metal-organic compounds
E)-(methoxyimino-κN)methyl]-1,3-thiazol-2-amine-κN3}palladium(II)
of dichlorido{4-[(aState Scientific "Institution Institute for Single Crystals", National Academy of Science of Ukraine, 60 Lenina ave., Kharkiv 61001, Ukraine, and bV.I. Vernadskii Institute of General and Inorganic Chemistry, National Academy of Sciences of Ukraine, 03680 Kyiv, Ukraine
*Correspondence e-mail: vika@xray.isc.kharkov.com
In the title compound, [PdCl2(C5H7N3OS)], the PdII atom adopts a distorted square-planar coordination sphere defined by two N atoms of the bidentate ligand and two Cl atoms. The mean deviation from the coordination plane is 0.029 Å. The methyl group is not coplanar with the plane of the metallacycle [torsion angle C—O—N—C = 20.2 (4)°]. Steric repulsion between the methyl group and atoms of the metallacycle is manifested by shortened intramolecular H⋯C contacts of 2.27, 2.38 and 2.64 Å, as compared with the sum of the van der Waals radii of 2.87 Å. The amino group participates via one H atom in the formation of an intramolecular N—H⋯Cl hydrogen bond. In the crystal, the other H atom of the amino group links molecules via bifurcated N—H⋯(Cl,O) hydrogen bonds into chains parallel to [001].
Keywords: crystal structure; palladium; multi-functional ligand; 4-[(methoxyimino)methyl]-1,3-thiazol-2-amine (MIMTA).
CCDC reference: 1037339
1. Related literature
4-[(Methoxyimino)methyl]-1,3-thiazol-2-amine (MIMTA) belongs to the class of polyfunctional et al., 2009; Elo, 2004; Scaffidi-Domianello et al., 2011; Donde & Patil, 2011; Kuwar et al., 2006). Palladium complexes based on MIMTA are thus interesting in biomedicine (Orysyk et al., 2013). For the structures of related complexes, see: Orysyk et al. (2015); Mokhir et al. (2002). For van der Waals radii, see: Zefirov (1997).
that are potential biologically active complexing agents (Dodoff2. Experimental
2.1. Crystal data
|
2.3. Refinement
|
|
Data collection: CrysAlis CCD (Agilent, 2012); cell CrysAlis CCD; data reduction: CrysAlis RED (Agilent, 2012); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2.
Supporting information
CCDC reference: 1037339
https://doi.org/10.1107/S2056989014026619/wm5096sup1.cif
contains datablock I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2056989014026619/wm5096Isup2.hkl
PdCl2 (0.036 g, 0.2 mmol) was dissolved in 6N HCl (3 ml) at 313–323 K, and ethanol (7 ml) was added. To the resulting light-brown solution was added a hot solution of 4-[(methoxyimino)methyl]-1,3-thiazol-2-amine (0.031 g, 0.2 mmol), dissolved in ethanol (10 ml). The reaction mixture was stirred for one hour under reflux and cooled down to room temperature whereupon orange needle-like single crystals were filtered off, washed with ethanol and diethyl ether and dried in a vacuum desiccator over CaCl2. Yield: 0.045 g (65%).
All hydrogen atoms were located from difference Fourier maps and constrained to ride on their parent atoms, with Uiso = 1.2Ueq (except Uiso = 1.5Ueq for the methyl group). The structure was refined from a crystal twinned by inversion (Flack parameter value 0.39 (4)).
4-[(Methoxyimino)methyl]-1,3-thiazol-2-amine (MIMTA) belongs to the class of polyfunctional
that are potential biologically active complexing agents (Dodoff et al., 2009; Elo, 2004; Scaffidi-Domianello et al., 2011; Donde & Patil, 2011; Kuwar et al., 2006). Palladium complexes based on MIMTA are thus interesting in biomedicine (Orysyk et al., 2013). For the structures of related complexes, see: Orysyk et al. (2015); Mokhir et al. (2002). For van der Waals radii, see: Zefirov (1997).Data collection: CrysAlis CCD (Agilent, 2012); cell
CrysAlis CCD (Agilent, 2012); data reduction: CrysAlis RED (Agilent, 2012); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).[PdCl2(C5H7N3OS)] | Dx = 2.293 Mg m−3 |
Mr = 334.50 | Mo Kα radiation, λ = 0.71073 Å |
Orthorhombic, P212121 | Cell parameters from 2494 reflections |
a = 4.347 (3) Å | θ = 3.8–31.7° |
b = 13.583 (2) Å | µ = 2.64 mm−1 |
c = 16.411 (3) Å | T = 294 K |
V = 969.0 (7) Å3 | , orange |
Z = 4 | 0.4 × 0.3 × 0.2 mm |
F(000) = 648 |
Agilent Xcalibur Sapphire3 diffractometer | 2106 independent reflections |
Radiation source: Enhance (Mo) X-ray Source | 2028 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.019 |
Detector resolution: 16.1827 pixels mm-1 | θmax = 27.5°, θmin = 3.0° |
ω scans | h = −5→5 |
Absorption correction: multi-scan (CrysAlis RED; Agilent, 2012) | k = −17→16 |
Tmin = 0.742, Tmax = 1.000 | l = −21→21 |
4284 measured reflections |
Refinement on F2 | Secondary atom site location: difference Fourier map |
Least-squares matrix: full | Hydrogen site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.022 | H-atom parameters constrained |
wR(F2) = 0.047 | w = 1/[σ2(Fo2) + (0.0225P)2 + 0.1807P] where P = (Fo2 + 2Fc2)/3 |
S = 1.04 | (Δ/σ)max = 0.002 |
2106 reflections | Δρmax = 0.37 e Å−3 |
120 parameters | Δρmin = −0.36 e Å−3 |
0 restraints | Absolute structure: Flack (1983), 969 Friedel pairs |
Primary atom site location: structure-invariant direct methods | Absolute structure parameter: 0.39 (4) |
[PdCl2(C5H7N3OS)] | V = 969.0 (7) Å3 |
Mr = 334.50 | Z = 4 |
Orthorhombic, P212121 | Mo Kα radiation |
a = 4.347 (3) Å | µ = 2.64 mm−1 |
b = 13.583 (2) Å | T = 294 K |
c = 16.411 (3) Å | 0.4 × 0.3 × 0.2 mm |
Agilent Xcalibur Sapphire3 diffractometer | 2106 independent reflections |
Absorption correction: multi-scan (CrysAlis RED; Agilent, 2012) | 2028 reflections with I > 2σ(I) |
Tmin = 0.742, Tmax = 1.000 | Rint = 0.019 |
4284 measured reflections |
R[F2 > 2σ(F2)] = 0.022 | H-atom parameters constrained |
wR(F2) = 0.047 | Δρmax = 0.37 e Å−3 |
S = 1.04 | Δρmin = −0.36 e Å−3 |
2106 reflections | Absolute structure: Flack (1983), 969 Friedel pairs |
120 parameters | Absolute structure parameter: 0.39 (4) |
0 restraints |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Pd1 | 0.15497 (6) | 0.986930 (16) | 0.742144 (12) | 0.02751 (7) | |
Cl1 | −0.1238 (2) | 1.04846 (7) | 0.84901 (5) | 0.0396 (2) | |
Cl2 | −0.0192 (2) | 1.11559 (6) | 0.66418 (5) | 0.0411 (2) | |
S1 | 0.6968 (2) | 0.84020 (7) | 0.53414 (5) | 0.0394 (2) | |
O1 | 0.2794 (6) | 0.86291 (19) | 0.88793 (12) | 0.0379 (6) | |
N1 | 0.3271 (7) | 0.87185 (19) | 0.80514 (14) | 0.0306 (6) | |
N2 | 0.3996 (6) | 0.91712 (19) | 0.65287 (15) | 0.0291 (6) | |
N3 | 0.3636 (8) | 1.0058 (2) | 0.53113 (15) | 0.0489 (8) | |
H3A | 0.2466 | 1.0498 | 0.5526 | 0.059* | |
H3B | 0.4153 | 1.0104 | 0.4807 | 0.059* | |
C1 | 0.5024 (9) | 0.8046 (3) | 0.92925 (18) | 0.0389 (8) | |
H1A | 0.4798 | 0.8132 | 0.9870 | 0.058* | |
H1B | 0.7050 | 0.8249 | 0.9130 | 0.058* | |
H1C | 0.4729 | 0.7366 | 0.9156 | 0.058* | |
C2 | 0.4954 (8) | 0.8100 (2) | 0.76650 (18) | 0.0328 (7) | |
H2 | 0.5819 | 0.7552 | 0.7916 | 0.039* | |
C3 | 0.5408 (8) | 0.8314 (2) | 0.68133 (18) | 0.0315 (7) | |
C4 | 0.7074 (9) | 0.7815 (3) | 0.62715 (19) | 0.0375 (8) | |
H4 | 0.8138 | 0.7236 | 0.6379 | 0.045* | |
C5 | 0.4632 (8) | 0.9318 (2) | 0.57529 (18) | 0.0317 (7) |
U11 | U22 | U33 | U12 | U13 | U23 | |
Pd1 | 0.03240 (12) | 0.02459 (11) | 0.02555 (10) | −0.00010 (10) | −0.00195 (9) | 0.00015 (8) |
Cl1 | 0.0450 (5) | 0.0412 (5) | 0.0327 (4) | 0.0059 (4) | 0.0021 (4) | −0.0055 (3) |
Cl2 | 0.0511 (5) | 0.0326 (4) | 0.0394 (4) | 0.0092 (4) | −0.0021 (4) | 0.0062 (4) |
S1 | 0.0506 (6) | 0.0390 (5) | 0.0286 (4) | 0.0037 (5) | 0.0042 (4) | −0.0028 (3) |
O1 | 0.0456 (14) | 0.0444 (14) | 0.0237 (9) | 0.0096 (12) | 0.0026 (10) | 0.0059 (9) |
N1 | 0.0373 (15) | 0.0304 (14) | 0.0240 (11) | −0.0015 (15) | −0.0013 (12) | 0.0048 (10) |
N2 | 0.0361 (16) | 0.0239 (13) | 0.0273 (12) | −0.0007 (12) | −0.0025 (11) | 0.0012 (10) |
N3 | 0.077 (2) | 0.0424 (17) | 0.0276 (12) | 0.014 (2) | 0.0087 (14) | 0.0054 (12) |
C1 | 0.045 (2) | 0.045 (2) | 0.0260 (14) | 0.006 (2) | −0.0007 (16) | 0.0053 (14) |
C2 | 0.0409 (18) | 0.0273 (15) | 0.0303 (15) | 0.0048 (15) | −0.0018 (15) | 0.0024 (13) |
C3 | 0.0388 (18) | 0.0277 (17) | 0.0282 (14) | −0.0013 (15) | −0.0032 (14) | −0.0001 (13) |
C4 | 0.045 (2) | 0.0342 (18) | 0.0333 (15) | 0.0069 (17) | −0.0021 (16) | −0.0014 (13) |
C5 | 0.0385 (18) | 0.0316 (18) | 0.0251 (14) | −0.0029 (16) | 0.0012 (14) | 0.0012 (13) |
Pd1—Cl1 | 2.2897 (10) | N3—H3A | 0.8600 |
Pd1—Cl2 | 2.2943 (9) | N3—H3B | 0.8600 |
Pd1—N1 | 2.018 (3) | N3—C5 | 1.313 (4) |
Pd1—N2 | 2.044 (3) | C1—H1A | 0.9600 |
S1—C4 | 1.723 (3) | C1—H1B | 0.9600 |
S1—C5 | 1.742 (3) | C1—H1C | 0.9600 |
O1—N1 | 1.380 (3) | C2—H2 | 0.9300 |
O1—C1 | 1.423 (4) | C2—C3 | 1.441 (4) |
N1—C2 | 1.282 (4) | C3—C4 | 1.332 (5) |
N2—C3 | 1.397 (4) | C4—H4 | 0.9300 |
N2—C5 | 1.318 (4) | ||
Cl1—Pd1—Cl2 | 88.54 (4) | O1—C1—H1B | 109.5 |
N1—Pd1—Cl1 | 94.96 (8) | O1—C1—H1C | 109.5 |
N1—Pd1—Cl2 | 176.43 (8) | H1A—C1—H1B | 109.5 |
N1—Pd1—N2 | 79.34 (10) | H1A—C1—H1C | 109.5 |
N2—Pd1—Cl1 | 173.65 (8) | H1B—C1—H1C | 109.5 |
N2—Pd1—Cl2 | 97.20 (8) | N1—C2—H2 | 122.4 |
C4—S1—C5 | 90.16 (16) | N1—C2—C3 | 115.2 (3) |
N1—O1—C1 | 114.6 (2) | C3—C2—H2 | 122.4 |
O1—N1—Pd1 | 121.1 (2) | N2—C3—C2 | 115.6 (3) |
C2—N1—Pd1 | 117.8 (2) | C4—C3—N2 | 116.1 (3) |
C2—N1—O1 | 121.0 (3) | C4—C3—C2 | 128.3 (3) |
C3—N2—Pd1 | 112.1 (2) | S1—C4—H4 | 125.0 |
C5—N2—Pd1 | 137.0 (2) | C3—C4—S1 | 110.0 (3) |
C5—N2—C3 | 110.9 (3) | C3—C4—H4 | 125.0 |
H3A—N3—H3B | 120.0 | N2—C5—S1 | 112.9 (2) |
C5—N3—H3A | 120.0 | N3—C5—S1 | 121.7 (2) |
C5—N3—H3B | 120.0 | N3—C5—N2 | 125.4 (3) |
O1—C1—H1A | 109.5 | ||
Pd1—N1—C2—C3 | 0.1 (4) | N1—C2—C3—N2 | 0.9 (5) |
Pd1—N2—C3—C2 | −1.4 (4) | N1—C2—C3—C4 | 178.7 (4) |
Pd1—N2—C3—C4 | −179.5 (3) | N2—Pd1—N1—O1 | 175.8 (3) |
Pd1—N2—C5—S1 | 179.58 (19) | N2—Pd1—N1—C2 | −0.7 (3) |
Pd1—N2—C5—N3 | −1.1 (6) | N2—C3—C4—S1 | −0.2 (4) |
Cl1—Pd1—N1—O1 | −7.0 (2) | C1—O1—N1—Pd1 | −156.2 (2) |
Cl1—Pd1—N1—C2 | 176.4 (3) | C1—O1—N1—C2 | 20.2 (4) |
Cl1—Pd1—N2—C3 | −25.3 (9) | C2—C3—C4—S1 | −178.0 (3) |
Cl1—Pd1—N2—C5 | 155.6 (5) | C3—N2—C5—S1 | 0.5 (4) |
Cl2—Pd1—N1—O1 | 161.6 (12) | C3—N2—C5—N3 | 179.8 (3) |
Cl2—Pd1—N1—C2 | −14.9 (15) | C4—S1—C5—N2 | −0.5 (3) |
Cl2—Pd1—N2—C3 | −179.7 (2) | C4—S1—C5—N3 | −179.8 (3) |
Cl2—Pd1—N2—C5 | 1.2 (3) | C5—S1—C4—C3 | 0.4 (3) |
O1—N1—C2—C3 | −176.4 (3) | C5—N2—C3—C2 | 177.9 (3) |
N1—Pd1—N2—C3 | 1.1 (2) | C5—N2—C3—C4 | −0.2 (4) |
N1—Pd1—N2—C5 | −178.0 (4) |
D—H···A | D—H | H···A | D···A | D—H···A |
N3—H3A···Cl2 | 0.86 | 2.34 | 3.124 (3) | 151 |
N3—H3B···Cl1i | 0.86 | 2.48 | 3.280 (3) | 156 |
N3—H3B···O1i | 0.86 | 2.45 | 3.015 (3) | 124 |
Symmetry code: (i) −x+1/2, −y+2, z−1/2. |
D—H···A | D—H | H···A | D···A | D—H···A |
N3—H3A···Cl2 | 0.86 | 2.34 | 3.124 (3) | 151.4 |
N3—H3B···Cl1i | 0.86 | 2.48 | 3.280 (3) | 155.9 |
N3—H3B···O1i | 0.86 | 2.45 | 3.015 (3) | 124.0 |
Symmetry code: (i) −x+1/2, −y+2, z−1/2. |
References
Agilent (2012). CrysAlis RED and CrysAlis CCD. Agilent Technologies, Yarnton, England. Google Scholar
Dodoff, N. I., Kubiak, M., Kuduk-Jaworska, J., Mastalarz, A., Kochel, A., Vassilieva, V., Vassilev, N., Trendafilova, N., Georgieva, I., Lalia-Kantouri, M. & Apostolova, M. (2009). Chemija, 4, 208–217. Google Scholar
Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341. Web of Science CrossRef CAS IUCr Journals Google Scholar
Donde, K. J. & Patil, V. R. (2011). J. Pharm. Res. 1, 206–209. Google Scholar
Elo, H. (2004). Chemotherapy, 50, 229–233. Web of Science CrossRef PubMed CAS Google Scholar
Kuwar, A. S., Shimpi, S. R., Mahulikar, P. P. & Bendre, R. S. (2006). J. Sci. Ind. Res. 8, 665–669. Google Scholar
Mokhir, A. A., Gumienna-Kontecka, E., Świątek-Kozlowska, J., Petkova, E. G., Fritsky, I. O., Jerzykiewicz, L., Kapshuk, A. A., Sliva, T. Yu. & Yu, (2002). Inorg. Chim. Acta, 329, 113–121. Google Scholar
Orysyk, S. I., Bon, V. V., Zholob, O. O., Pekhnyo, V. I., Orysyk, V. V., Zborovskii, Yu. L. & Vovk, M. V. (2013). Polyhedron, 51, 211–221. Web of Science CSD CrossRef CAS Google Scholar
Orysyk, S. I., Zholob, O. O., Bon, V. V., Nikulina, V. V., Orysyk, V. V., Nikolaienko, T. V., Garmanchuk, L. V., Zborovskii, Yu. L., Tolstanova, G. M., Khranovska, N. M., Pekhnyo, V. I. & Vovk, M. V. (2015). Polyhedron, 85, 208–220. CSD CrossRef CAS Google Scholar
Scaffidi-Domianello, Yu. Yu., Legin, A. A., Jakupec, M. A., Arion, V. B., Kukushkin, V. Yu., Galanski, M. & Keppler, B. K. (2011). Inorg. Chem. 21, 10673–10681. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Zefirov, Yu. V. (1997). Kristallografiya, 42, 936–958. CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.