research communications
fac-trichlorido[tris(pyridin-2-yl-N)amine]chromium(III)
ofaToyama National College of Technology, Imizu Campus, 1-2 Ebie-neriya, Imizu city, Toyama 933-0293, Japan, bComprehensive Analysis Center for Science, Saitama University, Shimo-Okubo 255, Sakura-ku, Saitama 338-8570, Japan, cDepartment of Chemistry, Graduate School of Science and Engineering, Saitama University, Shimo-Okubo 255, Sakura-ku, Saitama 338-8570, Japan, and dDepartment of Chemistry, Graduate School of Science, Osaka University, Machikaneyama-cyo 1-1, Toyonaka, Osaka, Japan
*Correspondence e-mail: fuji@chem.saitama-u.ac.jp
In the neutral complex molecule of the title compound, fac-[CrCl3(tpa)] [tpa is tris(pyridin-2-yl)amine; C15H12N4], the CrIII ion is bonded to three N atoms that are constrained to a facial arrangement by the tpa ligand and by three chloride ligands, leading to a distorted octahedral coordination sphere. The average Cr—N and Cr—Cl bond lengths are 2.086 (5) and 2.296 (4) Å, respectively. The complex molecule is located on a mirror plane. In the crystal, a combination of C—H⋯N and C—H⋯Cl hydrogen-bonding interactions connect the molecules into a three-dimensional network.
Keywords: crystal structure; chloride ligand; pyridine ligand; chromium(III) complex; facial structural arrangement..
CCDC reference: 1038512
1. Chemical context
One aspect of solvatochromism is the dependence of ligand-field parameters on the solvent coordination sphere. This has been demonstrated by measuring the ligand-field absorption spectra and/or multinuclear NMR spectra for several types of CrIII complexes in previous studies (Kaizaki, 1996; Kaizaki & Takemoto, 1990; Terasaki & Kaizaki, 1995; Terasaki et al., 1999; Yamaguchi-Terasaki et al., 2007a,b,c). As a part of the above-mentioned systematic investigations, we report here the of the title compound, fac-[CrCl3(tpa)], (I), where tpa is tris(pyridin-2-yl)amine.
2. Structural commentary
The molecular structure of (I) is illustrated in Fig. 1. The CrIII ion is coordinated by three N atoms that are constrained to a facial arrangement by the tpa ligand and three chloride ligands in a slightly distorted octahedral geometry. The entire complex molecule is located on a mirror plane. The average Cr—N bond length of 2.086 (5) Å is comparable to that in the related tpa complex cation fac-[Cr(tpa)(H2O)3]3+ [2.040 (1) Å; Terasaki et al., 2004]. In addition, the average Cr—Cl bond length of the coordinating chlorine atoms being in trans positions to the N atoms [2.296 (4) Å] is similar to those found for other pyridine-chromium(III) complexes, such as mer-[CrCl3(terpy)] [terpy is 2,2′,2′′-terpyridine; C15H11N3; 2.292 (1) Å] (Cloete et al., 2007); mer-[CrCl3py3] [py is pyridine, C5H5N; 2.320 (7) Å] (Howard & Hardcastle, 1985) or mer-[CrCl3(Etpy)3] [Etpy is 4-ethylpyridine, C7H9N3; 2.320 (7) Å] (Modec et al., 2000). All bond lengths and angles within the pyridine rings are within normal ranges. The dihedral angles between the least-squares planes of the pyridine rings are 58.33 (6) and 63.37 (8)°.
3. Supramolecular features
The chlorine atoms act as hydrogen-bond acceptors, forming intermolecular C—H⋯Cl hydrogen bonds with the pyridine rings (Fig. 2, Table 1). In addition, C—H⋯N hydrogen-bonding interactions are also present, consolidating the molecules into a three-dimensional network.
4. Synthesis and crystallization
fac-[CrCl3(tpa)] was synthesized according to a previously reported procedure (Kaizaki & Legg, 1994). Green crystals of (I) suitable for X-ray analysis were obtained by slow cooling from the reaction solution. UV–vis(DMSO): λmax(∊) = 720 (16), 645 (37), 464 (59) nm (L mol−1 cm−1). Elemental analysis, calculated for C15H12Cl3CrN4: C, 44.31, H, 2.97, N, 13.78%; found: C, 44.29; H, 2.99; N, 13.76%.
5. Refinement
Crystal data, data collection and structure . The H atoms were placed in calculated positions, with C—H = 0.95 Å, and refined using a riding model, with Uiso(H) = 1.2Ueq.
details are summarized in Table 2Supporting information
CCDC reference: 1038512
https://doi.org/10.1107/S2056989014027066/wm5095sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2056989014027066/wm5095Isup2.hkl
Data collection: APEX2 (Bruker, 2014); cell
SAINT (Bruker, 2014); data reduction: SAINT and XPREP (Bruker, 2014); program(s) used to solve structure: SHELXS2014 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: XCIF (Sheldrick, 2008).[CrCl3(C15H12N4)] | Dx = 1.623 Mg m−3 |
Mr = 406.64 | Mo Kα radiation, λ = 0.71073 Å |
Orthorhombic, Pnma | Cell parameters from 3388 reflections |
a = 15.152 (13) Å | θ = 2.7–26.4° |
b = 13.704 (12) Å | µ = 1.17 mm−1 |
c = 8.014 (7) Å | T = 150 K |
V = 1664 (2) Å3 | Needle, green |
Z = 4 | 0.06 × 0.05 × 0.04 mm |
F(000) = 820 |
Bruker APEXII CCD area-detector diffractometer | 1779 independent reflections |
Radiation source: Bruker TXS fine-focus rotating anode | 1401 reflections with I > 2σ(I) |
Bruker Helios multilayer confocal mirror monochromator | Rint = 0.061 |
Detector resolution: 8.333 pixels mm-1 | θmax = 26.4°, θmin = 2.7° |
φ and ω scans | h = −18→18 |
Absorption correction: multi-scan (SADABS; Bruker, 2014) | k = −17→17 |
l = −10→10 | |
15895 measured reflections |
Refinement on F2 | 0 restraints |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.038 | H-atom parameters constrained |
wR(F2) = 0.113 | w = 1/[σ2(Fo2) + (0.0593P)2 + 0.050P] where P = (Fo2 + 2Fc2)/3 |
S = 1.20 | (Δ/σ)max < 0.001 |
1779 reflections | Δρmax = 0.66 e Å−3 |
118 parameters | Δρmin = −0.51 e Å−3 |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. Least-squares planes (x,y,z in crystal coordinates) and deviations from them (* indicates atom used to define plane) - 0.0000 (0.0001) x + 13.7040 (0.0118) y - 0.0000 (0.0000) z = 3.4260 (0.0030) * 0.0000 (0.0000) N2 * 0.0000 (0.0000) C6 * 0.0000 (0.0000) C7 * 0.0000 (0.0000) C8 * 0.0000 (0.0000) C9 * 0.0000 (0.0000) C10 Rms deviation of fitted atoms = 0.0000 - 0.2014 (0.0170) x - 7.1958 (0.0145) y + 6.8195 (0.0076) z = 4.9979 (0.0213) Angle to previous plane (with approximate esd) = 58.326 ( 0.080 ) * -0.0024 (0.0017) N1_$6 * -0.0057 (0.0019) C1_$6 * 0.0081 (0.0020) C2_$6 * -0.0029 (0.0020) C3_$6 * -0.0049 (0.0019) C4_$6 * 0.0078 (0.0018) C5_$6 Rms deviation of fitted atoms = 0.0057 0.2014 (0.0171) x + 7.1958 (0.0145) y + 6.8195 (0.0076) z = 8.8847 (0.0184) Angle to previous plane (with approximate esd) = 63.371 ( 0.081 ) * -0.0024 (0.0017) N1 * -0.0057 (0.0019) C1 * 0.0081 (0.0020) C2 * -0.0029 (0.0020) C3 * -0.0049 (0.0019) C4 * 0.0078 (0.0018) C5 Rms deviation of fitted atoms = 0.0057 |
x | y | z | Uiso*/Ueq | ||
C1 | 0.89047 (17) | 0.06834 (18) | 1.2036 (3) | 0.0287 (6) | |
H1 | 0.8290 | 0.0568 | 1.2158 | 0.034* | |
C2 | 0.94935 (19) | 0.0033 (2) | 1.2726 (4) | 0.0336 (7) | |
H2 | 0.9287 | −0.0516 | 1.3336 | 0.040* | |
C3 | 1.0382 (2) | 0.0186 (2) | 1.2521 (4) | 0.0355 (7) | |
H3 | 1.0796 | −0.0262 | 1.2972 | 0.043* | |
C4 | 1.06674 (17) | 0.0997 (2) | 1.1654 (4) | 0.0309 (6) | |
H4 | 1.1279 | 0.1117 | 1.1495 | 0.037* | |
C5 | 1.00429 (16) | 0.16273 (18) | 1.1026 (3) | 0.0224 (6) | |
C10 | 1.0039 (2) | 0.2500 | 0.8449 (5) | 0.0239 (8) | |
C6 | 0.8905 (3) | 0.2500 | 0.6541 (5) | 0.0328 (9) | |
H6 | 0.8292 | 0.2500 | 0.6295 | 0.039* | |
C7 | 0.9499 (3) | 0.2500 | 0.5256 (5) | 0.0378 (10) | |
H7 | 0.9295 | 0.2500 | 0.4136 | 0.045* | |
C8 | 1.0383 (3) | 0.2500 | 0.5577 (5) | 0.0358 (10) | |
H8 | 1.0797 | 0.2500 | 0.4688 | 0.043* | |
C9 | 1.0667 (2) | 0.2500 | 0.7224 (5) | 0.0293 (9) | |
H9 | 1.1277 | 0.2500 | 0.7490 | 0.035* | |
Cl1 | 0.75326 (4) | 0.37578 (5) | 0.89695 (10) | 0.0388 (2) | |
Cl2 | 0.75220 (6) | 0.2500 | 1.26071 (14) | 0.0379 (3) | |
Cr1 | 0.83104 (4) | 0.2500 | 1.01679 (7) | 0.0239 (2) | |
N1 | 0.91747 (13) | 0.14774 (15) | 1.1195 (3) | 0.0225 (5) | |
N2 | 0.91684 (19) | 0.2500 | 0.8144 (4) | 0.0256 (7) | |
N3 | 1.03099 (19) | 0.2500 | 1.0163 (4) | 0.0227 (7) |
U11 | U22 | U33 | U12 | U13 | U23 | |
C1 | 0.0299 (13) | 0.0202 (13) | 0.0360 (16) | −0.0023 (11) | 0.0030 (12) | 0.0013 (12) |
C2 | 0.0433 (16) | 0.0167 (13) | 0.0407 (17) | 0.0001 (12) | 0.0019 (13) | 0.0046 (12) |
C3 | 0.0413 (16) | 0.0190 (14) | 0.0462 (18) | 0.0045 (12) | −0.0051 (13) | 0.0039 (13) |
C4 | 0.0268 (13) | 0.0264 (14) | 0.0394 (16) | 0.0011 (11) | −0.0038 (12) | −0.0018 (13) |
C5 | 0.0259 (13) | 0.0145 (13) | 0.0267 (14) | 0.0022 (10) | −0.0001 (10) | −0.0007 (10) |
C10 | 0.0296 (19) | 0.0151 (17) | 0.027 (2) | 0.000 | 0.0023 (16) | 0.000 |
C6 | 0.039 (2) | 0.024 (2) | 0.035 (2) | 0.000 | −0.0078 (19) | 0.000 |
C7 | 0.061 (3) | 0.027 (2) | 0.026 (2) | 0.000 | 0.000 (2) | 0.000 |
C8 | 0.052 (3) | 0.022 (2) | 0.034 (2) | 0.000 | 0.015 (2) | 0.000 |
C9 | 0.034 (2) | 0.0163 (18) | 0.038 (2) | 0.000 | 0.0086 (18) | 0.000 |
Cl1 | 0.0309 (4) | 0.0240 (4) | 0.0615 (5) | 0.0046 (3) | −0.0127 (3) | 0.0036 (3) |
Cl2 | 0.0295 (5) | 0.0309 (6) | 0.0534 (7) | 0.000 | 0.0160 (4) | 0.000 |
Cr1 | 0.0191 (3) | 0.0170 (3) | 0.0356 (4) | 0.000 | −0.0005 (2) | 0.000 |
N1 | 0.0240 (11) | 0.0161 (10) | 0.0276 (12) | −0.0001 (8) | 0.0011 (9) | −0.0018 (9) |
N2 | 0.0288 (16) | 0.0196 (16) | 0.0285 (17) | 0.000 | −0.0012 (13) | 0.000 |
N3 | 0.0225 (15) | 0.0162 (15) | 0.0295 (17) | 0.000 | 0.0011 (12) | 0.000 |
C1—N1 | 1.344 (3) | C6—C7 | 1.367 (6) |
C1—C2 | 1.377 (4) | C6—H6 | 0.9500 |
C1—H1 | 0.9500 | C7—C8 | 1.363 (7) |
C2—C3 | 1.372 (4) | C7—H7 | 0.9500 |
C2—H2 | 0.9500 | C8—C9 | 1.388 (6) |
C3—C4 | 1.380 (4) | C8—H8 | 0.9500 |
C3—H3 | 0.9500 | C9—H9 | 0.9500 |
C4—C5 | 1.376 (4) | Cl1—Cr1 | 2.2983 (15) |
C4—H4 | 0.9500 | Cl2—Cr1 | 2.2909 (19) |
C5—N1 | 1.338 (3) | Cr1—N2 | 2.079 (3) |
C5—N3 | 1.440 (3) | Cr1—N1i | 2.087 (2) |
C10—N2 | 1.342 (4) | Cr1—N1 | 2.087 (2) |
C10—C9 | 1.366 (5) | Cr1—Cl1i | 2.2983 (15) |
C10—N3 | 1.434 (5) | N3—C5i | 1.440 (3) |
C6—N2 | 1.345 (5) | ||
N1—C1—C2 | 121.9 (3) | C10—C9—C8 | 117.9 (4) |
N1—C1—H1 | 119.1 | C10—C9—H9 | 121.1 |
C2—C1—H1 | 119.1 | C8—C9—H9 | 121.1 |
C3—C2—C1 | 119.2 (3) | N2—Cr1—N1i | 85.14 (10) |
C3—C2—H2 | 120.4 | N2—Cr1—N1 | 85.14 (10) |
C1—C2—H2 | 120.4 | N1i—Cr1—N1 | 84.35 (13) |
C2—C3—C4 | 119.4 (3) | N2—Cr1—Cl2 | 172.72 (9) |
C2—C3—H3 | 120.3 | N1i—Cr1—Cl2 | 89.46 (8) |
C4—C3—H3 | 120.3 | N1—Cr1—Cl2 | 89.46 (8) |
C5—C4—C3 | 118.3 (3) | N2—Cr1—Cl1i | 89.69 (8) |
C5—C4—H4 | 120.9 | N1i—Cr1—Cl1i | 171.91 (6) |
C3—C4—H4 | 120.9 | N1—Cr1—Cl1i | 89.03 (8) |
N1—C5—C4 | 122.9 (2) | Cl2—Cr1—Cl1i | 95.12 (5) |
N1—C5—N3 | 116.9 (2) | N2—Cr1—Cl1 | 89.69 (8) |
C4—C5—N3 | 120.2 (2) | N1i—Cr1—Cl1 | 89.03 (8) |
N2—C10—C9 | 123.6 (4) | N1—Cr1—Cl1 | 171.91 (6) |
N2—C10—N3 | 117.1 (3) | Cl2—Cr1—Cl1 | 95.12 (5) |
C9—C10—N3 | 119.3 (3) | Cl1i—Cr1—Cl1 | 97.18 (7) |
N2—C6—C7 | 121.6 (4) | C5—N1—C1 | 118.3 (2) |
N2—C6—H6 | 119.2 | C5—N1—Cr1 | 118.28 (17) |
C7—C6—H6 | 119.2 | C1—N1—Cr1 | 123.39 (18) |
C8—C7—C6 | 120.3 (4) | C10—N2—C6 | 117.7 (3) |
C8—C7—H7 | 119.8 | C10—N2—Cr1 | 118.2 (2) |
C6—C7—H7 | 119.8 | C6—N2—Cr1 | 124.0 (3) |
C7—C8—C9 | 118.9 (4) | C10—N3—C5 | 112.33 (18) |
C7—C8—H8 | 120.5 | C10—N3—C5i | 112.33 (18) |
C9—C8—H8 | 120.5 | C5—N3—C5i | 112.4 (3) |
N1—C1—C2—C3 | −1.4 (4) | C2—C1—N1—Cr1 | −178.7 (2) |
C1—C2—C3—C4 | 1.1 (4) | C9—C10—N2—C6 | 0.000 (1) |
C2—C3—C4—C5 | 0.2 (4) | N3—C10—N2—C6 | 180.000 (1) |
C3—C4—C5—N1 | −1.2 (4) | C9—C10—N2—Cr1 | 180.000 (1) |
C3—C4—C5—N3 | 177.9 (2) | N3—C10—N2—Cr1 | 0.000 (1) |
N2—C6—C7—C8 | 0.000 (1) | C7—C6—N2—C10 | 0.000 (1) |
C6—C7—C8—C9 | 0.000 (1) | C7—C6—N2—Cr1 | 180.000 (1) |
N2—C10—C9—C8 | 0.000 (1) | N2—C10—N3—C5 | 63.9 (2) |
N3—C10—C9—C8 | 180.000 (1) | C9—C10—N3—C5 | −116.1 (2) |
C7—C8—C9—C10 | 0.000 (1) | N2—C10—N3—C5i | −63.9 (2) |
C4—C5—N1—C1 | 1.0 (4) | C9—C10—N3—C5i | 116.1 (2) |
N3—C5—N1—C1 | −178.1 (2) | N1—C5—N3—C10 | −64.4 (3) |
C4—C5—N1—Cr1 | −179.9 (2) | C4—C5—N3—C10 | 116.4 (3) |
N3—C5—N1—Cr1 | 1.0 (3) | N1—C5—N3—C5i | 63.4 (4) |
C2—C1—N1—C5 | 0.3 (4) | C4—C5—N3—C5i | −115.8 (3) |
Symmetry code: (i) x, −y+1/2, z. |
D—H···A | D—H | H···A | D···A | D—H···A |
C7—H7···N1ii | 0.95 | 2.75 | 3.578 (5) | 146 |
C7—H7···N1iii | 0.95 | 2.75 | 3.578 (5) | 146 |
C9—H9···Cl1iv | 0.95 | 2.82 | 3.447 (4) | 124 |
C9—H9···Cl1v | 0.95 | 2.82 | 3.447 (4) | 124 |
C4—H4···Cl2vi | 0.95 | 2.77 | 3.534 (4) | 138 |
Symmetry codes: (ii) x, −y+1/2, z−1; (iii) x, y, z−1; (iv) x+1/2, y, −z+3/2; (v) x+1/2, −y+1/2, −z+3/2; (vi) x+1/2, −y+1/2, −z+5/2. |
Acknowledgements
This work was supported by the programs of the Grants-in-Aid for Scientific Research (to TF, No. 23510115) from the Japan Society for the Promotion of Science.
References
Bruker (2014). APEX2, SADABS, SAINT and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Cloete, N., Visser, H. G. & Roodt, A. (2007). Acta Cryst. E63, m45–m47. Web of Science CSD CrossRef IUCr Journals Google Scholar
Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854. Web of Science CrossRef CAS IUCr Journals Google Scholar
Howard, S. A. & Hardcastle, K. I. (1985). J. Crystallogr. Spectrosc. Res. 15, 643–649. CSD CrossRef CAS Web of Science Google Scholar
Kaizaki, S. (1996). Trends Inorg. Chem. 6, 105–136. Google Scholar
Kaizaki, S. & Legg, J. I. (1994). Inorg. Chim. Acta, 218, 179–184. CrossRef CAS Web of Science Google Scholar
Kaizaki, S. & Takemoto, H. (1990). Inorg. Chem. 29, 4960–4964. CrossRef CAS Web of Science Google Scholar
Modec, B., Brenčnič, J. V. & Giester, G. (2000). J. Chem. Crystallogr. 30, 345–349. Web of Science CSD CrossRef CAS Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Terasaki, Y., Fujihara, T., Nagasawa, A. & Kaizaki, S. (2004). Acta Cryst. E60, m854–m856. Web of Science CSD CrossRef IUCr Journals Google Scholar
Terasaki, Y., Fujihara, T., Schönherr, T. & Kaizaki, S. (1999). Inorg. Chim. Acta, 295, 84–90. Web of Science CrossRef CAS Google Scholar
Terasaki, Y. & Kaizaki, S. (1995). J. Chem. Soc. Dalton Trans. pp. 2837–2841. CrossRef Web of Science Google Scholar
Yamaguchi-Terasaki, Y., Fujihara, A. & Kaizaki, S. (2007b). Eur. J. Inorg. Chem. 21, 3394–3399. Google Scholar
Yamaguchi-Terasaki, Y., Fujihara, A. & Kaizaki, S. (2007c). Eur. J. Inorg. Chem. 21, 3400–3404. Google Scholar
Yamaguchi-Terasaki, Y., Fujihara, T., Nagasawa, A. & Kaizaki, S. (2007a). Acta Cryst. E63, m593–m595. Web of Science CSD CrossRef IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.