metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of bis­­(2,2′-bi­pyridine-κ2N,N′)bis­­(thio­cyanato-κN)mang­anese(II) 2,2′-bi­pyridine monosolvate

aInstitut für Anorganische Chemie, Christian-Albrechts-Universität Kiel, Max-Eyth-Strasse 2, 24118 Kiel, Germany
*Correspondence e-mail: ssuckert@ac.uni-kiel.de

Edited by M. Weil, Vienna University of Technology, Austria (Received 5 November 2014; accepted 17 November 2014; online 1 January 2015)

In the crystal structure of the mononuclear title compound, [Mn(NCS)2(C10H8N2)2]·C10H8N2, the MnII cation is coordin­ated in an all-cis configuration by two N-bound thio­cyanate anions and two 2,2′-bi­pyridine ligands within a slightly distorted octa­hedral environment. The asymmetric unit consists of one MnII cation, two thio­cyanate anions and two 2,2′-bi­pyridine ligands, as well as two non-coordinating 2,2′-bi­pyridine ligands that are each located on centres of inversion. In the crystal structure, the discrete [Mn(NCS)2(C10H8N2)2] complex mol­ecules are arranged in such a way that cavities are formed, in which the solvent 2,2′-bi­pyridine mol­ecules are located. Apart from van der Waals forces, there are no remarkable inter­molecular inter­actions present in the crystal structure.

1. Related literature

For similar crystal structures with thio­cyanate anions in cis-coordination to a manganese(II) cation, see: Małecki et al. (2011[Małecki, J. G., Machura, B., Świtlicka, A., Groń, T. & Bałanda, M. (2011). Polyhedron, 30, 746-753.]).

[Scheme 1]

2. Experimental

2.1. Crystal data

  • [Mn(NCS)2(C10H8N2)2]·C10H8N2

  • Mr = 639.65

  • Monoclinic, P 21 /c

  • a = 14.5263 (6) Å

  • b = 13.5383 (4) Å

  • c = 16.0726 (7) Å

  • β = 105.535 (3)°

  • V = 3045.4 (2) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.61 mm−1

  • T = 293 K

  • 0.32 × 0.19 × 0.07 mm

2.2. Data collection

  • Stoe IPDS-2 diffractometer

  • Absorption correction: numerical (X-SHAPE and X-RED32; Stoe & Cie, 2008[Stoe & Cie (2008). X-AREA, X-RED32 and X-SHAPE. Stoe & Cie, Darmstadt, Germany.]) Tmin = 0.820, Tmax = 0.919

  • 41565 measured reflections

  • 6630 independent reflections

  • 5766 reflections with I > 2σ(I)

  • Rint = 0.037

2.3. Refinement

  • R[F2 > 2σ(F2)] = 0.041

  • wR(F2) = 0.094

  • S = 1.08

  • 6630 reflections

  • 389 parameters

  • H-atom parameters constrained

  • Δρmax = 0.27 e Å−3

  • Δρmin = −0.35 e Å−3

Data collection: X-AREA (Stoe & Cie, 2008[Stoe & Cie (2008). X-AREA, X-RED32 and X-SHAPE. Stoe & Cie, Darmstadt, Germany.]); cell refinement: X-AREA; data reduction: X-AREA; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: XP in SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) and DIAMOND (Brandenburg, 1999[Brandenburg, K. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Synthesis and crystallization top

MnSO4·H2O was purchased from Merck and 2,2'-bi­pyridine and Ba(NCS)2·3H2O were purchased from Alfa Aesar. Mn(NCS)2 was synthesized by stirring 17.97 g (58.44 mmol) Ba(NCS)2·3H2O and 9.88 g (58.44 mmol) MnSO4·H2O in 300 ml water at room temperature for three hours. The white residue of BaSO4 was filtered off and the solvent removed with a rotary evaporator. The homogeneity of the product was investigated by X-ray powder diffraction and elemental analysis. The title compound was prepared by the reaction of 25.7 mg (0.15 mmol) Mn(NCS)2 and 93.7 mg (0.60 mmol) 2,2'-bi­pyridine in 1.0 ml water at room temperature. After few days, yellow plates of the title compound were obtained.

Refinement top

The hydrogen atoms were positioned with idealized geometry and were refined with C—H = 0.93 Å and Ueq(H) = 1.2 Ueq(C) using a riding model approximation.

Related literature top

For similar crystal structures with thiocyanate anions in cis-coordination to a manganese(II) cation, see: Ma\/ecki et al. (2011).

Structure description top

For similar crystal structures with thiocyanate anions in cis-coordination to a manganese(II) cation, see: Ma\/ecki et al. (2011).

Synthesis and crystallization top

MnSO4·H2O was purchased from Merck and 2,2'-bi­pyridine and Ba(NCS)2·3H2O were purchased from Alfa Aesar. Mn(NCS)2 was synthesized by stirring 17.97 g (58.44 mmol) Ba(NCS)2·3H2O and 9.88 g (58.44 mmol) MnSO4·H2O in 300 ml water at room temperature for three hours. The white residue of BaSO4 was filtered off and the solvent removed with a rotary evaporator. The homogeneity of the product was investigated by X-ray powder diffraction and elemental analysis. The title compound was prepared by the reaction of 25.7 mg (0.15 mmol) Mn(NCS)2 and 93.7 mg (0.60 mmol) 2,2'-bi­pyridine in 1.0 ml water at room temperature. After few days, yellow plates of the title compound were obtained.

Refinement details top

The hydrogen atoms were positioned with idealized geometry and were refined with C—H = 0.93 Å and Ueq(H) = 1.2 Ueq(C) using a riding model approximation.

Computing details top

Data collection: X-AREA (Stoe & Cie, 2008); cell refinement: X-AREA (Stoe & Cie, 2008); data reduction: X-AREA (Stoe & Cie, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: XP in SHELXTL (Sheldrick, 2008) and DIAMOND (Brandenburg, 1999); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. The molecular components of the title compound with labelling and displacement ellipsoids drawn at the 50% probability level. [Symmetry codes: (i) -x+1,-y+1,-z+1; (ii) -x+2,-y+1,-z+1.]
[Figure 2] Fig. 2. The packing of the molecules in the crystal structure of the title compound in a view along [010].
Bis(2,2'-bipyridine-κ2N,N')bis(thiocyanato-κN)manganese(II) 2,2'-bipyridine monosolvate top
Crystal data top
[Mn(NCS)2(C10H8N2)2]·C10H8N2Z = 4
Mr = 639.65F(000) = 1316
Monoclinic, P21/cDx = 1.395 Mg m3
Hall symbol: -P 2ybcMo Kα radiation, λ = 0.71073 Å
a = 14.5263 (6) Åθ = 1.5–27.0°
b = 13.5383 (4) ŵ = 0.61 mm1
c = 16.0726 (7) ÅT = 293 K
β = 105.535 (3)°Plate, yellow
V = 3045.4 (2) Å30.32 × 0.19 × 0.07 mm
Data collection top
Stoe IPDS-2
diffractometer
6630 independent reflections
Radiation source: fine-focus sealed tube5766 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.037
ω scansθmax = 27.0°, θmin = 1.5°
Absorption correction: numerical
(X-SHAPE and X-RED32; Stoe & Cie, 2008)
h = 1818
Tmin = 0.820, Tmax = 0.919k = 1717
41565 measured reflectionsl = 2020
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.041H-atom parameters constrained
wR(F2) = 0.094 w = 1/[σ2(Fo2) + (0.0384P)2 + 0.9654P]
where P = (Fo2 + 2Fc2)/3
S = 1.08(Δ/σ)max = 0.001
6630 reflectionsΔρmax = 0.27 e Å3
389 parametersΔρmin = 0.35 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0025 (9)
Crystal data top
[Mn(NCS)2(C10H8N2)2]·C10H8N2V = 3045.4 (2) Å3
Mr = 639.65Z = 4
Monoclinic, P21/cMo Kα radiation
a = 14.5263 (6) ŵ = 0.61 mm1
b = 13.5383 (4) ÅT = 293 K
c = 16.0726 (7) Å0.32 × 0.19 × 0.07 mm
β = 105.535 (3)°
Data collection top
Stoe IPDS-2
diffractometer
6630 independent reflections
Absorption correction: numerical
(X-SHAPE and X-RED32; Stoe & Cie, 2008)
5766 reflections with I > 2σ(I)
Tmin = 0.820, Tmax = 0.919Rint = 0.037
41565 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0410 restraints
wR(F2) = 0.094H-atom parameters constrained
S = 1.08Δρmax = 0.27 e Å3
6630 reflectionsΔρmin = 0.35 e Å3
389 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Mn10.734793 (17)0.128336 (19)0.478914 (17)0.04106 (9)
N10.70830 (14)0.02009 (14)0.37737 (12)0.0665 (5)
C10.71894 (13)0.04547 (14)0.33491 (12)0.0502 (4)
S10.73507 (5)0.13676 (5)0.27623 (4)0.0792 (2)
N20.75999 (12)0.02533 (13)0.58481 (11)0.0583 (4)
C20.77308 (12)0.03438 (13)0.63794 (12)0.0453 (4)
S20.79008 (5)0.11880 (5)0.71196 (4)0.07089 (17)
N100.88949 (10)0.14680 (12)0.47586 (10)0.0513 (4)
C100.92943 (15)0.09366 (18)0.42424 (15)0.0652 (6)
H100.88980.05460.38180.078*
C111.02539 (17)0.0938 (2)0.43073 (19)0.0824 (8)
H111.05020.05720.39280.099*
C121.08341 (17)0.1492 (2)0.4943 (2)0.0908 (9)
H121.14900.14970.50100.109*
C131.04482 (15)0.2043 (2)0.54863 (18)0.0792 (7)
H131.08400.24200.59240.095*
C140.94611 (13)0.20298 (15)0.53718 (13)0.0541 (5)
C150.89768 (13)0.26359 (14)0.58963 (12)0.0517 (4)
C160.94487 (18)0.33141 (19)0.65064 (15)0.0728 (6)
H161.01080.33850.66290.087*
C170.8933 (2)0.3882 (2)0.69288 (16)0.0852 (8)
H170.92440.43430.73370.102*
C180.7964 (2)0.37728 (17)0.67522 (16)0.0771 (7)
H180.76050.41570.70300.092*
C190.75380 (16)0.30723 (16)0.61475 (13)0.0607 (5)
H190.68800.29870.60250.073*
N110.80238 (10)0.25125 (11)0.57302 (10)0.0488 (3)
N200.67171 (10)0.24892 (11)0.38090 (9)0.0470 (3)
C200.72036 (15)0.29317 (17)0.33176 (14)0.0624 (5)
H200.78310.27360.33740.075*
C210.68249 (19)0.36615 (18)0.27327 (15)0.0726 (6)
H210.71880.39550.24040.087*
C220.59047 (19)0.39454 (17)0.26467 (14)0.0713 (6)
H220.56320.44430.22600.086*
C240.58074 (12)0.27636 (13)0.37188 (11)0.0446 (4)
C250.53069 (12)0.22504 (13)0.42834 (11)0.0438 (4)
C260.43568 (13)0.24294 (17)0.42531 (14)0.0613 (5)
H260.40000.28780.38580.074*
C270.39498 (14)0.19383 (19)0.48122 (15)0.0689 (6)
H270.33140.20500.47970.083*
C280.44834 (15)0.12849 (17)0.53914 (15)0.0652 (6)
H280.42230.09550.57820.078*
C290.54214 (14)0.11259 (15)0.53824 (13)0.0538 (4)
H290.57820.06710.57680.065*
N210.58328 (10)0.15956 (11)0.48459 (9)0.0427 (3)
N300.45727 (13)0.57292 (15)0.40356 (13)0.0690 (5)
C300.52000 (14)0.52678 (15)0.46832 (13)0.0557 (5)
C310.61789 (15)0.52953 (17)0.47611 (15)0.0654 (5)
H310.66050.49740.52160.078*
C230.53780 (16)0.34899 (15)0.31364 (13)0.0597 (5)
H230.47450.36680.30760.072*
C320.65066 (18)0.5801 (2)0.41603 (18)0.0766 (6)
H320.71580.58260.42030.092*
C330.5866 (2)0.6271 (2)0.34934 (19)0.0813 (7)
H330.60690.66170.30750.098*
C340.4917 (2)0.6212 (2)0.34664 (18)0.0822 (7)
H340.44830.65330.30170.099*
N400.89931 (14)0.56056 (16)0.52370 (14)0.0753 (5)
C400.99023 (15)0.53074 (16)0.53470 (14)0.0617 (5)
C411.06105 (17)0.55483 (19)0.60838 (17)0.0756 (6)
H411.12340.53320.61500.091*
C421.0391 (2)0.6106 (2)0.67145 (19)0.0877 (8)
H421.08630.62690.72120.105*
C430.9471 (2)0.6423 (2)0.6607 (2)0.0887 (8)
H430.93010.68080.70220.106*
C440.8805 (2)0.6148 (2)0.5856 (2)0.0891 (8)
H440.81790.63600.57790.107*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Mn10.03601 (14)0.04340 (15)0.04746 (15)0.00108 (10)0.01753 (10)0.00063 (11)
N10.0761 (12)0.0621 (10)0.0701 (11)0.0069 (9)0.0350 (9)0.0150 (9)
C10.0426 (9)0.0562 (11)0.0537 (10)0.0084 (8)0.0160 (8)0.0048 (9)
S10.0676 (4)0.0790 (4)0.0828 (4)0.0061 (3)0.0057 (3)0.0377 (3)
N20.0596 (10)0.0556 (9)0.0651 (10)0.0078 (8)0.0263 (8)0.0123 (8)
C20.0384 (9)0.0475 (9)0.0520 (10)0.0034 (7)0.0156 (7)0.0024 (8)
S20.0751 (4)0.0693 (4)0.0641 (3)0.0054 (3)0.0114 (3)0.0214 (3)
N100.0365 (7)0.0616 (9)0.0595 (9)0.0044 (7)0.0193 (7)0.0112 (7)
C100.0494 (11)0.0803 (14)0.0749 (14)0.0122 (10)0.0322 (10)0.0105 (11)
C110.0504 (13)0.110 (2)0.0989 (19)0.0219 (13)0.0401 (13)0.0237 (16)
C120.0393 (12)0.122 (2)0.118 (2)0.0176 (13)0.0336 (14)0.0357 (19)
C130.0369 (10)0.1010 (19)0.0934 (17)0.0024 (11)0.0064 (11)0.0213 (15)
C140.0358 (9)0.0635 (11)0.0622 (11)0.0022 (8)0.0118 (8)0.0231 (9)
C150.0438 (10)0.0546 (10)0.0511 (10)0.0077 (8)0.0028 (8)0.0144 (8)
C160.0667 (14)0.0834 (16)0.0601 (13)0.0265 (12)0.0026 (11)0.0038 (12)
C170.107 (2)0.0806 (17)0.0594 (13)0.0404 (15)0.0067 (13)0.0107 (12)
C180.105 (2)0.0623 (13)0.0658 (14)0.0101 (13)0.0267 (13)0.0163 (11)
C190.0612 (12)0.0589 (12)0.0613 (12)0.0014 (9)0.0152 (10)0.0102 (9)
N110.0435 (8)0.0482 (8)0.0525 (8)0.0004 (6)0.0092 (6)0.0006 (7)
N200.0417 (8)0.0520 (8)0.0484 (8)0.0029 (6)0.0138 (6)0.0047 (6)
C200.0565 (12)0.0711 (13)0.0632 (12)0.0047 (10)0.0224 (10)0.0149 (10)
C210.0851 (17)0.0725 (14)0.0640 (13)0.0082 (12)0.0263 (12)0.0184 (11)
C220.0941 (18)0.0619 (13)0.0537 (12)0.0076 (12)0.0124 (11)0.0127 (10)
C240.0443 (9)0.0451 (9)0.0416 (8)0.0004 (7)0.0067 (7)0.0065 (7)
C250.0356 (8)0.0490 (9)0.0449 (9)0.0015 (7)0.0074 (7)0.0106 (7)
C260.0382 (10)0.0787 (14)0.0643 (12)0.0056 (9)0.0092 (9)0.0058 (10)
C270.0356 (10)0.0932 (17)0.0808 (15)0.0046 (10)0.0204 (10)0.0164 (13)
C280.0515 (11)0.0793 (14)0.0750 (14)0.0152 (11)0.0347 (10)0.0095 (11)
C290.0471 (10)0.0600 (11)0.0604 (11)0.0049 (8)0.0252 (9)0.0006 (9)
N210.0356 (7)0.0481 (8)0.0470 (7)0.0026 (6)0.0156 (6)0.0036 (6)
N300.0588 (11)0.0760 (12)0.0703 (11)0.0131 (9)0.0142 (9)0.0083 (10)
C300.0503 (10)0.0544 (11)0.0604 (11)0.0062 (8)0.0114 (9)0.0080 (9)
C310.0506 (11)0.0706 (13)0.0729 (13)0.0050 (10)0.0130 (10)0.0043 (11)
C230.0614 (12)0.0612 (12)0.0510 (10)0.0114 (9)0.0057 (9)0.0024 (9)
C320.0615 (14)0.0809 (16)0.0920 (17)0.0015 (12)0.0284 (13)0.0054 (14)
C330.0883 (18)0.0790 (16)0.0859 (17)0.0012 (14)0.0393 (15)0.0057 (13)
C340.0789 (17)0.0874 (18)0.0802 (16)0.0168 (14)0.0213 (13)0.0194 (14)
N400.0546 (11)0.0821 (13)0.0871 (14)0.0114 (9)0.0154 (10)0.0058 (11)
C400.0504 (11)0.0597 (12)0.0739 (13)0.0028 (9)0.0149 (10)0.0118 (10)
C410.0511 (12)0.0830 (16)0.0892 (17)0.0076 (11)0.0129 (11)0.0039 (13)
C420.0705 (16)0.101 (2)0.0909 (19)0.0179 (14)0.0202 (14)0.0150 (16)
C430.0837 (18)0.0873 (18)0.102 (2)0.0051 (14)0.0361 (16)0.0132 (15)
C440.0668 (16)0.095 (2)0.106 (2)0.0150 (14)0.0247 (15)0.0003 (17)
Geometric parameters (Å, º) top
Mn1—N12.1501 (18)C22—C231.381 (3)
Mn1—N22.1546 (17)C22—H220.9300
Mn1—N212.2669 (13)C24—C231.386 (3)
Mn1—N102.2746 (14)C24—C251.479 (2)
Mn1—N202.2833 (15)C25—N211.348 (2)
Mn1—N112.2859 (15)C25—C261.389 (2)
N1—C11.155 (2)C26—C271.372 (3)
C1—S11.609 (2)C26—H260.9300
N2—C21.154 (2)C27—C281.365 (3)
C2—S21.6203 (19)C27—H270.9300
N10—C141.339 (3)C28—C291.383 (3)
N10—C101.342 (3)C28—H280.9300
C10—C111.370 (3)C29—N211.335 (2)
C10—H100.9300C29—H290.9300
C11—C121.362 (4)N30—C341.326 (3)
C11—H110.9300N30—C301.340 (3)
C12—C131.377 (4)C30—C311.394 (3)
C12—H120.9300C30—C30i1.489 (4)
C13—C141.396 (3)C31—C321.369 (3)
C13—H130.9300C31—H310.9300
C14—C151.482 (3)C23—H230.9300
C15—N111.348 (2)C32—C331.373 (4)
C15—C161.384 (3)C32—H320.9300
C16—C171.373 (4)C33—C341.370 (4)
C16—H160.9300C33—H330.9300
C17—C181.367 (4)C34—H340.9300
C17—H170.9300N40—C441.322 (3)
C18—C191.380 (3)N40—C401.347 (3)
C18—H180.9300C40—C411.384 (3)
C19—N111.333 (2)C40—C40ii1.479 (5)
C19—H190.9300C41—C421.368 (4)
N20—C201.335 (2)C41—H410.9300
N20—C241.343 (2)C42—C431.371 (4)
C20—C211.373 (3)C42—H420.9300
C20—H200.9300C43—C441.380 (4)
C21—C221.362 (4)C43—H430.9300
C21—H210.9300C44—H440.9300
N1—Mn1—N296.69 (7)C22—C21—H21120.8
N1—Mn1—N21100.33 (6)C20—C21—H21120.8
N2—Mn1—N2192.88 (6)C21—C22—C23119.6 (2)
N1—Mn1—N1092.04 (7)C21—C22—H22120.2
N2—Mn1—N1097.38 (6)C23—C22—H22120.2
N21—Mn1—N10162.91 (6)N20—C24—C23121.42 (18)
N1—Mn1—N2090.37 (7)N20—C24—C25115.79 (15)
N2—Mn1—N20163.68 (6)C23—C24—C25122.79 (17)
N21—Mn1—N2071.33 (5)N21—C25—C26121.16 (18)
N10—Mn1—N2097.05 (5)N21—C25—C24115.91 (14)
N1—Mn1—N11163.00 (6)C26—C25—C24122.92 (17)
N2—Mn1—N1189.80 (6)C27—C26—C25119.4 (2)
N21—Mn1—N1195.00 (5)C27—C26—H26120.3
N10—Mn1—N1171.49 (6)C25—C26—H26120.3
N20—Mn1—N1187.59 (5)C28—C27—C26119.67 (19)
C1—N1—Mn1161.31 (18)C28—C27—H27120.2
N1—C1—S1179.3 (2)C26—C27—H27120.2
C2—N2—Mn1175.86 (16)C27—C28—C29118.3 (2)
N2—C2—S2179.25 (19)C27—C28—H28120.8
C14—N10—C10118.54 (17)C29—C28—H28120.8
C14—N10—Mn1117.53 (12)N21—C29—C28123.0 (2)
C10—N10—Mn1123.21 (14)N21—C29—H29118.5
N10—C10—C11123.5 (2)C28—C29—H29118.5
N10—C10—H10118.3C29—N21—C25118.38 (15)
C11—C10—H10118.3C29—N21—Mn1123.00 (12)
C12—C11—C10118.1 (3)C25—N21—Mn1118.53 (11)
C12—C11—H11121.0C34—N30—C30117.5 (2)
C10—C11—H11121.0N30—C30—C31121.5 (2)
C11—C12—C13119.9 (2)N30—C30—C30i116.7 (2)
C11—C12—H12120.0C31—C30—C30i121.8 (2)
C13—C12—H12120.0C32—C31—C30119.3 (2)
C12—C13—C14119.2 (3)C32—C31—H31120.4
C12—C13—H13120.4C30—C31—H31120.4
C14—C13—H13120.4C22—C23—C24119.0 (2)
N10—C14—C13120.7 (2)C22—C23—H23120.5
N10—C14—C15116.21 (15)C24—C23—H23120.5
C13—C14—C15123.0 (2)C31—C32—C33119.4 (2)
N11—C15—C16120.7 (2)C31—C32—H32120.3
N11—C15—C14115.93 (16)C33—C32—H32120.3
C16—C15—C14123.36 (19)C34—C33—C32117.6 (2)
C17—C16—C15119.3 (2)C34—C33—H33121.2
C17—C16—H16120.3C32—C33—H33121.2
C15—C16—H16120.3N30—C34—C33124.7 (2)
C18—C17—C16120.3 (2)N30—C34—H34117.7
C18—C17—H17119.9C33—C34—H34117.7
C16—C17—H17119.9C44—N40—C40117.4 (2)
C17—C18—C19117.6 (2)N40—C40—C41121.3 (2)
C17—C18—H18121.2N40—C40—C40ii116.7 (2)
C19—C18—H18121.2C41—C40—C40ii122.0 (3)
N11—C19—C18123.2 (2)C42—C41—C40119.8 (2)
N11—C19—H19118.4C42—C41—H41120.1
C18—C19—H19118.4C40—C41—H41120.1
C19—N11—C15118.94 (17)C41—C42—C43119.5 (3)
C19—N11—Mn1123.75 (13)C41—C42—H42120.3
C15—N11—Mn1117.23 (13)C43—C42—H42120.3
C20—N20—C24118.28 (17)C42—C43—C44117.2 (3)
C20—N20—Mn1123.43 (13)C42—C43—H43121.4
C24—N20—Mn1118.28 (11)C44—C43—H43121.4
N20—C20—C21123.3 (2)N40—C44—C43124.8 (3)
N20—C20—H20118.3N40—C44—H44117.6
C21—C20—H20118.3C43—C44—H44117.6
C22—C21—C20118.4 (2)
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+2, y+1, z+1.

Experimental details

Crystal data
Chemical formula[Mn(NCS)2(C10H8N2)2]·C10H8N2
Mr639.65
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)14.5263 (6), 13.5383 (4), 16.0726 (7)
β (°) 105.535 (3)
V3)3045.4 (2)
Z4
Radiation typeMo Kα
µ (mm1)0.61
Crystal size (mm)0.32 × 0.19 × 0.07
Data collection
DiffractometerStoe IPDS2
Absorption correctionNumerical
(X-SHAPE and X-RED32; Stoe & Cie, 2008)
Tmin, Tmax0.820, 0.919
No. of measured, independent and
observed [I > 2σ(I)] reflections
41565, 6630, 5766
Rint0.037
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.041, 0.094, 1.08
No. of reflections6630
No. of parameters389
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.27, 0.35

Computer programs: X-AREA (Stoe & Cie, 2008), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), XP in SHELXTL (Sheldrick, 2008) and DIAMOND (Brandenburg, 1999), publCIF (Westrip, 2010).

 

Acknowledgements

We gratefully acknowledge financial support by the DFG (project No. NA 720/5–1) and the State of Schleswig–Holstein. We thank Professor Dr Wolfgang Bensch for access to his experimental facilities.

References

First citationBrandenburg, K. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationMałecki, J. G., Machura, B., Świtlicka, A., Groń, T. & Bałanda, M. (2011). Polyhedron, 30, 746–753.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStoe & Cie (2008). X-AREA, X-RED32 and X-SHAPE. Stoe & Cie, Darmstadt, Germany.  Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds