research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of magnesium copper(II) bis­­[orthophosphate(V)] monohydrate

aLaboratoire de Chimie du Solide Appliquée, Faculté des Sciences, Université Mohammed V, Avenue Ibn Battouta, BP 1014, Rabat, Morocco, and bLaboratoire de Chimie du Solide Appliquée, Faculté des Sciences, Université Mohammed V-, Avenue Ibn Battouta, BP 1014, Rabat, Morocco
*Correspondence e-mail: j_khmiyas@yahoo.fr

Edited by M. Weil, Vienna University of Technology, Austria (Received 26 November 2014; accepted 8 December 2014; online 1 January 2015)

Single crystals of magnesium copper(II) bis­[orthophosphate(V)] monohydrate, Mg1.65Cu1.35(PO4)2·H2O, were grown under hydro­thermal conditions. The crystal structure is formed by three types of cationic sites and by two unique (PO4)3− anions. One site is occupied by Cu2+, the second site by Mg2+and the third site by a mixture of the two cations with an Mg2+:Cu2+ occupancy ratio of 0.657 (3):0.343 (3). The structure is built up from more or less distorted [MgO6] and [(Mg/Cu)O5(H2O)] octa­hedra, [CuO5] square-pyramids and regular PO4 tetra­hedra, leading to a framework structure. Within this framework, two types of layers parallel to (-101) can be distinguished. The first layer is formed by [Cu2O8] dimers linked to PO4 tetra­hedra via common edges. The second, more corrugated layer results from the linkage between [(Cu/Mg)2O8(H2O)2] dimers and [MgO6] octa­hedra by common edges. The PO4 units link the two types of layers, leaving space for channels parallel [101], into which the H atoms of the water mol­ecules protrude. The latter are involved in O—H⋯O hydrogen-bonding inter­actions (one bifurcated) with framework O atoms across the channels.

1. Chemical context

Transition metal phosphates are an important class of mat­erials characterized by a great structural diversity originating from the presence of different coordination polyhedra MOn (with n = 4, 5 and 6) or the possibility of phosphate groups to condense. The alternation of PO4 tetra­hedra and MOn polyhedra can give rise to different anionic frameworks [MIIPO4] with pores or channels offering suitable environments to accommodate different other cations (Gao & Gao, 2005[Gao, D. & Gao, Q. (2005). Micropor. Mesopor. Mater. 85, 365-373.]; Viter & Nagornyi, 2009[Viter, V. N. & Nagornyi, P. G. (2009). Russ. J. Appl. Chem. 82, 935-939.]). In previous studies, our focus of research was dedicated to the examination of mixed divalent orthophosphates with general formula (M,M′)3(PO4)2·nH2O. For instance, we have succeeded in the preparation and structure determination of some new phosphates such as Ni2Sr(PO4)2·2H2O (Assani et al., 2010a[Assani, A., Saadi, M. & El Ammari, L. (2010a). Acta Cryst. E66, i44.]).

In the context of our main research, we report here the hydro­thermal synthesis and structural characterization of the mixed-metal orthophosphate Mg1.65Cu1.35(PO4)2·H2O, isolated during investigation of the qu­inter­nary system Ag2O/MgO/CuO/P2O5/H2O. The title compound crystallizes in the Fe3(PO4)2·H2O structure type (Moore & Araki, 1975[Moore, P. B. & Araki, T. (1975). Am. Mineral. 60, 454-459.]) and is isotypic with other phases of the type (M,M')3(PO4)2·H2O (Liao et al., 1995[Liao, J. H., Leroux, F., Guyomard, D., Piffard, Y. & Tournoux, M. (1995). Eur. J. Solid State Inorg. Chem. 32, 403-414.]), viz. Co2.59Zn0.41(PO4)2·H2O (Sørensen et al., 2005[Sørensen, M. B., Hazell, R. G., Bentien, A., Bond, A. D. & Jensen, T. R. (2005). Dalton Trans. pp. 598-606.]), Co2.39Cu0.61(PO4)2·H2O (Assani et al., 2010b[Assani, A., Saadi, M., Zriouil, M. & El Ammari, L. (2010b). Acta Cryst. E66, i86-i87.]), (Cu1−xCox)3(PO4)2·H2O (0 < x < 0.20 and 0.55 < x < 0.65), and (Cu1−xZnx)3(PO4)2·H2O (0 < x < 0.19) (Viter & Nagornyi, 2006[Viter, V. N. & Nagornyi, P. G. (2006). Inorg. Mater. 42, 406-409.]).

2. Structural commentary

The principal building units of the crystal structure of the title compound are represented in Fig. 1[link]. The metal cations are located in three crystallographically independent sites, one octa­hedrally surrounded site entirely occupied by Mg2+, one site with a square-pyramidal coordination completely occupied by Cu2+ and one mixed-occupied (Mg2+/Cu2+) site with an octa­hedral coordination. The [Cu1O5] square pyramid is distorted, with Cu—O bond lengths ranging from 1.9073 (17) to 2.2782 (16) Å. Two [Cu1O5] polyhedra are linked together by edge-sharing to build up a [Cu2O8] dimer. By sharing corners with PO4 tetra­hedra, a layered arrangement parallel to ([\overline{1}]01) is formed (Fig. 2[link]). The mixed-occupied [(Mg/Cu)O5(H2O)] octa­hedron is likewise distorted, with (Mg/Cu)—O distances varying between 2.0038 (18) and 2.384 (2) Å. Two [(Mg/Cu)O5(H2O)] octa­hedra share a common edge to built up another dimer [(Mg/Cu)2O8(H2O)2] that links [MgO6] octa­hedra and PO4 tetra­hedra via common vertices to build the second type of layer lying parallel to the first (Fig. 2[link]). Adjacent layers are connected into a three-dimensional framework by common edges and vertices, and delimit channels parallel to [101], into which the hydrogen atoms of the water mol­ecules protrude. O—H⋯O hydrogen-bonding inter­actions between the water mol­ecules and framework O atoms are present (Table 1[link], Fig. 2[link]).

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O9—H9A⋯O1i 0.86 2.22 2.867 (2) 132
O9—H9A⋯O6ii 0.86 2.38 2.934 (2) 123
O9—H9B⋯O8iii 0.86 1.93 2.778 (2) 170
Symmetry codes: (i) [-x+{\script{3\over 2}}, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) -x+2, -y+1, -z+1; (iii) [-x+{\script{5\over 2}}, y+{\script{1\over 2}}, -z+{\script{3\over 2}}].
[Figure 1]
Figure 1
The principal building units in the crystal structure of the title compound. Displacement ellipsoids are drawn at the 50% probability level. [Symmetry codes: x − [{1\over 2}], −y + [{1\over 2}], z − [{1\over 2}]; (ii) −x + 1, −y + 1, −z + 1; (iii) −x + 2, −y + 1, −z + 1; (iv) x + [{1\over 2}], −y + [{3\over 2}], z + [{1\over 2}]; (v) −x + [{3\over 2}], y + [{1\over 2}], −z + [{3\over 2}]; (vi) −x + 2, −y + 1, −z + 2; (vii) −x + [{3\over 2}], y + [{1\over 2}], −z + [{1\over 2}]; (viii) −x + 2, −y + 2, −z + 1.]
[Figure 2]
Figure 2
A polyhedral view of the title compound, showing the three-dimensional framework structure and O—H⋯O hydrogen bonding (dashed lines) in the channels.

3. Synthesis and crystallization

The title compound, Mg1.65Cu1.35(PO4)2·H2O, was synthesized hydro­thermally form a reaction mixture of AgNO3, MgO, metallic copper, and 85wt% phospho­ric acid in the molar ratio Ag: Mg: Cu: P = 1: 4: 4.5: 6 in 12.5 ml of water. The hydro­thermal reaction was conducted in a 23 ml Teflon-lined autoclave under autogenous pressure at 493 K for three days. The resulting product was filtered off, washed with deionized water and dried in air. The obtained blue crystals correspond to the title compound.

4. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. The M2 site features mixed occupation by Mg2+ and Cu2+ whereas the other two cationic sites do not show any significant disorder. Refinement of the occupancy of M2 resulted in a ratio of Mg2+:Cu2+ = 0.657 (3):0.343 (3). The O-bound H atoms were initially located in a difference map and refined with O—H distance restraints of 0.83 (5). In the last refinement cycle, the distances were fixed at 0.86 Å and the H atoms refined in the riding-model approximation with Uiso(H) set to 1.5Ueq(O). The highest remaining positive and negative electron densities observed in the final Fourier map are at 0.81 Å and 0.43 Å, respectively, from Cu1.

Table 2
Experimental details

Crystal data
Chemical formula Mg1.65Cu1.35(PO4)2·H2O
Mr 333.65
Crystal system, space group Monoclinic, P21/n
Temperature (K) 296
a, b, c (Å) 8.0701 (1), 9.8661 (2), 8.9944 (2)
β (°) 115.242 (1)
V3) 647.76 (2)
Z 4
Radiation type Mo Kα
μ (mm−1) 5.16
Crystal size (mm) 0.31 × 0.27 × 0.18
 
Data collection
Diffractometer Bruker X8 APEX
Absorption correction Multi-scan (SADABS; Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.574, 0.748
No. of measured, independent and observed [I > 2σ(I)] reflections 9233, 1673, 1617
Rint 0.025
(sin θ/λ)max−1) 0.676
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.020, 0.058, 1.24
No. of reflections 1673
No. of parameters 129
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.55, −0.34
Computer programs: APEX2 and SAINT (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXS97 and SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]), DIAMOND (Brandenburg, 2006[Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and DIAMOND (Brandenburg, 2006); software used to prepare material for publication: publCIF (Westrip, 2010).

Magnesium copper(II) bis[orthophosphate(V)] monohydrate top
Crystal data top
Mg1.65Cu1.35(PO4)2·H2OF(000) = 651
Mr = 333.65Dx = 3.421 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -p 2ynCell parameters from 1673 reflections
a = 8.0701 (1) Åθ = 2.9–28.7°
b = 9.8661 (2) ŵ = 5.16 mm1
c = 8.9944 (2) ÅT = 296 K
β = 115.242 (1)°Prism, blue
V = 647.76 (2) Å30.31 × 0.27 × 0.18 mm
Z = 4
Data collection top
Bruker X8 APEX
diffractometer
1673 independent reflections
Radiation source: fine-focus sealed tube1617 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.025
φ and ω scansθmax = 28.7°, θmin = 2.9°
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
h = 1010
Tmin = 0.574, Tmax = 0.748k = 1113
9233 measured reflectionsl = 1212
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.020H-atom parameters constrained
wR(F2) = 0.058 w = 1/[σ2(Fo2) + (0.0209P)2 + 1.2623P]
where P = (Fo2 + 2Fc2)/3
S = 1.24(Δ/σ)max = 0.001
1673 reflectionsΔρmax = 0.55 e Å3
129 parametersΔρmin = 0.34 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0022 (6)
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against all reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on all data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Cu10.64417 (4)0.37312 (3)0.56030 (3)0.00781 (10)
Mg10.98357 (10)0.62883 (7)0.72316 (9)0.00506 (16)
Cu20.88601 (7)0.86606 (5)0.46685 (6)0.00771 (19)0.343 (3)
Mg20.88601 (7)0.86606 (5)0.46685 (6)0.00771 (19)0.657 (3)
P10.70807 (7)0.57775 (6)0.32947 (7)0.00456 (13)
P20.88138 (7)0.33721 (6)0.86197 (7)0.00517 (13)
O10.5825 (2)0.51553 (17)0.4023 (2)0.0088 (3)
O40.8713 (2)0.64903 (17)0.4655 (2)0.0092 (3)
O30.5882 (2)0.68080 (16)0.19945 (19)0.0068 (3)
O20.7722 (2)0.46440 (16)0.2486 (2)0.0071 (3)
O50.8579 (2)0.36647 (17)1.0187 (2)0.0088 (3)
O60.7227 (2)0.24356 (17)0.7487 (2)0.0081 (3)
O70.8521 (2)0.46259 (17)0.75021 (19)0.0078 (3)
O81.0684 (2)0.27408 (17)0.9037 (2)0.0094 (3)
O91.1046 (2)0.9118 (2)0.4255 (2)0.0139 (4)
H9A1.09440.90600.32650.021*
H9B1.21060.87820.48570.021*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.01066 (15)0.00588 (15)0.00473 (15)0.00143 (9)0.00122 (11)0.00069 (9)
Mg10.0054 (3)0.0042 (3)0.0049 (3)0.0001 (2)0.0016 (3)0.0003 (3)
Cu20.0060 (3)0.0097 (3)0.0068 (3)0.00074 (16)0.00216 (19)0.00187 (17)
Mg20.0060 (3)0.0097 (3)0.0068 (3)0.00074 (16)0.00216 (19)0.00187 (17)
P10.0056 (2)0.0043 (3)0.0034 (2)0.00024 (18)0.00156 (19)0.00019 (18)
P20.0064 (2)0.0046 (2)0.0041 (2)0.00022 (19)0.00177 (19)0.00026 (19)
O10.0092 (7)0.0097 (8)0.0091 (7)0.0016 (6)0.0054 (6)0.0036 (6)
O40.0084 (7)0.0097 (8)0.0062 (7)0.0017 (6)0.0001 (6)0.0025 (6)
O30.0088 (7)0.0052 (7)0.0050 (7)0.0016 (6)0.0017 (6)0.0011 (6)
O20.0084 (7)0.0061 (7)0.0064 (7)0.0022 (6)0.0027 (6)0.0014 (6)
O50.0111 (8)0.0102 (8)0.0053 (7)0.0004 (6)0.0036 (6)0.0014 (6)
O60.0091 (7)0.0078 (7)0.0060 (7)0.0027 (6)0.0019 (6)0.0005 (6)
O70.0083 (7)0.0056 (7)0.0071 (7)0.0014 (6)0.0011 (6)0.0021 (6)
O80.0086 (7)0.0099 (8)0.0094 (8)0.0025 (6)0.0035 (6)0.0030 (6)
O90.0085 (7)0.0256 (10)0.0073 (8)0.0035 (7)0.0032 (6)0.0045 (7)
Geometric parameters (Å, º) top
Cu1—O11.9073 (17)Cu2—O3iv2.0837 (16)
Cu1—O8i1.9322 (17)Cu2—O42.1442 (18)
Cu1—O61.9980 (16)Cu2—O9viii2.384 (2)
Cu1—O72.0169 (16)P1—O41.5340 (17)
Cu1—O1ii2.2782 (16)P1—O21.5392 (16)
Mg1—O72.0236 (18)P1—O31.5401 (16)
Mg1—O2iii2.0898 (17)P1—O11.5491 (17)
Mg1—O42.1070 (18)P2—O81.5241 (17)
Mg1—O3iv2.1071 (17)P2—O51.5279 (17)
Mg1—O6v2.1156 (17)P2—O71.5473 (17)
Mg1—O5vi2.1205 (18)P2—O61.5550 (17)
Cu2—O92.0038 (18)O9—H9A0.8600
Cu2—O5v2.0268 (17)O9—H9B0.8600
Cu2—O2vii2.0535 (17)
O1—Cu1—O8i96.29 (7)O5v—Cu2—O2vii80.18 (7)
O1—Cu1—O6172.25 (7)O9—Cu2—O3iv82.06 (7)
O8i—Cu1—O691.43 (7)O5v—Cu2—O3iv107.59 (7)
O1—Cu1—O799.62 (7)O2vii—Cu2—O3iv163.32 (7)
O8i—Cu1—O7146.81 (7)O9—Cu2—O4105.96 (8)
O6—Cu1—O773.33 (7)O5v—Cu2—O487.11 (7)
O1—Cu1—O1ii77.52 (7)O2vii—Cu2—O4117.13 (7)
O8i—Cu1—O1ii116.46 (6)O3iv—Cu2—O478.56 (6)
O6—Cu1—O1ii99.65 (6)O9—Cu2—O9viii89.45 (7)
O7—Cu1—O1ii95.41 (6)O5v—Cu2—O9viii80.53 (6)
O7—Mg1—O2iii98.29 (7)O2vii—Cu2—O9viii81.28 (6)
O7—Mg1—O4101.96 (7)O3iv—Cu2—O9viii85.44 (6)
O2iii—Mg1—O496.67 (7)O4—Cu2—O9viii155.82 (7)
O7—Mg1—O3iv171.09 (8)O4—P1—O2111.26 (9)
O2iii—Mg1—O3iv90.39 (7)O4—P1—O3110.54 (9)
O4—Mg1—O3iv78.89 (7)O2—P1—O3110.47 (9)
O7—Mg1—O6v86.54 (7)O4—P1—O1109.79 (9)
O2iii—Mg1—O6v166.01 (7)O2—P1—O1108.93 (9)
O4—Mg1—O6v95.14 (7)O3—P1—O1105.69 (9)
O3iv—Mg1—O6v84.55 (7)O8—P2—O5110.47 (9)
O7—Mg1—O5vi89.35 (7)O8—P2—O7110.33 (9)
O2iii—Mg1—O5vi77.24 (7)O5—P2—O7113.81 (9)
O4—Mg1—O5vi167.90 (8)O8—P2—O6111.75 (10)
O3iv—Mg1—O5vi90.60 (7)O5—P2—O6108.96 (9)
O6v—Mg1—O5vi89.76 (7)O7—P2—O6101.22 (9)
O9—Cu2—O5v165.32 (8)H9A—O9—H9B104.9
O9—Cu2—O2vii87.74 (7)
Symmetry codes: (i) x1/2, y+1/2, z1/2; (ii) x+1, y+1, z+1; (iii) x+2, y+1, z+1; (iv) x+1/2, y+3/2, z+1/2; (v) x+3/2, y+1/2, z+3/2; (vi) x+2, y+1, z+2; (vii) x+3/2, y+1/2, z+1/2; (viii) x+2, y+2, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O9—H9A···O1vii0.862.222.867 (2)132
O9—H9A···O6iii0.862.382.934 (2)123
O9—H9B···O8ix0.861.932.778 (2)170
Symmetry codes: (iii) x+2, y+1, z+1; (vii) x+3/2, y+1/2, z+1/2; (ix) x+5/2, y+1/2, z+3/2.
 

Acknowledgements

The authors thank the Unit of Support for Technical and Scientific Research (UATRS, CNRST) for the X-ray measurements and the University Mohammed V, Rabat, Morocco, for financial support.

References

First citationAssani, A., Saadi, M. & El Ammari, L. (2010a). Acta Cryst. E66, i44.  Web of Science CrossRef IUCr Journals Google Scholar
First citationAssani, A., Saadi, M., Zriouil, M. & El Ammari, L. (2010b). Acta Cryst. E66, i86–i87.  Web of Science CrossRef IUCr Journals Google Scholar
First citationBrandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGao, D. & Gao, Q. (2005). Micropor. Mesopor. Mater. 85, 365–373.  Web of Science CrossRef CAS Google Scholar
First citationLiao, J. H., Leroux, F., Guyomard, D., Piffard, Y. & Tournoux, M. (1995). Eur. J. Solid State Inorg. Chem. 32, 403–414.  CAS Google Scholar
First citationMoore, P. B. & Araki, T. (1975). Am. Mineral. 60, 454–459.  CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSørensen, M. B., Hazell, R. G., Bentien, A., Bond, A. D. & Jensen, T. R. (2005). Dalton Trans. pp. 598–606.  Google Scholar
First citationViter, V. N. & Nagornyi, P. G. (2006). Inorg. Mater. 42, 406–409.  Web of Science CrossRef CAS Google Scholar
First citationViter, V. N. & Nagornyi, P. G. (2009). Russ. J. Appl. Chem. 82, 935–939.  Web of Science CrossRef CAS Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds