metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of tris­­(1,10-phenanthroline-κ2N,N′)iron(II) bis­­[bis­­(tri­fluoro­methyl­sulfon­yl)imide] monohydrate

aDepartment of Chemical Biology and Applied Chemistry, College of Engineering, Nihon University, 1 Nakagawara Tokusada Tamura, Koriyama 963-8642, Japan, bDepartment of Chemistry, Faculty of Science, Toho University, 2-2-1 Miyama, Funabashi, Chiba 274-8510, Japan, and cResearch Laboratory for Nuclear Reactors, Tokyo Institute of Technology, 2-12-1-N1-34 Ookayama, Meguro-ku, Tokyo 152-8550, Japan
*Correspondence e-mail: yikeda@nr.titech.ac.jp

Edited by M. Weil, Vienna University of Technology, Austria (Received 3 December 2014; accepted 9 December 2014; online 1 January 2015)

The crystal structure of the title complex, [Fe(C12H8N2)3][(CF3SO2)2N]2·H2O, is constructed by one octa­hedral [Fe(phen)3]2+ (phen = 1,10-phenanthroline) cation (point group symmetry 2), two Tf2N [bis­(tri­fluoromethyl­sulfon­yl)imide] anions, and one water mol­ecule of crystallization (point group 2). The Fe—N bond lengths are indicative of a d6 low-spin state for the FeII ion in the complex. The dihedral angle between the phen ligands in the cation is 87.64 (6)°. The Tf2N counter-anion is non-coordinating, with the –CF3 groups arranged in a trans fashion with respect to each other, leading to an anti,anti conformation of the –CF3 groups and –SO2N– moieties relative to the S—C bonds. The water mol­ecule of crystallization connects two O atoms of the Tf2N anions through weak hydrogen bonds. C—H⋯O hydrogen-bonding inter­actions are also observed, consolidating the packing of the mol­ecules into a three-dimensional network structure.

1. Related literature

For the synthesis of the anhydrous title complex, see: Teramoto et al. (2014[Teramoto, K., Nishide, T., Okumura, S., Takao, K. & Ikeda, Y. (2014). Electrochemistry, 82, 566-572.]). For typical Fe—N bond lengths of low-spin d6 FeII ions, see: Deng et al. (2001[Deng, R. M. K., Simon, S., Dillon, K. B. & Goeta, A. E. (2001). Acta Cryst. C57, 4-6.]); Setifi et al. (2013[Setifi, Z., Setifi, F., Ng, S. W., Oudahmane, A., El-Ghozzi, M. & Avignant, D. (2013). Acta Cryst. E69, m12-m13.]). Crystal structures of complexes with the [Fe(phen)3]2+ cation were reported by Koh (1994[Koh, L. L., Xu, Y., Hsieh, A. K., Song, B., Wu, F. & Ji, L. (1994). Acta Cryst. C50, 884-886.]), Potočňák et al. (2014[Potočňák, I., Váhovská, L. & Herich, P. (2014). Acta Cryst. C70, 432-436.]) and Zhong (2012[Zhong, K.-L. (2012). Acta Cryst. C68, m259-m264.]). In the crystal structure of the ionic liquid choline bis­(tri­fluoro­methyl­sulfon­yl)imide (Nockemann et al., 2009[Nockemann, P., Binnemans, K., Thijs, B., Parac-Vogt, T. N., Merz, K., Mudring, A.-V., Menon, P. C., Rajesh, R. N., Cordoyiannis, G., Thoen, J., Leys, J. & Glorieux, C. (2009). J. Phys. Chem. B, 113, 1429-1437.]), the free Tf2N anion has a similar conformation to that in the title compound.

[Scheme 1]

2. Experimental

2.1. Crystal data

  • [Fe(C12H8N2)3](C2F6NO4S2)2·H2O

  • Mr = 1174.78

  • Monoclinic, C 2/c

  • a = 20.7745 (15) Å

  • b = 16.0107 (12) Å

  • c = 13.3084 (10) Å

  • β = 91.657 (1)°

  • V = 4424.7 (6) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.65 mm−1

  • T = 100 K

  • 0.42 × 0.11 × 0.10 mm

2.2. Data collection

  • Bruker APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2007[Bruker (2007). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.773, Tmax = 0.938

  • 13659 measured reflections

  • 4910 independent reflections

  • 3247 reflections with I > 2σ(I)

  • Rint = 0.065

2.3. Refinement

  • R[F2 > 2σ(F2)] = 0.048

  • wR(F2) = 0.122

  • S = 1.02

  • 4910 reflections

  • 338 parameters

  • 2 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.71 e Å−3

  • Δρmin = −0.90 e Å−3

Table 1
Selected bond lengths (Å)

Fe1—N1 1.977 (3)
Fe1—N2 1.974 (3)
Fe1—N3 1.966 (3)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O5—H5W⋯O4i 0.88 (1) 2.23 (6) 2.963 (4) 141 (7)
C2—H2⋯O3ii 0.95 2.50 3.433 (4) 166
C14—H14⋯O2 0.95 2.53 3.481 (5) 174
Symmetry codes: (i) [x-{\script{1\over 2}}, y-{\script{1\over 2}}, z]; (ii) -x+1, -y+2, -z+1.

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Related literature top

For the synthesis of the anhydrous title complex, see: Teramoto et al. (2014). For typical Fe—N bond lengths of low-spin d6 FeII ions, see: Deng et al. (2001); Setifi et al. (2013). Crystal structures of complexes with the [Fe(phen)3]2+ cation were reported by Koh (1994), Potočňák et al. (2014) and Zhong (2012). In the crystal structure of the ionic liquid choline bis(trifluoromethylsulfonyl)imide (Nockemann et al., 2009), the free Tf2N- anion has a similar conformation to that in the title compound.

Experimental top

Red powders of [Fe(phen)3](Tf2N)2 were synthesized as described in the literature by Teramoto et al. (2014). The title complex was crystallized by cooling a hot concentrated aqueous solution of [Fe(phen)3](Tf2N)2 .

Refinement top

The H atom of the water molecule was located in a difference map and was refined by applying a restraint for the O—H bond length (0.85 (1) Å). The remaining H atoms were positioned geometrically with C—H = 0.95 Å. All H atoms were constrained to ride on their parent atoms with Uiso(H) = 1.2Ueq(C) or Uiso(H) = 1.5 Ueq(O).

Structure description top

For the synthesis of the anhydrous title complex, see: Teramoto et al. (2014). For typical Fe—N bond lengths of low-spin d6 FeII ions, see: Deng et al. (2001); Setifi et al. (2013). Crystal structures of complexes with the [Fe(phen)3]2+ cation were reported by Koh (1994), Potočňák et al. (2014) and Zhong (2012). In the crystal structure of the ionic liquid choline bis(trifluoromethylsulfonyl)imide (Nockemann et al., 2009), the free Tf2N- anion has a similar conformation to that in the title compound.

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. View of the [Fe(phen)3]2+, Tf2N- and H2O molecular units. Displacement ellipsoids are represented at the 30% probability level. Hydrogen atoms were omitted for clarity. [Symmetry code: i) -x + 1,y,-z + 1/2.]
[Figure 2] Fig. 2. Hydrogen bonds between the H2O molecule and Tf2N- anions. [Symmetry codes: ii) x - 1/2,y - 1/2,z, iii) -x + 3/2, y - 1/2, -z + 3/2.]
Tris(1,10-phenanthroline-κ2N,N')iron(II) bis[bis(trifluoromethylsulfonyl)imide] monohydrate top
Crystal data top
[Fe(C12H8N2)3](C2F6NO4S2)2·H2OF(000) = 2368
Mr = 1174.78Dx = 1.764 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 1623 reflections
a = 20.7745 (15) Åθ = 2.2–23.5°
b = 16.0107 (12) ŵ = 0.65 mm1
c = 13.3084 (10) ÅT = 100 K
β = 91.657 (1)°Block, red
V = 4424.7 (6) Å30.42 × 0.11 × 0.10 mm
Z = 4
Data collection top
Bruker APEXII CCD area-detector
diffractometer
4910 independent reflections
Radiation source: fine-focus sealed tube3247 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.065
Detector resolution: 8.333 pixels mm-1θmax = 27.2°, θmin = 1.6°
phi and ω scansh = 2624
Absorption correction: multi-scan
(SADABS; Bruker, 2007)
k = 1720
Tmin = 0.773, Tmax = 0.938l = 1716
13659 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.048Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.122H atoms treated by a mixture of independent and constrained refinement
S = 1.02 w = 1/[σ2(Fo2) + (0.0533P)2 + 0.4369P]
where P = (Fo2 + 2Fc2)/3
4910 reflections(Δ/σ)max = 0.001
338 parametersΔρmax = 0.71 e Å3
2 restraintsΔρmin = 0.90 e Å3
Crystal data top
[Fe(C12H8N2)3](C2F6NO4S2)2·H2OV = 4424.7 (6) Å3
Mr = 1174.78Z = 4
Monoclinic, C2/cMo Kα radiation
a = 20.7745 (15) ŵ = 0.65 mm1
b = 16.0107 (12) ÅT = 100 K
c = 13.3084 (10) Å0.42 × 0.11 × 0.10 mm
β = 91.657 (1)°
Data collection top
Bruker APEXII CCD area-detector
diffractometer
4910 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2007)
3247 reflections with I > 2σ(I)
Tmin = 0.773, Tmax = 0.938Rint = 0.065
13659 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0482 restraints
wR(F2) = 0.122H atoms treated by a mixture of independent and constrained refinement
S = 1.02Δρmax = 0.71 e Å3
4910 reflectionsΔρmin = 0.90 e Å3
338 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Fe10.50000.81145 (4)0.25000.01247 (17)
S10.70284 (4)0.87060 (6)0.73999 (6)0.0194 (2)
S20.81435 (4)0.96272 (6)0.78549 (6)0.0190 (2)
N10.41901 (12)0.80991 (17)0.32441 (19)0.0128 (6)
N20.52464 (12)0.72317 (17)0.34722 (19)0.0136 (6)
N30.53087 (12)0.90330 (18)0.33681 (19)0.0141 (6)
N40.77157 (14)0.88188 (19)0.7924 (2)0.0231 (7)
O10.66576 (12)0.81717 (18)0.80049 (19)0.0320 (7)
O20.67338 (11)0.94387 (16)0.69810 (18)0.0243 (6)
O30.80627 (11)1.01191 (16)0.69622 (17)0.0235 (6)
O40.87849 (11)0.94170 (17)0.81960 (19)0.0264 (6)
O50.50000.5160 (4)0.75000.102 (2)
H5W0.4670 (6)0.4824 (12)0.742 (7)0.153*
F10.75397 (11)0.73840 (14)0.65849 (17)0.0369 (6)
F20.75628 (11)0.84768 (16)0.56672 (17)0.0409 (6)
F30.66724 (10)0.78257 (14)0.58392 (17)0.0343 (6)
F40.78834 (11)0.98981 (14)0.97358 (15)0.0318 (6)
F50.82027 (10)1.09733 (13)0.89196 (16)0.0281 (5)
F60.72349 (9)1.05100 (14)0.86804 (15)0.0283 (5)
C10.36704 (15)0.8593 (2)0.3148 (2)0.0150 (7)
H10.36460.89740.26010.018*
C20.31626 (16)0.8573 (2)0.3816 (2)0.0175 (8)
H20.28070.89410.37250.021*
C30.31802 (15)0.8018 (2)0.4603 (3)0.0177 (8)
H30.28410.80080.50670.021*
C40.37042 (16)0.7465 (2)0.4717 (2)0.0160 (7)
C50.42054 (15)0.7547 (2)0.4026 (2)0.0143 (7)
C60.37791 (16)0.6843 (2)0.5492 (3)0.0190 (8)
H60.34450.67690.59560.023*
C70.43081 (16)0.6365 (2)0.5575 (2)0.0197 (8)
H70.43390.59550.60900.024*
C80.47740 (15)0.7066 (2)0.4134 (2)0.0153 (7)
C90.48305 (16)0.6464 (2)0.4898 (2)0.0164 (7)
C100.54083 (16)0.5999 (2)0.4945 (3)0.0206 (8)
H100.54750.55850.54490.025*
C110.58709 (17)0.6152 (2)0.4258 (2)0.0193 (8)
H110.62550.58300.42680.023*
C120.57795 (16)0.6777 (2)0.3545 (2)0.0173 (8)
H120.61140.68840.30900.021*
C130.56412 (15)0.9013 (2)0.4249 (2)0.0177 (8)
H130.57410.84860.45420.021*
C140.58467 (16)0.9738 (2)0.4751 (3)0.0199 (8)
H140.60860.96980.53680.024*
C150.57025 (16)1.0499 (2)0.4352 (3)0.0209 (8)
H150.58401.09930.46920.025*
C160.53488 (16)1.0558 (2)0.3435 (3)0.0178 (8)
C170.51693 (15)0.9803 (2)0.2973 (2)0.0153 (7)
C180.51659 (16)1.1325 (2)0.2942 (3)0.0214 (8)
H180.52821.18430.32460.026*
C190.72140 (18)0.8058 (2)0.6315 (3)0.0236 (8)
C200.78431 (17)1.0287 (2)0.8856 (3)0.0213 (8)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Fe10.0125 (3)0.0142 (4)0.0107 (3)0.0000.0000 (3)0.000
S10.0223 (5)0.0212 (5)0.0148 (4)0.0016 (4)0.0001 (4)0.0002 (4)
S20.0201 (5)0.0208 (5)0.0161 (4)0.0048 (4)0.0013 (4)0.0022 (4)
N10.0138 (14)0.0118 (15)0.0125 (14)0.0030 (12)0.0016 (11)0.0011 (11)
N20.0119 (14)0.0160 (16)0.0128 (14)0.0010 (12)0.0006 (11)0.0017 (12)
N30.0112 (13)0.0188 (16)0.0124 (14)0.0001 (12)0.0017 (11)0.0010 (12)
N40.0255 (16)0.0209 (18)0.0223 (16)0.0033 (14)0.0104 (14)0.0022 (13)
O10.0329 (15)0.0405 (19)0.0229 (14)0.0055 (13)0.0053 (12)0.0070 (13)
O20.0242 (13)0.0233 (16)0.0249 (14)0.0049 (11)0.0071 (11)0.0013 (11)
O30.0247 (13)0.0297 (16)0.0162 (13)0.0038 (11)0.0001 (11)0.0037 (11)
O40.0198 (13)0.0316 (17)0.0276 (14)0.0076 (12)0.0043 (11)0.0029 (12)
O50.088 (5)0.098 (6)0.120 (6)0.0000.005 (5)0.000
F10.0399 (14)0.0241 (14)0.0461 (15)0.0071 (11)0.0105 (12)0.0124 (11)
F20.0504 (15)0.0476 (17)0.0257 (12)0.0160 (12)0.0163 (12)0.0074 (11)
F30.0352 (13)0.0325 (14)0.0343 (13)0.0027 (11)0.0124 (11)0.0101 (11)
F40.0465 (14)0.0333 (14)0.0153 (11)0.0019 (11)0.0021 (10)0.0005 (10)
F50.0301 (12)0.0205 (13)0.0334 (13)0.0013 (10)0.0050 (10)0.0065 (10)
F60.0210 (11)0.0354 (14)0.0283 (12)0.0071 (10)0.0019 (9)0.0127 (10)
C10.0140 (16)0.0155 (19)0.0152 (17)0.0005 (14)0.0026 (14)0.0021 (14)
C20.0137 (17)0.018 (2)0.0201 (18)0.0011 (14)0.0022 (14)0.0013 (15)
C30.0131 (16)0.020 (2)0.0195 (18)0.0058 (14)0.0033 (14)0.0044 (15)
C40.0156 (17)0.017 (2)0.0156 (17)0.0053 (14)0.0012 (14)0.0030 (14)
C50.0174 (17)0.0144 (19)0.0111 (16)0.0036 (14)0.0003 (14)0.0037 (13)
C60.0212 (18)0.0158 (19)0.0201 (18)0.0044 (15)0.0036 (15)0.0002 (15)
C70.0262 (19)0.020 (2)0.0136 (17)0.0033 (16)0.0047 (15)0.0024 (15)
C80.0170 (17)0.0142 (19)0.0145 (17)0.0051 (14)0.0006 (14)0.0030 (14)
C90.0202 (18)0.016 (2)0.0125 (17)0.0021 (15)0.0025 (14)0.0031 (14)
C100.0284 (19)0.019 (2)0.0143 (17)0.0016 (16)0.0038 (15)0.0010 (15)
C110.0193 (17)0.021 (2)0.0172 (18)0.0057 (15)0.0021 (14)0.0007 (15)
C120.0168 (17)0.019 (2)0.0157 (17)0.0019 (15)0.0002 (14)0.0026 (14)
C130.0139 (17)0.025 (2)0.0135 (17)0.0044 (15)0.0012 (14)0.0009 (15)
C140.0147 (17)0.029 (2)0.0163 (18)0.0011 (16)0.0010 (14)0.0068 (15)
C150.0174 (18)0.022 (2)0.0231 (19)0.0041 (15)0.0027 (15)0.0117 (16)
C160.0153 (17)0.019 (2)0.0195 (18)0.0003 (15)0.0032 (14)0.0038 (15)
C170.0127 (17)0.019 (2)0.0148 (17)0.0025 (14)0.0038 (14)0.0014 (14)
C180.0191 (19)0.015 (2)0.030 (2)0.0010 (14)0.0018 (15)0.0055 (16)
C190.028 (2)0.019 (2)0.023 (2)0.0039 (17)0.0014 (16)0.0033 (16)
C200.0235 (19)0.025 (2)0.0156 (18)0.0052 (16)0.0017 (15)0.0019 (15)
Geometric parameters (Å, º) top
Fe1—N11.977 (3)C2—C31.372 (5)
Fe1—N1i1.977 (3)C2—H20.9500
Fe1—N21.974 (3)C3—C41.408 (5)
Fe1—N2i1.974 (3)C3—H30.9500
Fe1—N31.966 (3)C4—C51.415 (4)
Fe1—N3i1.966 (3)C4—C61.439 (5)
S1—O11.417 (3)C5—C81.414 (5)
S1—O21.429 (3)C6—C71.341 (5)
S1—N41.581 (3)C6—H60.9500
S1—C191.827 (4)C7—C91.439 (5)
S2—O31.431 (2)C7—H70.9500
S2—O41.435 (2)C8—C91.403 (5)
S2—N41.574 (3)C9—C101.413 (5)
S2—C201.824 (4)C10—C111.368 (5)
N1—C11.341 (4)C10—H100.9500
N1—C51.366 (4)C11—C121.388 (5)
N2—C81.364 (4)C11—H110.9500
N2—C121.326 (4)C12—H120.9500
N3—C131.343 (4)C13—C141.400 (5)
N3—C171.368 (4)C13—H130.9500
O5—H5W0.875 (10)C14—C151.360 (5)
F1—C191.318 (4)C14—H140.9500
F2—C191.324 (4)C15—C161.410 (5)
F3—C191.329 (4)C15—H150.9500
F4—C201.327 (4)C16—C171.401 (5)
F5—C201.330 (4)C16—C181.439 (5)
F6—C201.327 (4)C17—C17i1.425 (6)
C1—C21.400 (4)C18—C18i1.345 (7)
C1—H10.9500C18—H180.9500
N3—Fe1—N3i83.17 (16)C7—C6—C4121.7 (3)
N3—Fe1—N2i174.17 (11)C7—C6—H6119.1
N3i—Fe1—N2i94.38 (11)C4—C6—H6119.1
N3—Fe1—N294.38 (11)C6—C7—C9121.1 (3)
N3i—Fe1—N2174.17 (11)C6—C7—H7119.5
N2i—Fe1—N288.54 (16)C9—C7—H7119.5
N3—Fe1—N1i92.05 (11)N2—C8—C9123.7 (3)
N3i—Fe1—N1i89.01 (11)N2—C8—C5116.3 (3)
N2i—Fe1—N1i82.60 (11)C9—C8—C5120.0 (3)
N2—Fe1—N1i96.38 (11)C8—C9—C10116.6 (3)
N3—Fe1—N189.01 (11)C8—C9—C7118.7 (3)
N3i—Fe1—N192.05 (11)C10—C9—C7124.7 (3)
N2i—Fe1—N196.38 (11)C11—C10—C9119.2 (3)
N2—Fe1—N182.60 (11)C11—C10—H10120.4
N1i—Fe1—N1178.58 (17)C9—C10—H10120.4
O1—S1—O2118.91 (16)C10—C11—C12120.1 (3)
O1—S1—N4108.49 (16)C10—C11—H11120.0
O2—S1—N4116.70 (16)C12—C11—H11120.0
O1—S1—C19103.70 (17)N2—C12—C11122.9 (3)
O2—S1—C19104.80 (16)N2—C12—H12118.6
N4—S1—C19101.81 (17)C11—C12—H12118.6
O3—S2—O4118.49 (16)N3—C13—C14122.6 (3)
O3—S2—N4116.61 (16)N3—C13—H13118.7
O4—S2—N4108.02 (16)C14—C13—H13118.7
O3—S2—C20104.65 (16)C15—C14—C13119.8 (3)
O4—S2—C20103.83 (15)C15—C14—H14120.1
N4—S2—C20103.19 (17)C13—C14—H14120.1
C1—N1—C5117.1 (3)C14—C15—C16120.1 (3)
C1—N1—Fe1129.7 (2)C14—C15—H15120.0
C5—N1—Fe1112.9 (2)C16—C15—H15120.0
C12—N2—C8117.4 (3)C17—C16—C15116.6 (3)
C12—N2—Fe1129.9 (2)C17—C16—C18118.2 (3)
C8—N2—Fe1112.6 (2)C15—C16—C18125.2 (3)
C13—N3—C17117.1 (3)N3—C17—C16123.9 (3)
C13—N3—Fe1130.2 (2)N3—C17—C17i115.67 (18)
C17—N3—Fe1112.7 (2)C16—C17—C17i120.4 (2)
S1—N4—S2124.92 (19)C18i—C18—C16121.4 (2)
N1—C1—C2123.0 (3)C18i—C18—H18119.3
N1—C1—H1118.5C16—C18—H18119.3
C2—C1—H1118.5F1—C19—F2107.8 (3)
C3—C2—C1119.7 (3)F1—C19—F3108.7 (3)
C3—C2—H2120.1F2—C19—F3107.6 (3)
C1—C2—H2120.1F1—C19—S1111.6 (3)
C2—C3—C4119.5 (3)F2—C19—S1111.1 (3)
C2—C3—H3120.2F3—C19—S1109.9 (3)
C4—C3—H3120.2F4—C20—F5108.1 (3)
C3—C4—C5116.9 (3)F4—C20—F6108.5 (3)
C3—C4—C6125.4 (3)F5—C20—F6108.6 (3)
C5—C4—C6117.6 (3)F4—C20—S2111.0 (3)
N1—C5—C8115.5 (3)F5—C20—S2108.8 (2)
N1—C5—C4123.6 (3)F6—C20—S2111.8 (2)
C8—C5—C4120.8 (3)
Symmetry code: (i) x+1, y, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O5—H5W···O4ii0.88 (1)2.23 (6)2.963 (4)141 (7)
C2—H2···O3iii0.952.503.433 (4)166
C14—H14···O20.952.533.481 (5)174
Symmetry codes: (ii) x1/2, y1/2, z; (iii) x+1, y+2, z+1.
Selected bond lengths (Å) top
Fe1—N11.977 (3)Fe1—N31.966 (3)
Fe1—N21.974 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O5—H5W···O4i0.875 (10)2.23 (6)2.963 (4)141 (7)
C2—H2···O3ii0.952.503.433 (4)166
C14—H14···O20.952.533.481 (5)174
Symmetry codes: (i) x1/2, y1/2, z; (ii) x+1, y+2, z+1.
 

Acknowledgements

We thank Professor Takafumi Kitazawa of Toho University for his useful comments.

References

First citationBruker (2007). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDeng, R. M. K., Simon, S., Dillon, K. B. & Goeta, A. E. (2001). Acta Cryst. C57, 4–6.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationKoh, L. L., Xu, Y., Hsieh, A. K., Song, B., Wu, F. & Ji, L. (1994). Acta Cryst. C50, 884–886.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationNockemann, P., Binnemans, K., Thijs, B., Parac-Vogt, T. N., Merz, K., Mudring, A.-V., Menon, P. C., Rajesh, R. N., Cordoyiannis, G., Thoen, J., Leys, J. & Glorieux, C. (2009). J. Phys. Chem. B, 113, 1429–1437.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationPotočňák, I., Váhovská, L. & Herich, P. (2014). Acta Cryst. C70, 432-436.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSetifi, Z., Setifi, F., Ng, S. W., Oudahmane, A., El-Ghozzi, M. & Avignant, D. (2013). Acta Cryst. E69, m12–m13.  CSD CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTeramoto, K., Nishide, T., Okumura, S., Takao, K. & Ikeda, Y. (2014). Electrochemistry, 82, 566–572.  Web of Science CrossRef CAS Google Scholar
First citationZhong, K.-L. (2012). Acta Cryst. C68, m259–m264.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds