inorganic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of the coordination polymer [FeIII2{PtII(CN)4}3]

aNational Taras Shevchenko University, Department of Chemistry, Volodymyrska str. 64, 01601 Kyiv, Ukraine, bDepartamento de Fisica Aplicada, Universitat Politecnica de Valencia, Camino de Vera s/n, 46022 Valencia, Spain, and cInstitut de Ciencia Molecular (ICMol), Departament de Quimica Inorganica, Universitat de Valencia, C/Catedratico José Beltran Martinez, 2, 46980, Paterna, Valencia, Spain
*Correspondence e-mail: mcs@univ.kiev.ua

Edited by M. Weil, Vienna University of Technology, Austria (Received 19 November 2014; accepted 28 November 2014; online 1 January 2015)

The title complex, poly[dodeca-μ-cyanido-diiron(III)triplat­inum(II)], [FeIII2{PtII(CN)4}3], has a three-dimensional polymeric structure. It is built-up from square-planar [PtII(CN)4]2− anions (point group symmetry 2/m) bridging cationic [FeIIIPtII(CN)4]+ layers extending in the bc plane. The FeII atoms of the layers are located on inversion centres and exhibit an octa­hedral coordination sphere defined by six N atoms of cyanide ligands, while the PtII atoms are located on twofold rotation axes and are surrounded by four C atoms of the cyanide ligands in a square-planar coordination. The geometrical preferences of the two cations for octa­hedral and square-planar coordination, respectively, lead to a corrugated organisation of the layers. The distance between neighbouring [FeIIIPtII(CN)4]+ layers corresponds to the length a/2 = 8.0070 (3) Å, and the separation between two neighbouring PtII atoms of the bridging [PtII(CN)4]2− groups corresponds to the length of the c axis [7.5720 (2) Å]. The structure is porous with accessible voids of 390 Å3 per unit cell.

1. Related literature

Coordination compounds have inter­esting properties in catal­ysis (Kanderal et al., 2005[Kanderal, O. M., Kozlowski, H., Dobosz, A., Swiatek-Kozlowska, J., Meyer, F. & Fritsky, I. O. (2005). Dalton Trans. pp. 1428-1437.]; Penkova et al., 2009[Penkova, L. V., Maciąg, A., Rybak-Akimova, E. V., Haukka, M., Pavlenko, V. A., Iskenderov, T. S., Kozłowski, H., Meyer, F. & Fritsky, I. O. (2009). Inorg. Chem. 48, 6960-6971.]) or as photoactive materials (Yan et al., 2012[Yan, B., Li, Y.-Y. & Qiao, X.-F. (2012). Microporous Mesoporous Mater. 158, 129-136.]). Magnetically active polycyanidometallate network complexes of FeII [FeIIL2{MI(CN)2}2] or [FeIIL2{MII(CN)4}] (MI = Ag, Au; MII = Ni, Pd, Pt; L = N-heterocyclic ligand) have been studied because they show versatile polymeric structures (Piñeiro-López et al. 2014[Piñeiro-López, L., Seredyuk, M., Muñoz, M. C. & Real, J. A. (2014). Chem. Commun. pp. 1833-1835.]; Seredyuk et al., 2007[Seredyuk, M., Haukka, M., Fritsky, I. O., Kozłowski, H., Krämer, R., Pavlenko, V. A. & Gütlich, P. (2007). Dalton Trans. pp. 3183-3194.], 2009[Seredyuk, M., Gaspar, A. B., Ksenofontov, V., Verdaguer, M., Villain, F. & Gütlich, P. (2009). Inorg. Chem. 48, 6130-6141.]), spin transition (Muñoz & Real, 2013[Muñoz, M. C. & Real, J. A. (2013). Spin-Crossover Materials, edited by M. A. Halcrow, pp. 121-146: London: John Wiley & Sons Ltd.]) and functionalities such as sorption–desorption of organic and inorganic mol­ecules (Muñoz & Real, 2013[Muñoz, M. C. & Real, J. A. (2013). Spin-Crossover Materials, edited by M. A. Halcrow, pp. 121-146: London: John Wiley & Sons Ltd.]) or reversible chemosorption (Arcís-Castillo et al., 2013[Arcís-Castillo, Z., Muñoz-Lara, F. J., Muñoz, M. C., Aravena, D., Gaspar, A. B., Sánchez-Royo, J. F., Ruiz, E., Ohba, M., Matsuda, R., Kitagawa, S. & Real, J. A. (2013). Inorg. Chem. 52, 12777-12783.]).

2. Experimental

2.1. Crystal data

  • [Fe2Pt3(CN)12]

  • Mr = 1009.18

  • Monoclinic, C 2/m

  • a = 16.0140 (5) Å

  • b = 13.8250 (5) Å

  • c = 7.5720 (2) Å

  • β = 102.946 (2)°

  • V = 1633.78 (9) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 13.68 mm−1

  • T = 293 K

  • 0.04 × 0.04 × 0.02 mm

2.2. Data collection

  • Oxford Diffraction Gemini S Ultra diffractometer

  • Absorption correction: multi-scan (Blessing, 1995[Blessing, R. H. (1995). Acta Cryst. A51, 33-38.]) Tmin = 0.611, Tmax = 0.772

  • 3358 measured reflections

  • 1909 independent reflections

  • 1568 reflections with I > 2σ(I)

  • Rint = 0.038

2.3. Refinement

  • R[F2 > 2σ(F2)] = 0.038

  • wR(F2) = 0.106

  • S = 0.97

  • 1909 reflections

  • 71 parameters

  • Δρmax = 1.25 e Å−3

  • Δρmin = −1.33 e Å−3

Data collection: COLLECT (Nonius, 1999[Nonius (1999). COLLECT. Nonius BV, Delft, The Netherlands.]); cell refinement: SCALEPACK (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]); data reduction: DENZO (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]) and SCALEPACK; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: DIAMOND (Brandenburg, 1999[Brandenburg, K. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: WinGX (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]).

Supporting information


Synthesis and crystallization top

Single crystals of the title compound were grown using a slow diffusion technique. During the reaction time a side product had formed serendipitously due to oxidation of the initial FeII salt. One side of a multi-arm shaped vessel contained (NH4)2Fe(SO4)2·6H2O (20 mg, 51 mmol) dissolved in water (0.5 mL). The second arm contained K2[Pt(CN)4]·3H2O (22 mg, 51 mmol) in water (0.5 ml). The vessel was filled with a water/methanol (1:1) solution. Square shaped orange crystals suitable for single crystal X-ray analysis were obtained after several weeks.

Refinement top

The highest and lowest remaining electron density are located 3.66 and 0.83 Å, respectively, from the Pt atom. The highest electron densities are connected with positions in the voids of the framework. However, modelling of the electron density e.g. under consideration of disordered (partially occupied) water molecules lead to implausible models.

Related literature top

Coordination compounds have interesting properties in catalysis (Kanderal et al., 2005; Penkova et al., 2009) or as photoactive materials (Yan et al., 2012). Magnetically active polycyanidometallate network complexes of FeII [FeIIL2{MI(CN)2}2] or [FeIIL2{MII(CN)4}] (MI = Ag, Au; MII = Ni, Pd, Pt; L = N-heterocyclic ligand) have been studied because they show versatile polymeric structures (Piñeiro-López et al. 2014; Seredyuk et al., 2007, 2009), spin transition (Muñoz & Real, 2013) and functionalities such as sorption–desorption of organic and inorganic molecules (Muñoz & Real, 2013) or reversible chemosorption (Arcís-Castillo et al., 2013).

Structure description top

Coordination compounds have interesting properties in catalysis (Kanderal et al., 2005; Penkova et al., 2009) or as photoactive materials (Yan et al., 2012). Magnetically active polycyanidometallate network complexes of FeII [FeIIL2{MI(CN)2}2] or [FeIIL2{MII(CN)4}] (MI = Ag, Au; MII = Ni, Pd, Pt; L = N-heterocyclic ligand) have been studied because they show versatile polymeric structures (Piñeiro-López et al. 2014; Seredyuk et al., 2007, 2009), spin transition (Muñoz & Real, 2013) and functionalities such as sorption–desorption of organic and inorganic molecules (Muñoz & Real, 2013) or reversible chemosorption (Arcís-Castillo et al., 2013).

Synthesis and crystallization top

Single crystals of the title compound were grown using a slow diffusion technique. During the reaction time a side product had formed serendipitously due to oxidation of the initial FeII salt. One side of a multi-arm shaped vessel contained (NH4)2Fe(SO4)2·6H2O (20 mg, 51 mmol) dissolved in water (0.5 mL). The second arm contained K2[Pt(CN)4]·3H2O (22 mg, 51 mmol) in water (0.5 ml). The vessel was filled with a water/methanol (1:1) solution. Square shaped orange crystals suitable for single crystal X-ray analysis were obtained after several weeks.

Refinement details top

The highest and lowest remaining electron density are located 3.66 and 0.83 Å, respectively, from the Pt atom. The highest electron densities are connected with positions in the voids of the framework. However, modelling of the electron density e.g. under consideration of disordered (partially occupied) water molecules lead to implausible models.

Computing details top

Data collection: COLLECT (Nonius, 1999); cell refinement: SCALEPACK (Otwinowski & Minor, 1997); data reduction: DENZO and SCALEPACK (Otwinowski & Minor, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 1999); software used to prepare material for publication: WinGX (Farrugia, 2012).

Figures top
[Figure 1] Fig. 1. Displacement ellipsoid plot (30% probability level) of the principal building units of the structure of the title compound. [Symmetry codes: (i) 1/2 + x, 1/2 + y, 1 + z; (ii) 0.5 – x, 1/2 + y, 1 – z, (iii) x, 1 – y, 1 + z.]
[Figure 2] Fig. 2. A fragment of three-dimentional coordination polymer of the title compound in a perspective view along c. Polyhedra correspond to FeN6 and PtC4 chromophores.
Poly[dodeca-µ-cyanido-diiron(III)triplatinum(II)] top
Crystal data top
[Fe2Pt3(CN)12]F(000) = 884
Mr = 1009.18Dx = 2.051 Mg m3
Monoclinic, C2/mMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2yCell parameters from 200 reflections
a = 16.0140 (5) Åθ = 12–20°
b = 13.8250 (5) ŵ = 13.68 mm1
c = 7.5720 (2) ÅT = 293 K
β = 102.946 (2)°Prismatic, orange
V = 1633.78 (9) Å30.04 × 0.04 × 0.02 mm
Z = 2
Data collection top
Oxford Diffraction Gemini S Ultra
diffractometer
1909 independent reflections
Radiation source: fine-focus sealed tube1568 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.038
ω scansθmax = 27.5°, θmin = 3.0°
Absorption correction: multi-scan
(Blessing, 1995)
h = 2020
Tmin = 0.611, Tmax = 0.772k = 1716
3358 measured reflectionsl = 99
Refinement top
Refinement on F20 constraints
Least-squares matrix: fullPrimary atom site location: structure-invariant direct methods
R[F2 > 2σ(F2)] = 0.038Secondary atom site location: difference Fourier map
wR(F2) = 0.106 w = 1/[σ2(Fo2) + (0.0615P)2 + 15.455P]
where P = (Fo2 + 2Fc2)/3
S = 0.97(Δ/σ)max < 0.001
1909 reflectionsΔρmax = 1.25 e Å3
71 parametersΔρmin = 1.33 e Å3
0 restraints
Crystal data top
[Fe2Pt3(CN)12]V = 1633.78 (9) Å3
Mr = 1009.18Z = 2
Monoclinic, C2/mMo Kα radiation
a = 16.0140 (5) ŵ = 13.68 mm1
b = 13.8250 (5) ÅT = 293 K
c = 7.5720 (2) Å0.04 × 0.04 × 0.02 mm
β = 102.946 (2)°
Data collection top
Oxford Diffraction Gemini S Ultra
diffractometer
1909 independent reflections
Absorption correction: multi-scan
(Blessing, 1995)
1568 reflections with I > 2σ(I)
Tmin = 0.611, Tmax = 0.772Rint = 0.038
3358 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0380 restraints
wR(F2) = 0.106 w = 1/[σ2(Fo2) + (0.0615P)2 + 15.455P]
where P = (Fo2 + 2Fc2)/3
S = 0.97Δρmax = 1.25 e Å3
1909 reflectionsΔρmin = 1.33 e Å3
71 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Pt10.00000.00000.00000.02376 (17)
Pt20.19452 (3)0.50000.47749 (5)0.02524 (16)
Fe0.25000.25000.00000.0215 (3)
N10.1335 (5)0.1622 (5)0.0284 (10)0.0368 (17)
N20.2081 (6)0.3449 (5)0.1843 (10)0.0400 (18)
N30.3039 (6)0.1577 (5)0.2273 (10)0.0385 (17)
C10.0859 (5)0.1023 (6)0.0190 (12)0.0310 (17)
C20.2001 (6)0.4002 (6)0.2915 (11)0.0335 (19)
C30.3072 (6)0.1012 (6)0.3373 (10)0.0312 (18)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Pt10.0208 (3)0.0167 (3)0.0343 (3)0.0000.0073 (2)0.000
Pt20.0389 (3)0.0182 (2)0.0195 (2)0.0000.00824 (18)0.000
Fe0.0294 (8)0.0165 (7)0.0199 (7)0.0040 (6)0.0083 (6)0.0004 (5)
N10.041 (4)0.026 (4)0.042 (4)0.009 (3)0.008 (4)0.002 (3)
N20.056 (5)0.030 (4)0.038 (4)0.004 (4)0.017 (4)0.006 (3)
N30.053 (5)0.026 (4)0.037 (4)0.002 (4)0.011 (4)0.006 (3)
C10.028 (4)0.023 (4)0.043 (4)0.000 (3)0.011 (4)0.004 (3)
C20.050 (6)0.026 (4)0.026 (4)0.003 (4)0.012 (4)0.001 (3)
C30.045 (5)0.021 (4)0.025 (4)0.001 (4)0.004 (4)0.000 (3)
Geometric parameters (Å, º) top
Pt1—C12.000 (8)Fe—N22.130 (7)
Pt1—C1i2.000 (8)Fe—N3vii2.161 (7)
Pt1—C1ii2.000 (8)Fe—N32.161 (7)
Pt1—C1iii2.000 (8)Fe—N1vii2.195 (7)
Pt2—C3iv1.986 (8)Fe—N12.195 (7)
Pt2—C3v1.986 (8)N1—C11.139 (10)
Pt2—C21.988 (8)N2—C21.143 (11)
Pt2—C2vi1.988 (8)N3—C31.134 (10)
Fe—N2vii2.130 (7)C3—Pt2v1.986 (8)
C1—Pt1—C1i90.0 (5)N3vii—Fe—N3180.0 (3)
C1—Pt1—C1ii180.0 (6)N2vii—Fe—N1vii91.1 (3)
C1i—Pt1—C1ii90.0 (5)N2—Fe—N1vii88.9 (3)
C1—Pt1—C1iii90.0 (5)N3vii—Fe—N1vii86.0 (3)
C1i—Pt1—C1iii180.0 (6)N3—Fe—N1vii94.0 (3)
C1ii—Pt1—C1iii90.0 (5)N2vii—Fe—N188.9 (3)
C3iv—Pt2—C3v89.6 (4)N2—Fe—N191.1 (3)
C3iv—Pt2—C2178.1 (4)N3vii—Fe—N194.0 (3)
C3v—Pt2—C291.2 (3)N3—Fe—N186.0 (3)
C3iv—Pt2—C2vi91.2 (3)N1vii—Fe—N1180.0 (2)
C3v—Pt2—C2vi178.1 (4)C1—N1—Fe164.2 (7)
C2—Pt2—C2vi87.9 (5)C2—N2—Fe168.3 (8)
N2vii—Fe—N2180.0 (5)C3—N3—Fe159.4 (8)
N2vii—Fe—N3vii88.3 (3)N1—C1—Pt1178.3 (7)
N2—Fe—N3vii91.7 (3)N2—C2—Pt2175.9 (9)
N2vii—Fe—N391.7 (3)N3—C3—Pt2v176.4 (8)
N2—Fe—N388.3 (3)
Symmetry codes: (i) x, y, z; (ii) x, y, z; (iii) x, y, z; (iv) x+1/2, y+1/2, z+1; (v) x+1/2, y+1/2, z+1; (vi) x, y+1, z; (vii) x+1/2, y+1/2, z.

Experimental details

Crystal data
Chemical formula[Fe2Pt3(CN)12]
Mr1009.18
Crystal system, space groupMonoclinic, C2/m
Temperature (K)293
a, b, c (Å)16.0140 (5), 13.8250 (5), 7.5720 (2)
β (°) 102.946 (2)
V3)1633.78 (9)
Z2
Radiation typeMo Kα
µ (mm1)13.68
Crystal size (mm)0.04 × 0.04 × 0.02
Data collection
DiffractometerOxford Diffraction Gemini S Ultra
Absorption correctionMulti-scan
(Blessing, 1995)
Tmin, Tmax0.611, 0.772
No. of measured, independent and
observed [I > 2σ(I)] reflections
3358, 1909, 1568
Rint0.038
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.038, 0.106, 0.97
No. of reflections1909
No. of parameters71
w = 1/[σ2(Fo2) + (0.0615P)2 + 15.455P]
where P = (Fo2 + 2Fc2)/3
Δρmax, Δρmin (e Å3)1.25, 1.33

Computer programs: COLLECT (Nonius, 1999), DENZO and SCALEPACK (Otwinowski & Minor, 1997), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), DIAMOND (Brandenburg, 1999), WinGX (Farrugia, 2012).

 

Acknowledgements

This study was supported by the Spanish Ministerio de Economía y Competitividad (MINECO) and FEDER funds (CTQ2013–46275-P) and Generalitat Valenciana (PROMETEO/2012/049). MS thanks the EU for a Marie Curie fellowship (IIF-253254).

References

First citationArcís-Castillo, Z., Muñoz-Lara, F. J., Muñoz, M. C., Aravena, D., Gaspar, A. B., Sánchez-Royo, J. F., Ruiz, E., Ohba, M., Matsuda, R., Kitagawa, S. & Real, J. A. (2013). Inorg. Chem. 52, 12777–12783.  Web of Science PubMed Google Scholar
First citationBlessing, R. H. (1995). Acta Cryst. A51, 33–38.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationBrandenburg, K. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationKanderal, O. M., Kozlowski, H., Dobosz, A., Swiatek-Kozlowska, J., Meyer, F. & Fritsky, I. O. (2005). Dalton Trans. pp. 1428–1437.  Web of Science CrossRef Google Scholar
First citationMuñoz, M. C. & Real, J. A. (2013). Spin-Crossover Materials, edited by M. A. Halcrow, pp. 121–146: London: John Wiley & Sons Ltd.  Google Scholar
First citationNonius (1999). COLLECT. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationPenkova, L. V., Maciąg, A., Rybak-Akimova, E. V., Haukka, M., Pavlenko, V. A., Iskenderov, T. S., Kozłowski, H., Meyer, F. & Fritsky, I. O. (2009). Inorg. Chem. 48, 6960–6971.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationPiñeiro-López, L., Seredyuk, M., Muñoz, M. C. & Real, J. A. (2014). Chem. Commun. pp. 1833-1835.  Google Scholar
First citationSeredyuk, M., Gaspar, A. B., Ksenofontov, V., Verdaguer, M., Villain, F. & Gütlich, P. (2009). Inorg. Chem. 48, 6130–6141.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSeredyuk, M., Haukka, M., Fritsky, I. O., Kozłowski, H., Krämer, R., Pavlenko, V. A. & Gütlich, P. (2007). Dalton Trans. pp. 3183–3194.  Web of Science CSD CrossRef PubMed Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYan, B., Li, Y.-Y. & Qiao, X.-F. (2012). Microporous Mesoporous Mater. 158, 129–136.  Web of Science CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds