (5)0.1716 (3)0.0610 (9)
H7A0.60780.63490.18790.091*
H7B0.64750.53900.10500.091*
H7C0.69690.53080.22540.091*
C80.1152 (4)0.3501 (4)0.2545 (3)0.0531 (8)
H8A0.15550.35520.32950.064*
H8B0.03910.26530.23080.064*
C90.0363 (4)0.4580 (4)0.2354 (3)0.0564 (9)
H9A0.03380.43560.16660.068*0.770 (18)
H9B0.02640.46370.28740.068*0.770 (18)
H9C0.01790.46480.16080.068*0.230 (18)
H9D0.06500.43280.25380.068*0.230 (18)
N10A0.1465 (5)0.5881 (4)0.2405 (5)0.0423 (14)0.770 (18)
H10A0.16580.58700.17540.051*0.770 (18)
N10B0.1157 (15)0.5806 (14)0.2894 (18)0.041 (4)0.230 (18)
H10B0.08580.57930.35130.049*0.230 (18)
N110.3365 (3)0.7611 (3)0.4311 (2)0.0450 (6)
N120.2638 (3)0.8493 (3)0.3896 (2)0.0490 (6)
C130.2571 (5)0.9392 (4)0.4656 (4)0.0641 (11)
C140.3268 (6)0.9078 (5)0.5585 (4)0.0698 (12)
H14A0.33990.95340.62510.084*
C150.3743 (5)0.7964 (4)0.5356 (3)0.0571 (9)
C160.1801 (7)1.0477 (6)0.4450 (6)0.0965 (19)
H16A0.23061.10160.39930.145*
H16B0.18831.10090.51020.145*
H16C0.07171.01050.41200.145*
C170.4503 (7)0.7208 (6)0.6096 (3)0.0769 (13)
H17A0.51700.68030.57660.115*
H17B0.37170.65350.62880.115*
H17C0.51150.77930.67160.115*
C180.1923 (5)0.8273 (4)0.2784 (3)0.0552 (9)
H18A0.27220.82880.23800.066*
H18B0.14420.89810.26130.066*
C190.0713 (4)0.6981 (4)0.2488 (3)0.0517 (8)
H19A0.00830.68570.30140.062*0.770 (18)
H19B0.00280.69790.18180.062*0.770 (18)
H19C0.04210.67990.17260.062*0.230 (18)
H19D0.02090.70720.27340.062*0.230 (18)
N200.5799 (4)0.6337 (3)0.4077 (3)0.0558 (8)
C210.7053 (4)0.6233 (4)0.4336 (3)0.0517 (8)
Pd20.50001.00001.00000.03984 (10)
S220.27722 (13)0.83780 (12)0.91759 (10)0.0736 (3)
C230.2457 (4)0.7188 (5)0.9922 (3)0.0567 (9)
N240.2159 (6)0.6323 (5)1.0375 (3)0.0849 (13)
S250.45759 (12)1.11365 (12)0.85705 (8)0.0604 (3)
C260.2664 (5)1.0806 (5)0.8121 (3)0.0617 (10)
N270.1366 (6)1.0626 (6)0.7789 (4)0.1036 (18)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Pd10.03258 (13)0.04589 (15)0.03637 (13)0.01607 (10)0.00092 (9)0.00186 (9)
S10.0489 (5)0.1354 (11)0.0481 (5)0.0505 (6)0.0069 (4)0.0103 (6)
N10.0391 (13)0.0488 (15)0.0379 (12)0.0161 (11)0.0053 (10)0.0014 (11)
N20.0382 (13)0.0543 (16)0.0404 (13)0.0122 (12)0.0071 (11)0.0062 (11)
C30.0485 (18)0.060 (2)0.0478 (17)0.0214 (16)0.0059 (14)0.0103 (15)
C40.051 (2)0.069 (2)0.0476 (18)0.0254 (18)0.0139 (15)0.0029 (16)
C50.0432 (16)0.0583 (19)0.0394 (15)0.0249 (15)0.0095 (12)0.0067 (13)
C60.069 (3)0.077 (3)0.085 (3)0.005 (2)0.021 (2)0.031 (3)
C70.053 (2)0.071 (3)0.066 (2)0.0196 (19)0.0231 (18)0.0106 (19)
C80.0507 (19)0.058 (2)0.0485 (18)0.0084 (16)0.0190 (15)0.0036 (15)
C90.0334 (16)0.070 (2)0.062 (2)0.0129 (15)0.0098 (15)0.0085 (18)
N10A0.0321 (19)0.059 (2)0.038 (3)0.0197 (16)0.0053 (18)0.0015 (17)
N10B0.025 (5)0.064 (8)0.037 (9)0.017 (5)0.010 (5)0.000 (6)
N110.0449 (14)0.0451 (15)0.0455 (14)0.0178 (12)0.0061 (11)0.0001 (11)
N120.0422 (14)0.0464 (15)0.0599 (17)0.0171 (12)0.0089 (12)0.0043 (13)
C130.051 (2)0.046 (2)0.091 (3)0.0135 (16)0.012 (2)0.0113 (19)
C140.071 (3)0.066 (3)0.065 (2)0.017 (2)0.012 (2)0.021 (2)
C150.062 (2)0.055 (2)0.0474 (18)0.0104 (17)0.0080 (16)0.0063 (15)
C160.085 (4)0.062 (3)0.142 (5)0.037 (3)0.014 (4)0.015 (3)
C170.093 (4)0.085 (3)0.045 (2)0.022 (3)0.001 (2)0.005 (2)
C180.0502 (19)0.065 (2)0.062 (2)0.0296 (17)0.0175 (16)0.0199 (18)
C190.0364 (16)0.075 (2)0.0500 (18)0.0282 (16)0.0056 (13)0.0091 (16)
N200.0388 (15)0.0595 (19)0.0648 (19)0.0215 (13)0.0024 (13)0.0102 (15)
C210.0473 (19)0.065 (2)0.0425 (16)0.0237 (16)0.0014 (14)0.0029 (15)
Pd20.02961 (16)0.0489 (2)0.04031 (18)0.01548 (13)0.00172 (12)0.00076 (14)
S220.0517 (6)0.0667 (7)0.0806 (7)0.0003 (5)0.0215 (5)0.0161 (5)
C230.0440 (18)0.070 (2)0.0495 (19)0.0088 (17)0.0082 (15)0.0040 (17)
N240.085 (3)0.096 (3)0.057 (2)0.007 (2)0.015 (2)0.016 (2)
S250.0460 (5)0.0790 (7)0.0549 (5)0.0166 (4)0.0031 (4)0.0192 (5)
C260.056 (2)0.081 (3)0.051 (2)0.032 (2)0.0013 (17)0.0122 (19)
N270.062 (3)0.153 (5)0.103 (4)0.046 (3)0.001 (2)0.044 (4)
Geometric parameters (Å, º) top
Pd1—N201.984 (3)N10B—H10B0.9000
Pd1—N12.005 (3)N11—C151.340 (5)
Pd1—N112.009 (3)N11—N121.353 (4)
Pd1—N10A2.022 (4)N12—C131.335 (5)
Pd1—N10B2.111 (12)N12—C181.447 (5)
S1—C211.607 (4)C13—C141.362 (7)
N1—C51.342 (4)C13—C161.493 (7)
N1—N21.365 (4)C14—C151.372 (6)
N2—C31.336 (4)C14—H14A0.9300
N2—C81.449 (4)C15—C171.478 (6)
C3—C41.366 (6)C16—H16A0.9600
C3—C61.496 (6)C16—H16B0.9600
C4—C51.379 (5)C16—H16C0.9600
C4—H4A0.9300C17—H17A0.9600
C5—C71.482 (5)C17—H17B0.9600
C6—H6A0.9600C17—H17C0.9600
C6—H6B0.9600C18—C191.493 (6)
C6—H6C0.9600C18—H18A0.9700
C7—H7A0.9600C18—H18B0.9700
C7—H7B0.9600C19—H19A0.9700
C7—H7C0.9600C19—H19B0.9700
C8—C91.494 (6)C19—H19C0.9700
C8—H8A0.9700C19—H19D0.9700
C8—H8B0.9700N20—C211.153 (5)
C9—N10B1.373 (14)Pd2—S222.3085 (12)
C9—N10A1.474 (6)Pd2—S22i2.3085 (12)
C9—H9A0.9700Pd2—S252.3227 (11)
C9—H9B0.9700Pd2—S25i2.3227 (11)
C9—H9C0.9700S22—C231.656 (5)
C9—H9D0.9700C23—N241.133 (6)
N10A—C191.483 (5)S25—C261.654 (4)
N10A—H10A0.9000C26—N271.133 (6)
N10B—C191.498 (15)
N20—Pd1—N191.68 (12)C19—N10B—Pd1111.8 (9)
N20—Pd1—N1192.64 (12)C9—N10B—H10B103.3
N1—Pd1—N11175.60 (11)C19—N10B—H10B103.3
N20—Pd1—N10A172.5 (2)Pd1—N10B—H10B103.3
N1—Pd1—N10A82.54 (18)C15—N11—N12106.7 (3)
N11—Pd1—N10A93.08 (18)C15—N11—Pd1134.6 (3)
N20—Pd1—N10B166.4 (7)N12—N11—Pd1118.6 (2)
N1—Pd1—N10B94.8 (5)C13—N12—N11110.3 (3)
N11—Pd1—N10B81.2 (5)C13—N12—C18129.9 (3)
C5—N1—N2106.4 (3)N11—N12—C18119.4 (3)
C5—N1—Pd1134.7 (3)N12—C13—C14107.0 (4)
N2—N1—Pd1118.4 (2)N12—C13—C16123.0 (5)
C3—N2—N1110.7 (3)C14—C13—C16129.9 (5)
C3—N2—C8130.8 (3)C13—C14—C15107.3 (4)
N1—N2—C8118.5 (3)C13—C14—H14A126.4
N2—C3—C4106.7 (3)C15—C14—H14A126.4
N2—C3—C6123.2 (4)N11—C15—C14108.7 (4)
C4—C3—C6130.1 (3)N11—C15—C17123.2 (4)
C3—C4—C5107.6 (3)C14—C15—C17128.1 (4)
C3—C4—H4A126.2C13—C16—H16A109.5
C5—C4—H4A126.2C13—C16—H16B109.5
N1—C5—C4108.6 (3)H16A—C16—H16B109.5
N1—C5—C7123.2 (3)C13—C16—H16C109.5
C4—C5—C7128.2 (3)H16A—C16—H16C109.5
C3—C6—H6A109.5H16B—C16—H16C109.5
C3—C6—H6B109.5C15—C17—H17A109.5
H6A—C6—H6B109.5C15—C17—H17B109.5
C3—C6—H6C109.5H17A—C17—H17B109.5
H6A—C6—H6C109.5C15—C17—H17C109.5
H6B—C6—H6C109.5H17A—C17—H17C109.5
C5—C7—H7A109.5H17B—C17—H17C109.5
C5—C7—H7B109.5N12—C18—C19111.4 (3)
H7A—C7—H7B109.5N12—C18—H18A109.4
C5—C7—H7C109.5C19—C18—H18A109.4
H7A—C7—H7C109.5N12—C18—H18B109.4
H7B—C7—H7C109.5C19—C18—H18B109.4
N2—C8—C9112.1 (3)H18A—C18—H18B108.0
N2—C8—H8A109.2N10A—C19—C18110.4 (3)
C9—C8—H8A109.2C18—C19—N10B116.8 (5)
N2—C8—H8B109.2N10A—C19—H19A109.6
C9—C8—H8B109.2C18—C19—H19A109.6
H8A—C8—H8B107.9N10A—C19—H19B109.6
N10B—C9—C8115.9 (6)C18—C19—H19B109.6
N10A—C9—C8113.3 (3)H19A—C19—H19B108.1
N10A—C9—H9A108.9C18—C19—H19C108.1
C8—C9—H9A108.9N10B—C19—H19C108.1
N10A—C9—H9B108.9C18—C19—H19D108.1
C8—C9—H9B108.9N10B—C19—H19D108.1
H9A—C9—H9B107.7H19C—C19—H19D107.3
N10B—C9—H9C108.3C21—N20—Pd1164.8 (3)
C8—C9—H9C108.3N20—C21—S1179.0 (4)
N10B—C9—H9D108.3S22—Pd2—S22i180.0
C8—C9—H9D108.3S22—Pd2—S2587.77 (4)
H9C—C9—H9D107.4S22i—Pd2—S2592.23 (4)
C9—N10A—C19112.4 (4)S22—Pd2—S25i92.23 (4)
C9—N10A—Pd1115.1 (3)S22i—Pd2—S25i87.77 (4)
C19—N10A—Pd1117.4 (3)S25—Pd2—S25i180.0
C9—N10A—H10A103.2C23—S22—Pd2109.52 (14)
C19—N10A—H10A103.2N24—C23—S22175.1 (4)
Pd1—N10A—H10A103.2C26—S25—Pd2107.53 (16)
C9—N10B—C19117.7 (11)N27—C26—S25176.9 (5)
C9—N10B—Pd1115.0 (8)
C5—N1—N2—C30.8 (4)C15—N11—N12—C130.6 (4)
Pd1—N1—N2—C3173.4 (2)Pd1—N11—N12—C13179.3 (3)
C5—N1—N2—C8178.9 (3)C15—N11—N12—C18172.6 (3)
Pd1—N1—N2—C86.4 (4)Pd1—N11—N12—C186.1 (4)
N1—N2—C3—C40.9 (4)N11—N12—C13—C140.1 (5)
C8—N2—C3—C4178.8 (4)C18—N12—C13—C14172.2 (4)
N1—N2—C3—C6178.5 (4)N11—N12—C13—C16178.4 (4)
C8—N2—C3—C61.7 (7)C18—N12—C13—C166.1 (7)
N2—C3—C4—C50.6 (4)N12—C13—C14—C150.4 (5)
C6—C3—C4—C5178.8 (5)C16—C13—C14—C15177.7 (5)
N2—N1—C5—C40.4 (4)N12—N11—C15—C140.8 (5)
Pd1—N1—C5—C4171.2 (3)Pd1—N11—C15—C14179.3 (3)
N2—N1—C5—C7179.1 (3)N12—N11—C15—C17177.5 (4)
Pd1—N1—C5—C78.3 (5)Pd1—N11—C15—C171.0 (7)
C3—C4—C5—N10.1 (4)C13—C14—C15—N110.8 (5)
C3—C4—C5—C7179.6 (4)C13—C14—C15—C17177.4 (5)
C3—N2—C8—C9115.1 (4)C13—N12—C18—C19113.4 (4)
N1—N2—C8—C964.6 (4)N11—N12—C18—C1958.3 (4)
N2—C8—C9—N10B75.9 (12)C9—N10A—C19—C18166.9 (4)
N2—C8—C9—N10A42.8 (5)Pd1—N10A—C19—C1830.0 (6)
N10B—C9—N10A—C1963.7 (12)C9—N10A—C19—N10B58.3 (11)
C8—C9—N10A—C19165.4 (4)Pd1—N10A—C19—N10B78.6 (10)
N10B—C9—N10A—Pd174.3 (11)N12—C18—C19—N10A77.7 (5)
C8—C9—N10A—Pd127.4 (6)N12—C18—C19—N10B46.7 (11)
N10A—C9—N10B—C1968.0 (18)C9—N10B—C19—N10A72.5 (18)
C8—C9—N10B—C19160.4 (10)Pd1—N10B—C19—N10A64.0 (11)
N10A—C9—N10B—Pd167.2 (12)C9—N10B—C19—C18156.5 (11)
C8—C9—N10B—Pd125.2 (17)Pd1—N10B—C19—C1820.0 (15)
Symmetry code: (i) x+1, y+2, z+2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N10A—H10A···N24ii0.902.012.889 (9)166
N10B—H10B···S1iii0.902.713.52 (2)151
Symmetry codes: (ii) x, y, z1; (iii) x1, y, z.
 

Footnotes

1This work forms part of the PhD thesis of María de los Angeles Mendoza (Guanajuato, Mexico, 2010).

Currently unaffiliated to UANL.

Acknowledgements

The authors thank the Consejo Nacional de Ciencia y Tecnología (CONACyT) for the financial support of MAM during her postgraduate studies with grant No. 179804/194677.

References

First citationAjellal, N., Kuhn, M. C. A., Boff, A. D. G., Hörner, M., Thomas, C. M., Carpentier, J.-F. & Casagrande, O. L. Jr (2006). Organometallics, 25, 1213–1216.  Web of Science CSD CrossRef CAS Google Scholar
First citationAlvarez, S., Alemany, P., Casanova, D., Cirera, J., Llunell, M. & Avnir, D. (2005). Coord. Chem. Rev. 249, 1693–1708.  Web of Science CrossRef CAS Google Scholar
First citationAlves, S., Paulo, A., Correia, J. D. G., Domingos, Â. & Santos, I. (2002). J. Chem. Soc. Dalton Trans. pp. 4714–4719.  Web of Science CSD CrossRef Google Scholar
First citationBerkel, P. M. van, Driessen, W. L., Hämäläinen, R., Reedijk, J. & Turpeinen, U. (1994). Inorg. Chem. 33, 5920–5926.  Google Scholar
First citationBurth, R. & Vahrenkamp, H. (1998). Inorg. Chim. Acta, 282, 193–199.  Web of Science CSD CrossRef CAS Google Scholar
First citationChang, X., Lee, K.-E., Jeon, S. I., Kim, Y.-J., Lee, H.-K. & Lee, S. W. (2005). Dalton Trans. pp. 3722–3731.  Web of Science CSD CrossRef Google Scholar
First citationGriffith, E. A. H., Charles, N. G., Lewinski, K., Amma, E. L. & Rodesiler, P. F. (1987). Inorg. Chem. 26, 3983–3989.  CSD CrossRef CAS Web of Science Google Scholar
First citationGroom, C. R. & Allen, F. H. (2014). Angew. Chem. Int. Ed. 53, 662–671.  Web of Science CSD CrossRef CAS Google Scholar
First citationGuzei, I. A., Spencer, L. C., Miti, N. & Darkwa, J. (2010). Acta Cryst. E66, m1243.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationKim, J. H., Roh, S.-G. & Jeong, J. H. (2000). Acta Cryst. C56, e543–e544.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationLee, R. E., Park, Y. D. & Jeong, J. H. (2007). Acta Cryst. E63, m2679.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationLian, B., Thomas, C. M., Casagrande, O. L. Jr, Lehmann, C. W., Roisnel, T. & Carpentier, J.-F. (2007a). Inorg. Chem. 46, 328–340.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationLian, B., Thomas, C. M., Casagrande, O. L. Jr, Roisnel, T. & Carpentier, J.-F. (2007b). Polyhedron, 26, 3817–3824.  Web of Science CSD CrossRef CAS Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationMartens, C. F., Schenning, A. P. H. J., Feiters, M. C., Berens, H. W., van der Linden, J. G. M., Admiraal, G., Beurskens, P. T., Kooijman, H., Spek, A. L. & Nolte, R. J. M. (1995). Inorg. Chem. 34, 4735–4744.  CSD CrossRef CAS Web of Science Google Scholar
First citationMassoud, S. S., Le Quan, L., Gatterer, K., Albering, J. H., Fischer, R. C. & Mautner, F. A. (2012a). Polyhedron, 31, 601–606.  Web of Science CSD CrossRef CAS Google Scholar
First citationMassoud, S. S., Louka, F. R., Obaid, Y. K., Vicente, R., Ribas, J., Fischer, R. C. & Mautner, F. A. (2013). Dalton Trans. 42, 3968–3978.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationMassoud, S. S., Vicente, R., Fontenot, P. R., Gallo, A. A., Mikuriya, M., Albering, J. H. & Mautner, F. A. (2012b). Polyhedron, 46, 66–73.  Web of Science CSD CrossRef CAS Google Scholar
First citationMendoza, M. de los A., Bernès, S. & Mendoza-Díaz, G. (2006). Acta Cryst. E62, m2934–m2936.  Google Scholar
First citationMonzani, E., Koolhaas, G. J. A. A., Spandre, A., Leggieri, E., Casella, L., Gullotti, M., Nardin, G., Randaccio, L., Fontani, M., Zanello, P. & Reedijk, J. (2000). J. Biol. Inorg. Chem. 5, 251–261.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationPaviglianiti, A. J., Minn, D. J., Fultz, W. C. & Burmeister, J. L. (1989). Inorg. Chim. Acta, 159, 65–82.  CSD CrossRef CAS Web of Science Google Scholar
First citationRiklin, M., Tran, D., Bu, X., Laverman, L. E. & Ford, P. C. (2001). J. Chem. Soc. Dalton Trans. pp. 1813–1819.  Web of Science CSD CrossRef Google Scholar
First citationSegapelo, T. V., Guzei, I. A., Spencer, L. C. & Darkwa, J. (2011). Inorg. Chem. Commun. 14, 1706–1710.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSiemens (1996). XSCANS. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds