research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of fac-tri­chlorido­[tris­­(pyridin-2-yl-N)amine]­chromium(III)

aToyama National College of Technology, Imizu Campus, 1-2 Ebie-neriya, Imizu city, Toyama 933-0293, Japan, bComprehensive Analysis Center for Science, Saitama University, Shimo-Okubo 255, Sakura-ku, Saitama 338-8570, Japan, cDepartment of Chemistry, Graduate School of Science and Engineering, Saitama University, Shimo-Okubo 255, Sakura-ku, Saitama 338-8570, Japan, and dDepartment of Chemistry, Graduate School of Science, Osaka University, Machikaneyama-cyo 1-1, Toyonaka, Osaka, Japan
*Correspondence e-mail: fuji@chem.saitama-u.ac.jp

Edited by M. Weil, Vienna University of Technology, Austria (Received 20 November 2014; accepted 10 December 2014; online 1 January 2015)

In the neutral complex mol­ecule of the title compound, fac-[CrCl3(tpa)] [tpa is tris­(pyridin-2-yl)amine; C15H12N4], the CrIII ion is bonded to three N atoms that are constrained to a facial arrangement by the tpa ligand and by three chloride ligands, leading to a distorted octa­hedral coordination sphere. The average Cr—N and Cr—Cl bond lengths are 2.086 (5) and 2.296 (4) Å, respectively. The complex mol­ecule is located on a mirror plane. In the crystal, a combination of C—H⋯N and C—H⋯Cl hydrogen-bonding inter­actions connect the mol­ecules into a three-dimensional network.

1. Chemical context

One aspect of solvatochromism is the dependence of ligand-field parameters on the solvent coordination sphere. This has been demonstrated by measuring the ligand-field absorption spectra and/or multinuclear NMR spectra for several types of CrIII complexes in previous studies (Kaizaki, 1996[Kaizaki, S. (1996). Trends Inorg. Chem. 6, 105-136.]; Kaizaki & Takemoto, 1990[Kaizaki, S. & Takemoto, H. (1990). Inorg. Chem. 29, 4960-4964.]; Terasaki & Kaizaki, 1995[Terasaki, Y. & Kaizaki, S. (1995). J. Chem. Soc. Dalton Trans. pp. 2837-2841.]; Terasaki et al., 1999[Terasaki, Y., Fujihara, T., Schönherr, T. & Kaizaki, S. (1999). Inorg. Chim. Acta, 295, 84-90.]; Yamaguchi-Terasaki et al., 2007a[Yamaguchi-Terasaki, Y., Fujihara, T., Nagasawa, A. & Kaizaki, S. (2007a). Acta Cryst. E63, m593-m595.],b[Yamaguchi-Terasaki, Y., Fujihara, A. & Kaizaki, S. (2007b). Eur. J. Inorg. Chem. 21, 3394-3399.],c[Yamaguchi-Terasaki, Y., Fujihara, A. & Kaizaki, S. (2007c). Eur. J. Inorg. Chem. 21, 3400-3404.]). As a part of the above-mentioned systematic investigations, we report here the crystal structure of the title compound, fac-[CrCl3(tpa)], (I)[link], where tpa is tris­(pyridin-2-yl)amine.

[Scheme 1]

2. Structural commentary

The mol­ecular structure of (I)[link] is illustrated in Fig. 1[link]. The CrIII ion is coordinated by three N atoms that are constrained to a facial arrangement by the tpa ligand and three chloride ligands in a slightly distorted octa­hedral geometry. The entire complex mol­ecule is located on a mirror plane. The average Cr—N bond length of 2.086 (5) Å is comparable to that in the related tpa complex cation fac-[Cr(tpa)(H2O)3]3+ [2.040 (1) Å; Terasaki et al., 2004[Terasaki, Y., Fujihara, T., Nagasawa, A. & Kaizaki, S. (2004). Acta Cryst. E60, m854-m856.]]. In addition, the average Cr—Cl bond length of the coordinating chlorine atoms being in trans positions to the N atoms [2.296 (4) Å] is similar to those found for other pyridine-chromium(III) complexes, such as mer-[CrCl3(terpy)] [terpy is 2,2′,2′′-terpyridine; C15H11N3; 2.292 (1) Å] (Cloete et al., 2007[Cloete, N., Visser, H. G. & Roodt, A. (2007). Acta Cryst. E63, m45-m47.]); mer-[CrCl3py3] [py is pyridine, C5H5N; 2.320 (7) Å] (Howard & Hardcastle, 1985[Howard, S. A. & Hardcastle, K. I. (1985). J. Crystallogr. Spectrosc. Res. 15, 643-649.]) or mer-[CrCl3(Etpy)3] [Etpy is 4-ethyl­pyridine, C7H9N3; 2.320 (7) Å] (Modec et al., 2000[Modec, B., Brenčnič, J. V. & Giester, G. (2000). J. Chem. Crystallogr. 30, 345-349.]). All bond lengths and angles within the pyridine rings are within normal ranges. The dihedral angles between the least-squares planes of the pyridine rings are 58.33 (6) and 63.37 (8)°.

[Figure 1]
Figure 1
The mol­ecular structure of (I)[link]. Displacement ellipsoids are drawn at the 50% probability level. [Symmetry code: (′) x, −y + [{1\over 2}], z.]

3. Supra­molecular features

The chlorine atoms act as hydrogen-bond acceptors, forming inter­molecular C—H⋯Cl hydrogen bonds with the pyridine rings (Fig. 2[link], Table 1[link]). In addition, C—H⋯N hydrogen-bonding inter­actions are also present, consolidating the mol­ecules into a three-dimensional network.

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C7—H7⋯N1i 0.95 2.75 3.578 (5) 146
C7—H7⋯N1ii 0.95 2.75 3.578 (5) 146
C9—H9⋯Cl1iii 0.95 2.82 3.447 (4) 124
C9—H9⋯Cl1iv 0.95 2.82 3.447 (4) 124
C4—H4⋯Cl2v 0.95 2.77 3.534 (4) 138
Symmetry codes: (i) [x, -y+{\script{1\over 2}}, z-1]; (ii) x, y, z-1; (iii) [x+{\script{1\over 2}}, y, -z+{\script{3\over 2}}]; (iv) [x+{\script{1\over 2}}, -y+{\script{1\over 2}}, -z+{\script{3\over 2}}]; (v) [x+{\script{1\over 2}}, -y+{\script{1\over 2}}, -z+{\script{5\over 2}}].
[Figure 2]
Figure 2
Hydrogen-bonding inter­actions in the crystal structure of (I)[link], shown as black dashed lines. [Symmetry codes: (ii) x, −y + [{1\over 2}], z − 1; (iii) x, y, z − 1; (iv) x + [{1\over 2}], y, −z + [{3\over 2}]; (v) x + [{1\over 2}], −y + [{1\over 2}], −z + [{3\over 2}]; (vi) x + [{1\over 2}], −y + [{1\over 2}], −z + [{5\over 2}].]

4. Synthesis and crystallization

fac-[CrCl3(tpa)] was synthesized according to a previously reported procedure (Kaizaki & Legg, 1994[Kaizaki, S. & Legg, J. I. (1994). Inorg. Chim. Acta, 218, 179-184.]). Green crystals of (I)[link] suitable for X-ray analysis were obtained by slow cooling from the reaction solution. UV–vis(DMSO): λmax() = 720 (16), 645 (37), 464 (59) nm (L mol−1 cm−1). Elemental analysis, calculated for C15H12Cl3CrN4: C, 44.31, H, 2.97, N, 13.78%; found: C, 44.29; H, 2.99; N, 13.76%.

5. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. The H atoms were placed in calculated positions, with C—H = 0.95 Å, and refined using a riding model, with Uiso(H) = 1.2Ueq.

Table 2
Experimental details

Crystal data
Chemical formula [CrCl3(C15H12N4)]
Mr 406.64
Crystal system, space group Orthorhombic, Pnma
Temperature (K) 150
a, b, c (Å) 15.152 (13), 13.704 (12), 8.014 (7)
V3) 1664 (2)
Z 4
Radiation type Mo Kα
μ (mm−1) 1.17
Crystal size (mm) 0.06 × 0.05 × 0.04
 
Data collection
Diffractometer Bruker APEXII CCD area detector
Absorption correction Multi-scan (SADABS; Bruker, 2014[Bruker (2014). APEX2, SADABS, SAINT and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.])
No. of measured, independent and observed [I > 2σ(I)] reflections 15895, 1779, 1401
Rint 0.061
(sin θ/λ)max−1) 0.625
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.038, 0.113, 1.20
No. of reflections 1779
No. of parameters 118
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.66, −0.51
Computer programs: APEX2, SAINT and XPREP (Bruker, 2014[Bruker (2014). APEX2, SADABS, SAINT and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXS2014, SHELXL2014 and XCIF (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) and ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]).

Supporting information


Computing details top

Data collection: APEX2 (Bruker, 2014); cell refinement: SAINT (Bruker, 2014); data reduction: SAINT and XPREP (Bruker, 2014); program(s) used to solve structure: SHELXS2014 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: XCIF (Sheldrick, 2008).

fac-trichlorido[tris(pyridin-2-yl-N)amine]chromium(III) top
Crystal data top
[CrCl3(C15H12N4)]Dx = 1.623 Mg m3
Mr = 406.64Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, PnmaCell parameters from 3388 reflections
a = 15.152 (13) Åθ = 2.7–26.4°
b = 13.704 (12) ŵ = 1.17 mm1
c = 8.014 (7) ÅT = 150 K
V = 1664 (2) Å3Needle, green
Z = 40.06 × 0.05 × 0.04 mm
F(000) = 820
Data collection top
Bruker APEXII CCD area-detector
diffractometer
1779 independent reflections
Radiation source: Bruker TXS fine-focus rotating anode1401 reflections with I > 2σ(I)
Bruker Helios multilayer confocal mirror monochromatorRint = 0.061
Detector resolution: 8.333 pixels mm-1θmax = 26.4°, θmin = 2.7°
φ and ω scansh = 1818
Absorption correction: multi-scan
(SADABS; Bruker, 2014)
k = 1717
l = 1010
15895 measured reflections
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.038H-atom parameters constrained
wR(F2) = 0.113 w = 1/[σ2(Fo2) + (0.0593P)2 + 0.050P]
where P = (Fo2 + 2Fc2)/3
S = 1.20(Δ/σ)max < 0.001
1779 reflectionsΔρmax = 0.66 e Å3
118 parametersΔρmin = 0.51 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Least-squares planes (x,y,z in crystal coordinates) and deviations from them (* indicates atom used to define plane)

- 0.0000 (0.0001) x + 13.7040 (0.0118) y - 0.0000 (0.0000) z = 3.4260 (0.0030)

* 0.0000 (0.0000) N2 * 0.0000 (0.0000) C6 * 0.0000 (0.0000) C7 * 0.0000 (0.0000) C8 * 0.0000 (0.0000) C9 * 0.0000 (0.0000) C10

Rms deviation of fitted atoms = 0.0000

- 0.2014 (0.0170) x - 7.1958 (0.0145) y + 6.8195 (0.0076) z = 4.9979 (0.0213)

Angle to previous plane (with approximate esd) = 58.326 ( 0.080 )

* -0.0024 (0.0017) N1_$6 * -0.0057 (0.0019) C1_$6 * 0.0081 (0.0020) C2_$6 * -0.0029 (0.0020) C3_$6 * -0.0049 (0.0019) C4_$6 * 0.0078 (0.0018) C5_$6

Rms deviation of fitted atoms = 0.0057

0.2014 (0.0171) x + 7.1958 (0.0145) y + 6.8195 (0.0076) z = 8.8847 (0.0184)

Angle to previous plane (with approximate esd) = 63.371 ( 0.081 )

* -0.0024 (0.0017) N1 * -0.0057 (0.0019) C1 * 0.0081 (0.0020) C2 * -0.0029 (0.0020) C3 * -0.0049 (0.0019) C4 * 0.0078 (0.0018) C5

Rms deviation of fitted atoms = 0.0057

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.89047 (17)0.06834 (18)1.2036 (3)0.0287 (6)
H10.82900.05681.21580.034*
C20.94935 (19)0.0033 (2)1.2726 (4)0.0336 (7)
H20.92870.05161.33360.040*
C31.0382 (2)0.0186 (2)1.2521 (4)0.0355 (7)
H31.07960.02621.29720.043*
C41.06674 (17)0.0997 (2)1.1654 (4)0.0309 (6)
H41.12790.11171.14950.037*
C51.00429 (16)0.16273 (18)1.1026 (3)0.0224 (6)
C101.0039 (2)0.25000.8449 (5)0.0239 (8)
C60.8905 (3)0.25000.6541 (5)0.0328 (9)
H60.82920.25000.62950.039*
C70.9499 (3)0.25000.5256 (5)0.0378 (10)
H70.92950.25000.41360.045*
C81.0383 (3)0.25000.5577 (5)0.0358 (10)
H81.07970.25000.46880.043*
C91.0667 (2)0.25000.7224 (5)0.0293 (9)
H91.12770.25000.74900.035*
Cl10.75326 (4)0.37578 (5)0.89695 (10)0.0388 (2)
Cl20.75220 (6)0.25001.26071 (14)0.0379 (3)
Cr10.83104 (4)0.25001.01679 (7)0.0239 (2)
N10.91747 (13)0.14774 (15)1.1195 (3)0.0225 (5)
N20.91684 (19)0.25000.8144 (4)0.0256 (7)
N31.03099 (19)0.25001.0163 (4)0.0227 (7)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0299 (13)0.0202 (13)0.0360 (16)0.0023 (11)0.0030 (12)0.0013 (12)
C20.0433 (16)0.0167 (13)0.0407 (17)0.0001 (12)0.0019 (13)0.0046 (12)
C30.0413 (16)0.0190 (14)0.0462 (18)0.0045 (12)0.0051 (13)0.0039 (13)
C40.0268 (13)0.0264 (14)0.0394 (16)0.0011 (11)0.0038 (12)0.0018 (13)
C50.0259 (13)0.0145 (13)0.0267 (14)0.0022 (10)0.0001 (10)0.0007 (10)
C100.0296 (19)0.0151 (17)0.027 (2)0.0000.0023 (16)0.000
C60.039 (2)0.024 (2)0.035 (2)0.0000.0078 (19)0.000
C70.061 (3)0.027 (2)0.026 (2)0.0000.000 (2)0.000
C80.052 (3)0.022 (2)0.034 (2)0.0000.015 (2)0.000
C90.034 (2)0.0163 (18)0.038 (2)0.0000.0086 (18)0.000
Cl10.0309 (4)0.0240 (4)0.0615 (5)0.0046 (3)0.0127 (3)0.0036 (3)
Cl20.0295 (5)0.0309 (6)0.0534 (7)0.0000.0160 (4)0.000
Cr10.0191 (3)0.0170 (3)0.0356 (4)0.0000.0005 (2)0.000
N10.0240 (11)0.0161 (10)0.0276 (12)0.0001 (8)0.0011 (9)0.0018 (9)
N20.0288 (16)0.0196 (16)0.0285 (17)0.0000.0012 (13)0.000
N30.0225 (15)0.0162 (15)0.0295 (17)0.0000.0011 (12)0.000
Geometric parameters (Å, º) top
C1—N11.344 (3)C6—C71.367 (6)
C1—C21.377 (4)C6—H60.9500
C1—H10.9500C7—C81.363 (7)
C2—C31.372 (4)C7—H70.9500
C2—H20.9500C8—C91.388 (6)
C3—C41.380 (4)C8—H80.9500
C3—H30.9500C9—H90.9500
C4—C51.376 (4)Cl1—Cr12.2983 (15)
C4—H40.9500Cl2—Cr12.2909 (19)
C5—N11.338 (3)Cr1—N22.079 (3)
C5—N31.440 (3)Cr1—N1i2.087 (2)
C10—N21.342 (4)Cr1—N12.087 (2)
C10—C91.366 (5)Cr1—Cl1i2.2983 (15)
C10—N31.434 (5)N3—C5i1.440 (3)
C6—N21.345 (5)
N1—C1—C2121.9 (3)C10—C9—C8117.9 (4)
N1—C1—H1119.1C10—C9—H9121.1
C2—C1—H1119.1C8—C9—H9121.1
C3—C2—C1119.2 (3)N2—Cr1—N1i85.14 (10)
C3—C2—H2120.4N2—Cr1—N185.14 (10)
C1—C2—H2120.4N1i—Cr1—N184.35 (13)
C2—C3—C4119.4 (3)N2—Cr1—Cl2172.72 (9)
C2—C3—H3120.3N1i—Cr1—Cl289.46 (8)
C4—C3—H3120.3N1—Cr1—Cl289.46 (8)
C5—C4—C3118.3 (3)N2—Cr1—Cl1i89.69 (8)
C5—C4—H4120.9N1i—Cr1—Cl1i171.91 (6)
C3—C4—H4120.9N1—Cr1—Cl1i89.03 (8)
N1—C5—C4122.9 (2)Cl2—Cr1—Cl1i95.12 (5)
N1—C5—N3116.9 (2)N2—Cr1—Cl189.69 (8)
C4—C5—N3120.2 (2)N1i—Cr1—Cl189.03 (8)
N2—C10—C9123.6 (4)N1—Cr1—Cl1171.91 (6)
N2—C10—N3117.1 (3)Cl2—Cr1—Cl195.12 (5)
C9—C10—N3119.3 (3)Cl1i—Cr1—Cl197.18 (7)
N2—C6—C7121.6 (4)C5—N1—C1118.3 (2)
N2—C6—H6119.2C5—N1—Cr1118.28 (17)
C7—C6—H6119.2C1—N1—Cr1123.39 (18)
C8—C7—C6120.3 (4)C10—N2—C6117.7 (3)
C8—C7—H7119.8C10—N2—Cr1118.2 (2)
C6—C7—H7119.8C6—N2—Cr1124.0 (3)
C7—C8—C9118.9 (4)C10—N3—C5112.33 (18)
C7—C8—H8120.5C10—N3—C5i112.33 (18)
C9—C8—H8120.5C5—N3—C5i112.4 (3)
N1—C1—C2—C31.4 (4)C2—C1—N1—Cr1178.7 (2)
C1—C2—C3—C41.1 (4)C9—C10—N2—C60.000 (1)
C2—C3—C4—C50.2 (4)N3—C10—N2—C6180.000 (1)
C3—C4—C5—N11.2 (4)C9—C10—N2—Cr1180.000 (1)
C3—C4—C5—N3177.9 (2)N3—C10—N2—Cr10.000 (1)
N2—C6—C7—C80.000 (1)C7—C6—N2—C100.000 (1)
C6—C7—C8—C90.000 (1)C7—C6—N2—Cr1180.000 (1)
N2—C10—C9—C80.000 (1)N2—C10—N3—C563.9 (2)
N3—C10—C9—C8180.000 (1)C9—C10—N3—C5116.1 (2)
C7—C8—C9—C100.000 (1)N2—C10—N3—C5i63.9 (2)
C4—C5—N1—C11.0 (4)C9—C10—N3—C5i116.1 (2)
N3—C5—N1—C1178.1 (2)N1—C5—N3—C1064.4 (3)
C4—C5—N1—Cr1179.9 (2)C4—C5—N3—C10116.4 (3)
N3—C5—N1—Cr11.0 (3)N1—C5—N3—C5i63.4 (4)
C2—C1—N1—C50.3 (4)C4—C5—N3—C5i115.8 (3)
Symmetry code: (i) x, y+1/2, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C7—H7···N1ii0.952.753.578 (5)146
C7—H7···N1iii0.952.753.578 (5)146
C9—H9···Cl1iv0.952.823.447 (4)124
C9—H9···Cl1v0.952.823.447 (4)124
C4—H4···Cl2vi0.952.773.534 (4)138
Symmetry codes: (ii) x, y+1/2, z1; (iii) x, y, z1; (iv) x+1/2, y, z+3/2; (v) x+1/2, y+1/2, z+3/2; (vi) x+1/2, y+1/2, z+5/2.
 

Acknowledgements

This work was supported by the programs of the Grants-in-Aid for Scientific Research (to TF, No. 23510115) from the Japan Society for the Promotion of Science.

References

First citationBruker (2014). APEX2, SADABS, SAINT and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCloete, N., Visser, H. G. & Roodt, A. (2007). Acta Cryst. E63, m45–m47.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationHoward, S. A. & Hardcastle, K. I. (1985). J. Crystallogr. Spectrosc. Res. 15, 643–649.  CSD CrossRef CAS Web of Science Google Scholar
First citationKaizaki, S. (1996). Trends Inorg. Chem. 6, 105–136.  Google Scholar
First citationKaizaki, S. & Legg, J. I. (1994). Inorg. Chim. Acta, 218, 179–184.  CrossRef CAS Web of Science Google Scholar
First citationKaizaki, S. & Takemoto, H. (1990). Inorg. Chem. 29, 4960–4964.  CrossRef CAS Web of Science Google Scholar
First citationModec, B., Brenčnič, J. V. & Giester, G. (2000). J. Chem. Crystallogr. 30, 345–349.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTerasaki, Y., Fujihara, T., Nagasawa, A. & Kaizaki, S. (2004). Acta Cryst. E60, m854–m856.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationTerasaki, Y., Fujihara, T., Schönherr, T. & Kaizaki, S. (1999). Inorg. Chim. Acta, 295, 84–90.  Web of Science CrossRef CAS Google Scholar
First citationTerasaki, Y. & Kaizaki, S. (1995). J. Chem. Soc. Dalton Trans. pp. 2837–2841.  CrossRef Web of Science Google Scholar
First citationYamaguchi-Terasaki, Y., Fujihara, A. & Kaizaki, S. (2007b). Eur. J. Inorg. Chem. 21, 3394–3399.  Google Scholar
First citationYamaguchi-Terasaki, Y., Fujihara, A. & Kaizaki, S. (2007c). Eur. J. Inorg. Chem. 21, 3400–3404.  Google Scholar
First citationYamaguchi-Terasaki, Y., Fujihara, T., Nagasawa, A. & Kaizaki, S. (2007a). Acta Cryst. E63, m593–m595.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds