metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of bis­­(3-bromo­pyridine-κN)bis­­(O-ethyl di­thio­carbonato-κ2S,S′)nickel(II)

aPost-Graduate Department of Physics & Electronics, University of Jammu, Jammu Tawi 180 006, India, and bPost-Graduate Department of Chemistry, University of Jammu, Jammu Tawi 180 006, India
*Correspondence e-mail: rkant.ju@gmail.com

Edited by M. Weil, Vienna University of Technology, Austria (Received 3 December 2014; accepted 15 December 2014; online 1 January 2015)

In the title mol­ecular complex, [Ni(C3H5OS2)2(C5H4BrN)2], the Ni2+ cation is located on a centre of inversion and has a distorted octa­hedral N2S4 environment defined by two chelating xanthate ligands and two monodentate pyridine ligands. The C—S bond lengths of the thio­carboxyl­ate group are indicative of a delocalized bond and the O—Csp2 bond is considerably shorter than the O—Csp3 bond, consistent with a significant contribution of one resonance form of the xanthate anion that features a formal C=O+ unit and a negative charge on each of the S atoms. The packing of the mol­ecules is stabilized by C—H⋯S and C—H⋯π inter­actions. In addition, ππ inter­actions between the pyridine rings [centroid-to-centroid distance = 3.797 (3) Å] are also present. In the crystal structure, mol­ecules are arranged in rows along [100], forming layers parallel to (010) and (001).

1. Related literature

Xanthates as ligands have been investigated extensively due to their coordination behaviour (Haiduc et al., 1995[Haiduc, I., Sowerby, D. B. & Lu, S. F. (1995). Polyhedron, 14, 3389-3472.]), thereby showing monodentate and/or bidentate coordination modes (Xiong et al., 1997[Xiong, R.-G., Zh, Y., Liu, C.-M. & You, X.-Z. (1997). Polyhedron, 16, 2667-2671.]; Trávnícek et al., 1995[Trávnícek, Z., Pastorek, R., Sindelár, Z., Klicka, R. & Marek, J. (1995). Polyhedron, 14, 3627-3633.]). Xanthates have also found uses as anti­tumour agents and in the treatment of Alzheimer's disease (Orts et al., 2002[Orts, W. J., Sojka, R. E. & Glenn, G. M. (2002). Agro Food Ind. 13, 37-41.]; Larsson & Öberg, 2011[Larsson, A. C. & Öberg, S. (2011). J. Phys. Chem. A, 115, 1396-1407.]). For other analogous Ni–di­thio­carboxyl­ate complexes, see: Kapoor et al. (2012[Kapoor, S., Sachar, R., Singh, K., Gupta, V. K. & Rajnikant, V. (2012). J. Chem. Crystallogr. 42, 222-226.]). For C—S and C—O bond lengths in other xanthates, see: Jiang et al. (2002[Jiang, X. H., Zhang, W. G., Zhong, Y. & Wang, S. L. (2002). Molecules, 7, 549-553.]); Alam et al. (2011[Alam, N., Ehsan, M. A., Zeller, M., Mazhar, M. & Arifin, Z. (2011). Acta Cryst. E67, m1064.]).

[Scheme 1]

2. Experimental

2.1. Crystal data

  • [Ni(C3H5OS2)2(C5H4BrN)2]

  • Mr = 617.09

  • Triclinic, [P \overline 1]

  • a = 6.8397 (7) Å

  • b = 9.1952 (8) Å

  • c = 9.7562 (10) Å

  • α = 76.121 (8)°

  • β = 73.935 (9)°

  • γ = 78.517 (8)°

  • V = 566.59 (10) Å3

  • Z = 1

  • Mo Kα radiation

  • μ = 4.77 mm−1

  • T = 293 K

  • 0.3 × 0.2 × 0.1 mm

2.2. Data collection

  • Oxford Diffraction Xcalibur CCD diffractometer

  • Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2010[Oxford Diffraction (2010). CrysAlis RED and CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.]) Tmin = 0.489, Tmax = 1.000

  • 4016 measured reflections

  • 2230 independent reflections

  • 1510 reflections with I > 2σ(I)

  • Rint = 0.044

2.3. Refinement

  • R[F2 > 2σ(F2)] = 0.049

  • wR(F2) = 0.112

  • S = 1.03

  • 2230 reflections

  • 126 parameters

  • H-atom parameters constrained

  • Δρmax = 0.67 e Å−3

  • Δρmin = −0.68 e Å−3

Table 1
Selected bond lengths (Å)

Ni1—N1 2.118 (4)
Ni1—S2 2.4314 (12)
Ni1—S1 2.4368 (12)
S2—C6 1.691 (5)
S1—C6 1.679 (5)
C6—O1 1.328 (5)
C7—O1 1.447 (5)

Table 2
Hydrogen-bond geometry (Å, °)

Cg1 is the centroid of the N1/C1/C2/C3/C4/C5 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C5—H5⋯S2i 0.93 2.78 3.642 (5) 154
C8—H8ACg1ii 0.96 3.26 3.712 (6) 111
Symmetry codes: (i) -x+2, -y, -z; (ii) -x+2, -y, -z+1.

Data collection: CrysAlis PRO (Oxford Diffraction, 2010[Oxford Diffraction (2010). CrysAlis RED and CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]); software used to prepare material for publication: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]) and PARST (Nardelli, 1995[Nardelli, M. (1995). J. Appl. Cryst. 28, 659.]).

Supporting information


Related literature top

Xanthates as ligands have been investigated extensively due to their coordination behaviour (Haiduc et al., 1995), thereby showing monodentate and/or bidentate coordination modes (Xiong et al., 1997; Trávní˘cek et al., 1995). Xanthates have also found uses as antitumour agents and in the treatment of Alzheimer's disease (Orts et al., 2002; Larsson & Oberg, 2011). For other analogous Ni–dithiocarboxylate complexes, see: Kapoor et al. (2012). For C—S and C—O bond lengths in other xanthates, see: Jiang et al. (2002); Alam et al. (2011).

Experimental top

Bis(O-ethyldithiocarbonato)nickel(II) required for preparation of the adduct was obtained by mixing aqueous solutions of the potassium salt of O-ethyldithiocarbonate (3.24 g, 0.02 mol) and NiCl2·6H2O (2.37 g, 0.01 mol). The formed bis(O-ethyldithiocarbonato)nickel(II) precipitate was immediately filtered off and dried in a vacuum desiccator. Bis(O-ethyldithiocarbonato)nickel(II) (0.783 g, 0.0026 mol) was then dissolved in acetone (60 ml) and stirred for about 10–20 minutes. To the resulting solution, 3-bromopyridine (0.82 g, 0.0052 mol) was added. The mixture was stirred for additional two to three hours and kept undisturbed for one to two days when dark green coloured crystals of the adduct had formed. The product so obtained was filtered and dried in vacuum desiccator over anhydrous calcium chloride.

Refinement top

All H atoms were positioned geometrically and refined using a riding model, with C—H = 0.93–0.97 Å, with Uiso(H) = 1.2Ueq(C), except for the methyl group where Uiso(H) = 1.5Ueq(C).

Structure description top

Xanthates as ligands have been investigated extensively due to their coordination behaviour (Haiduc et al., 1995), thereby showing monodentate and/or bidentate coordination modes (Xiong et al., 1997; Trávní˘cek et al., 1995). Xanthates have also found uses as antitumour agents and in the treatment of Alzheimer's disease (Orts et al., 2002; Larsson & Oberg, 2011). For other analogous Ni–dithiocarboxylate complexes, see: Kapoor et al. (2012). For C—S and C—O bond lengths in other xanthates, see: Jiang et al. (2002); Alam et al. (2011).

Computing details top

Data collection: CrysAlis PRO (Oxford Diffraction, 2010); cell refinement: CrysAlis PRO (Oxford Diffraction, 2010); data reduction: CrysAlis PRO (Oxford Diffraction, 2010); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: PLATON (Spek, 2009) and PARST (Nardelli, 1995).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, with the atom-labelling scheme. Displacement ellipsoids are drawn at the 40% probability level. H atoms are shown as small spheres of arbitrary radius. All non-labelled atoms are related by symmetry code (-x+1, -y, -z).
[Figure 2] Fig. 2. The packing arrangement of molecules of the title compound viewed down [100].
Bis(3-bromopyridine-κN)bis(O-ethyl dithiocarbonato-κ2S,S')nickel(II) top
Crystal data top
[Ni(C3H5OS2)2(C5H4BrN)2]Z = 1
Mr = 617.09F(000) = 306
Triclinic, P1Dx = 1.809 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 6.8397 (7) ÅCell parameters from 1227 reflections
b = 9.1952 (8) Åθ = 4.1–27.4°
c = 9.7562 (10) ŵ = 4.77 mm1
α = 76.121 (8)°T = 293 K
β = 73.935 (9)°Block, dark green
γ = 78.517 (8)°0.3 × 0.2 × 0.1 mm
V = 566.59 (10) Å3
Data collection top
Oxford Diffraction Xcalibur CCD
diffractometer
2230 independent reflections
Radiation source: fine-focus sealed tube1510 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.044
ω scansθmax = 26.0°, θmin = 3.6°
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2010)
h = 68
Tmin = 0.489, Tmax = 1.000k = 911
4016 measured reflectionsl = 1112
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.049H-atom parameters constrained
wR(F2) = 0.112 w = 1/[σ2(Fo2) + (0.0339P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.03(Δ/σ)max = 0.001
2230 reflectionsΔρmax = 0.67 e Å3
126 parametersΔρmin = 0.68 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0130 (18)
Crystal data top
[Ni(C3H5OS2)2(C5H4BrN)2]γ = 78.517 (8)°
Mr = 617.09V = 566.59 (10) Å3
Triclinic, P1Z = 1
a = 6.8397 (7) ÅMo Kα radiation
b = 9.1952 (8) ŵ = 4.77 mm1
c = 9.7562 (10) ÅT = 293 K
α = 76.121 (8)°0.3 × 0.2 × 0.1 mm
β = 73.935 (9)°
Data collection top
Oxford Diffraction Xcalibur CCD
diffractometer
2230 independent reflections
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2010)
1510 reflections with I > 2σ(I)
Tmin = 0.489, Tmax = 1.000Rint = 0.044
4016 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0490 restraints
wR(F2) = 0.112H-atom parameters constrained
S = 1.03Δρmax = 0.67 e Å3
2230 reflectionsΔρmin = 0.68 e Å3
126 parameters
Special details top

Experimental. CrysAlis PRO, Agilent Technologies, Version 1.171.36.28 (release 01–02-2013 CrysAlis171. NET) (compiled Feb 1 2013,16:14:44) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ni10.50000.00000.00000.0371 (3)
Br10.31297 (11)0.60432 (7)0.32487 (8)0.0877 (3)
S20.85033 (18)0.09955 (15)0.11048 (14)0.0456 (4)
S10.49994 (18)0.02146 (15)0.24413 (14)0.0451 (4)
C40.7696 (8)0.4151 (6)0.1093 (6)0.0552 (15)
H40.88210.44270.09080.066*
C60.7488 (7)0.0893 (5)0.2527 (5)0.0418 (12)
C70.8014 (8)0.1290 (6)0.4944 (5)0.0540 (15)
H7A0.79660.02580.54910.065*
H7B0.66440.15700.46740.065*
O10.8752 (5)0.1419 (4)0.3659 (3)0.0484 (9)
C80.9484 (8)0.2339 (7)0.5834 (6)0.0742 (19)
H8A1.08450.20830.60500.111*
H8B0.90890.22480.67240.111*
H8C0.94630.33610.52990.111*
C10.4523 (7)0.3245 (5)0.1639 (5)0.0450 (13)
H10.34390.29310.18410.054*
C50.7205 (7)0.2725 (6)0.0545 (6)0.0474 (13)
H50.79860.20550.00440.057*
C20.4894 (8)0.4701 (6)0.2192 (5)0.0479 (13)
C30.6516 (8)0.5174 (6)0.1919 (6)0.0565 (15)
H30.68010.61610.22850.068*
N10.5662 (5)0.2245 (4)0.0814 (4)0.0392 (10)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ni10.0384 (5)0.0377 (5)0.0395 (6)0.0025 (4)0.0206 (4)0.0089 (4)
Br10.1128 (6)0.0498 (4)0.1009 (6)0.0010 (4)0.0560 (5)0.0109 (4)
S20.0407 (7)0.0547 (9)0.0446 (8)0.0053 (6)0.0205 (6)0.0137 (6)
S10.0465 (7)0.0503 (8)0.0439 (8)0.0035 (7)0.0243 (6)0.0124 (6)
C40.048 (3)0.057 (4)0.065 (4)0.015 (3)0.002 (3)0.028 (3)
C60.046 (3)0.042 (3)0.034 (3)0.002 (2)0.008 (2)0.006 (2)
C70.061 (3)0.064 (4)0.037 (3)0.009 (3)0.008 (3)0.016 (3)
O10.0487 (19)0.065 (2)0.033 (2)0.0033 (18)0.0124 (16)0.0125 (18)
C80.097 (5)0.077 (5)0.049 (4)0.008 (4)0.010 (3)0.026 (3)
C10.053 (3)0.043 (3)0.044 (3)0.002 (3)0.019 (2)0.011 (3)
C50.041 (3)0.051 (3)0.054 (3)0.004 (3)0.015 (2)0.015 (3)
C20.059 (3)0.040 (3)0.041 (3)0.006 (3)0.009 (2)0.006 (2)
C30.068 (4)0.040 (3)0.061 (4)0.014 (3)0.009 (3)0.010 (3)
N10.040 (2)0.039 (2)0.043 (3)0.0020 (19)0.0167 (19)0.0109 (19)
Geometric parameters (Å, º) top
Ni1—N1i2.118 (4)C7—C81.492 (6)
Ni1—N12.118 (4)C7—H7A0.9700
Ni1—S2i2.4314 (12)C7—H7B0.9700
Ni1—S22.4314 (12)C8—H8A0.9600
Ni1—S12.4368 (12)C8—H8B0.9600
Ni1—S1i2.4368 (12)C8—H8C0.9600
Br1—C21.878 (5)C1—N11.344 (5)
S2—C61.691 (5)C1—C21.364 (7)
S1—C61.679 (5)C1—H10.9300
C4—C51.363 (7)C5—N11.331 (6)
C4—C31.372 (8)C5—H50.9300
C4—H40.9300C2—C31.379 (7)
C6—O11.328 (5)C3—H30.9300
C7—O11.447 (5)
N1i—Ni1—N1180.0 (3)O1—C7—H7B110.4
N1i—Ni1—S2i90.75 (10)C8—C7—H7B110.4
N1—Ni1—S2i89.25 (10)H7A—C7—H7B108.6
N1i—Ni1—S289.25 (10)C6—O1—C7118.9 (3)
N1—Ni1—S290.75 (10)C7—C8—H8A109.5
S2i—Ni1—S2180.00 (8)C7—C8—H8B109.5
N1i—Ni1—S190.29 (11)H8A—C8—H8B109.5
N1—Ni1—S189.71 (11)C7—C8—H8C109.5
S2i—Ni1—S1106.15 (4)H8A—C8—H8C109.5
S2—Ni1—S173.85 (4)H8B—C8—H8C109.5
N1i—Ni1—S1i89.71 (11)N1—C1—C2122.6 (5)
N1—Ni1—S1i90.29 (11)N1—C1—H1118.7
S2i—Ni1—S1i73.85 (4)C2—C1—H1118.7
S2—Ni1—S1i106.15 (4)N1—C5—C4123.2 (5)
S1—Ni1—S1i180.000 (5)N1—C5—H5118.4
C6—S2—Ni182.79 (15)C4—C5—H5118.4
C6—S1—Ni182.87 (17)C1—C2—C3119.3 (5)
C5—C4—C3119.3 (5)C1—C2—Br1119.4 (4)
C5—C4—H4120.3C3—C2—Br1121.2 (4)
C3—C4—H4120.3C4—C3—C2118.2 (5)
O1—C6—S1123.4 (3)C4—C3—H3120.9
O1—C6—S2116.1 (3)C2—C3—H3120.9
S1—C6—S2120.5 (3)C5—N1—C1117.4 (5)
O1—C7—C8106.8 (4)C5—N1—Ni1122.2 (3)
O1—C7—H7A110.4C1—N1—Ni1120.5 (3)
C8—C7—H7A110.4
N1i—Ni1—S2—C689.6 (2)N1—C1—C2—Br1176.7 (3)
N1—Ni1—S2—C690.4 (2)C5—C4—C3—C21.5 (8)
S1—Ni1—S2—C60.95 (18)C1—C2—C3—C40.1 (7)
S1i—Ni1—S2—C6179.05 (18)Br1—C2—C3—C4177.5 (4)
N1i—Ni1—S1—C688.2 (2)C4—C5—N1—C11.6 (7)
N1—Ni1—S1—C691.8 (2)C4—C5—N1—Ni1178.0 (4)
S2i—Ni1—S1—C6179.04 (18)C2—C1—N1—C50.1 (7)
S2—Ni1—S1—C60.96 (18)C2—C1—N1—Ni1179.8 (3)
Ni1—S1—C6—O1176.2 (4)S2i—Ni1—N1—C5125.0 (3)
Ni1—S1—C6—S21.5 (3)S2—Ni1—N1—C555.0 (3)
Ni1—S2—C6—O1176.4 (4)S1—Ni1—N1—C5128.9 (3)
Ni1—S2—C6—S11.5 (3)S1i—Ni1—N1—C551.1 (3)
S1—C6—O1—C75.5 (6)S2i—Ni1—N1—C155.4 (3)
S2—C6—O1—C7176.7 (4)S2—Ni1—N1—C1124.6 (3)
C8—C7—O1—C6164.0 (5)S1—Ni1—N1—C150.8 (3)
C3—C4—C5—N12.5 (8)S1i—Ni1—N1—C1129.2 (3)
N1—C1—C2—C31.0 (7)
Symmetry code: (i) x+1, y, z.
Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the N1/C1/C2/C3/C4/C5 ring.
D—H···AD—HH···AD···AD—H···A
C5—H5···S2ii0.932.783.642 (5)154
C8—H8A···Cg1iii0.963.263.712 (6)111
Symmetry codes: (ii) x+2, y, z; (iii) x+2, y, z+1.
Selected bond lengths (Å) top
Ni1—N12.118 (4)S1—C61.679 (5)
Ni1—S22.4314 (12)C6—O11.328 (5)
Ni1—S12.4368 (12)C7—O11.447 (5)
S2—C61.691 (5)
Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the N1/C1/C2/C3/C4/C5 ring.
D—H···AD—HH···AD···AD—H···A
C5—H5···S2i0.932.783.642 (5)154
C8—H8A···Cg1ii0.963.263.712 (6)111
Symmetry codes: (i) x+2, y, z; (ii) x+2, y, z+1.
 

Acknowledgements

RK acknowledges the Department of Science & Technology for the single-crystal X-ray diffractometer sanctioned as a National Facility under project No. SR/S2/CMP-47/2003.

References

First citationAlam, N., Ehsan, M. A., Zeller, M., Mazhar, M. & Arifin, Z. (2011). Acta Cryst. E67, m1064.  CSD CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationHaiduc, I., Sowerby, D. B. & Lu, S. F. (1995). Polyhedron, 14, 3389–3472.  CrossRef CAS Web of Science Google Scholar
First citationJiang, X. H., Zhang, W. G., Zhong, Y. & Wang, S. L. (2002). Molecules, 7, 549–553.  Web of Science CrossRef CAS Google Scholar
First citationKapoor, S., Sachar, R., Singh, K., Gupta, V. K. & Rajnikant, V. (2012). J. Chem. Crystallogr. 42, 222–226.  Web of Science CSD CrossRef CAS Google Scholar
First citationLarsson, A. C. & Öberg, S. (2011). J. Phys. Chem. A, 115, 1396–1407.  CrossRef CAS PubMed Google Scholar
First citationNardelli, M. (1995). J. Appl. Cryst. 28, 659.  CrossRef IUCr Journals Google Scholar
First citationOrts, W. J., Sojka, R. E. & Glenn, G. M. (2002). Agro Food Ind. 13, 37–41.  CAS Google Scholar
First citationOxford Diffraction (2010). CrysAlis RED and CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTrávnícek, Z., Pastorek, R., Sindelár, Z., Klicka, R. & Marek, J. (1995). Polyhedron, 14, 3627–3633.  Google Scholar
First citationXiong, R.-G., Zh, Y., Liu, C.-M. & You, X.-Z. (1997). Polyhedron, 16, 2667–2671.  CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds