organic compounds
of 2-(1,3-dioxoindan-2-yl)isoquinoline-1,3,4-trione
aDepartment of Chemistry, Faculty of Sciences & Arts Khulais, King Abdulaziz University, Jeddah, KSA, bX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, cDepartment of Chemistry, Alva's Institute of Engineering & Technology, Mijar, Moodbidri 574 225, Karnataka, India, dSchool of Industrial Technology, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, and eDepartment of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, PO Box 2457, Riaydh 11451, Saudi Arabia
*Correspondence e-mail: raza2005communications@gmail.com, hfun.c@ksu.edu.sa
In the title isoquinoline-1,3,4-trione derivative, C18H9NO5, the five-membered ring of the indane fragment adopts an with the nitrogen-substituted C atom being the flap. The planes of the indane benzene ring and the isoquinoline-1,3,4-trione ring make a dihedral angle of 82.06 (6)°. In the crystal, molecules are linked into chains extending along the bc plane via C—H⋯O hydrogen-bonding interactions, enclosing R22(8) and R22(10) loops. The chains are further connected by π–π stacking interations, with centroid-to-centroid distances of 3.9050 (7) Å, forming layers parallel to the b axis.
Keywords: crystal structure; isoquinoline-1,3,4-trione derivative; synthesis; hydrogen bonding; pharmacological properties.
CCDC reference: 1036387
1. Related literature
For the biological activity of isoquinoline-1,3,4-triones, see: Chen et al. (2006); Du et al. (2008). For related isoquinoline-1,3,4-trione structures, see: Yu et al. (2010); Huang et al. (2013). For synthetic applications of isoquinoline-1,3,4-trione, see: Yu et al. (2010); Huang et al. (2011, 2013). For the synthesis of related compounds, see: Chen et al. (2006); Du et al. (2008); Ghalib et al. 2011; Schaber et al. 2004; Huang et al. (2013).
2. Experimental
2.1. Crystal data
|
2.3. Refinement
|
Data collection: APEX2 (Bruker, 2009); cell SAINT (Bruker, 2009); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2013 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009).
Supporting information
CCDC reference: 1036387
https://doi.org/10.1107/S2056989014025997/zl2607sup1.cif
contains datablocks I, New_Global_Publ_Block. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2056989014025997/zl2607Isup2.hkl
Supporting information file. DOI: https://doi.org/10.1107/S2056989014025997/zl2607Isup3.cml
Urea has a complicated thermal behavior. It is thermally very liable to change. Thermal decomposition of urea under open reaction vessel conditions at temperatures in excess of 152 °C primarily gives cyanic acid (HNCO). HNCO on contact with additional urea in turn yields biuret which at a temperature of greater than 190 °C is liable to transform into cyanuric acid (Schaber et al., 2004). High-temperature thermal decomposition of cyanuric acid also gives cyanic acid again.
Heating of a mixture of ninhydrin and urea above the melting point of urea gives a mixture of 3a,8a-dihydroxy-1,3,3a,8a-tetrahydro- indeno[1,2-d]imidazole-2,8-dione (3) and the title compound 2-(1,3-dioxoindan-2-yl)-isoquinoline-1,3,4-trione (4) in about equal amounts, figure 4 (Ghalib et al. 2011). Compound 4 is most probably the product of reaction of nihyrin with cyanic acid. The formation of an isoquinoline-1,3,4-triones is of interest as some of these compounds have been known for their potent anticancer activity (Chen et al., 2006; Du et al. 2008). In continuation to our interest in the chemical and pharmacological properties of ninhydrin derivatives (Ghalib et al., 2011), we synthesized the title compound 4 as a precursor for the synthesis of potential chemotherapeutic agents (Chen et al., 2006).
In the title compound (Fig. 1), the study of torsion angles, asymmetric parameters and least squares planes reveals that the indane (C10–C12/C17/C18) ring adopts an
with the nitrogen substituted C atom deviating by -0.104 (1) Å from the least-squares plane. The indane benzene ring (C12–C17) and the isoquinoline-1,3,4-trione ring exhibit a dihedral angle of 82.06 (6)°, suggesting they are almost perpendicular to each other.In the π–π interactions (Cg2···Cg3 = 3.9050 (7) Å; symmetry code: 1-x, 1-y, 1-z) stack the molecules into layers parallel to the b axis, where Cg2 and Cg3 are the centroids of the pyridine-2,3,6-trione and the benzene (C3–C8) rings respectively.
the molecules are connected into chains extending along the bc plane via intermolecular C–H···O hydrogen bonds (Table 1) enclosing R22(8) and R22(10) loops (Fig. 2 & 3). In addition,A dry mixture of ninhydrin (1) (1.78 g) and urea (2) (0.60 g) in molar ratio 1:1 was heated for 15 minutes to 150 °C above the melting point of urea (130–135 °C). The reaction mixture was cooled and then fractionally crystallized with an alcohol-chloroform (1:1) mixture to give colorless crystals of 3 as 3a,8a-dihydroxy-1,3,3a,8a-tetrahydro- indeno[1,2-d]imidazole-2,8-dione (yield 40%, M.P.: 220 °C) (Ghalib et al. 2011) and brownish crystals of the title compound 4 as 2-(1,3-dioxo-indan-2-yl)-isoquinoline-1,3,4-trione (yield 35%, m.p., 290 °C, Fig. 4).
Urea has a complicated thermal behavior. It is thermally very liable to change. Thermal decomposition of urea under open reaction vessel conditions at temperatures in excess of 152 °C primarily gives cyanic acid (HNCO). HNCO on contact with additional urea in turn yields biuret which at a temperature of greater than 190 °C is liable to transform into cyanuric acid (Schaber et al., 2004). High-temperature thermal decomposition of cyanuric acid also gives cyanic acid again.
Heating of a mixture of ninhydrin and urea above the melting point of urea gives a mixture of 3a,8a-dihydroxy-1,3,3a,8a-tetrahydro- indeno[1,2-d]imidazole-2,8-dione (3) and the title compound 2-(1,3-dioxoindan-2-yl)-isoquinoline-1,3,4-trione (4) in about equal amounts, figure 4 (Ghalib et al. 2011). Compound 4 is most probably the product of reaction of nihyrin with cyanic acid. The formation of an isoquinoline-1,3,4-triones is of interest as some of these compounds have been known for their potent anticancer activity (Chen et al., 2006; Du et al. 2008). In continuation to our interest in the chemical and pharmacological properties of ninhydrin derivatives (Ghalib et al., 2011), we synthesized the title compound 4 as a precursor for the synthesis of potential chemotherapeutic agents (Chen et al., 2006).
In the title compound (Fig. 1), the study of torsion angles, asymmetric parameters and least squares planes reveals that the indane (C10–C12/C17/C18) ring adopts an
with the nitrogen substituted C atom deviating by -0.104 (1) Å from the least-squares plane. The indane benzene ring (C12–C17) and the isoquinoline-1,3,4-trione ring exhibit a dihedral angle of 82.06 (6)°, suggesting they are almost perpendicular to each other.In the π–π interactions (Cg2···Cg3 = 3.9050 (7) Å; symmetry code: 1-x, 1-y, 1-z) stack the molecules into layers parallel to the b axis, where Cg2 and Cg3 are the centroids of the pyridine-2,3,6-trione and the benzene (C3–C8) rings respectively.
the molecules are connected into chains extending along the bc plane via intermolecular C–H···O hydrogen bonds (Table 1) enclosing R22(8) and R22(10) loops (Fig. 2 & 3). In addition,For the biological activity of isoquinoline-1,3,4-triones, see: Chen et al. (2006); Du et al. (2008). For related isoquinoline-1,3,4-trione structures, see: Yu et al. (2010); Huang et al. (2013). For synthetic applications of isoquinoline-1,3,4-trione, see: Yu et al. (2010); Huang et al. (2011, 2013). For the synthesis of related compounds, see: Chen et al. (2006); Du et al. (2008); Ghalib et al. 2011; Schaber et al. 2004; Huang et al. (2013).
A dry mixture of ninhydrin (1) (1.78 g) and urea (2) (0.60 g) in molar ratio 1:1 was heated for 15 minutes to 150 °C above the melting point of urea (130–135 °C). The reaction mixture was cooled and then fractionally crystallized with an alcohol-chloroform (1:1) mixture to give colorless crystals of 3 as 3a,8a-dihydroxy-1,3,3a,8a-tetrahydro- indeno[1,2-d]imidazole-2,8-dione (yield 40%, M.P.: 220 °C) (Ghalib et al. 2011) and brownish crystals of the title compound 4 as 2-(1,3-dioxo-indan-2-yl)-isoquinoline-1,3,4-trione (yield 35%, m.p., 290 °C, Fig. 4).
detailsAll the H atoms were positioned geometrically (C=H 0.93–0.98 Å) and refined using a riding model with Uiso(H) = 1.2 Ueq(C).
Data collection: APEX2 (Bruker, 2009); cell
SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2013 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).Fig. 1. The molecular structure of the title compound with atom labels and 50% probability displacement ellipsoids. | |
Fig. 2. Crystal packing of the title compound, showing the C6–H6A···O2 and C7–H7A···O1 hydrogen bonding interactions (Symmetry codes: x, y, z + 1) as dashed lines incorporating R22(8) loops. Other H-atoms are omited for clarity. | |
Fig. 3. Crystal packing of the title compound, showing the C–H···O hydrogen bonding interactions (Symmetry codes: x, -y + 1/2, z - 1/2; -x, y + 1/2, -z - 1/2; -x, y - 1/2, -z - 1/2) as dashed lines incorporating R22(10) loops. Other H-atoms are omited for clarity. | |
Fig. 4. Reaction scheme for the title compound. |
C18H9NO5 | F(000) = 656 |
Mr = 319.26 | Dx = 1.488 Mg m−3 |
Monoclinic, P21/c | Cu Kα radiation, λ = 1.54178 Å |
a = 12.6080 (1) Å | Cell parameters from 6347 reflections |
b = 13.6849 (2) Å | θ = 6.3–71.7° |
c = 8.4467 (1) Å | µ = 0.93 mm−1 |
β = 102.051 (1)° | T = 100 K |
V = 1425.27 (3) Å3 | Block, orange |
Z = 4 | 0.24 × 0.15 × 0.14 mm |
Bruker APEXII CCD diffractometer | 2458 reflections with I > 2σ(I) |
Radiation source: fine-focus sealed tube | Rint = 0.024 |
φ and ω scans | θmax = 72.0°, θmin = 6.3° |
Absorption correction: multi-scan (SADABS; Bruker, 2009) | h = −15→14 |
Tmin = 0.808, Tmax = 0.879 | k = −16→16 |
9639 measured reflections | l = −9→8 |
2597 independent reflections |
Refinement on F2 | 0 restraints |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.035 | H-atom parameters constrained |
wR(F2) = 0.093 | w = 1/[σ2(Fo2) + (0.0504P)2 + 0.5485P] where P = (Fo2 + 2Fc2)/3 |
S = 1.04 | (Δ/σ)max < 0.001 |
2597 reflections | Δρmax = 0.27 e Å−3 |
217 parameters | Δρmin = −0.20 e Å−3 |
C18H9NO5 | V = 1425.27 (3) Å3 |
Mr = 319.26 | Z = 4 |
Monoclinic, P21/c | Cu Kα radiation |
a = 12.6080 (1) Å | µ = 0.93 mm−1 |
b = 13.6849 (2) Å | T = 100 K |
c = 8.4467 (1) Å | 0.24 × 0.15 × 0.14 mm |
β = 102.051 (1)° |
Bruker APEXII CCD diffractometer | 2597 independent reflections |
Absorption correction: multi-scan (SADABS; Bruker, 2009) | 2458 reflections with I > 2σ(I) |
Tmin = 0.808, Tmax = 0.879 | Rint = 0.024 |
9639 measured reflections |
R[F2 > 2σ(F2)] = 0.035 | 0 restraints |
wR(F2) = 0.093 | H-atom parameters constrained |
S = 1.04 | Δρmax = 0.27 e Å−3 |
2597 reflections | Δρmin = −0.20 e Å−3 |
217 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
O1 | 0.36681 (7) | 0.34686 (7) | −0.36897 (11) | 0.0226 (2) | |
O2 | 0.56844 (7) | 0.37737 (7) | −0.18918 (11) | 0.0244 (2) | |
O3 | 0.22076 (7) | 0.37449 (6) | 0.07501 (11) | 0.0212 (2) | |
O4 | 0.14773 (7) | 0.52030 (7) | −0.25876 (13) | 0.0310 (3) | |
O5 | 0.14677 (7) | 0.18880 (6) | −0.12358 (10) | 0.0208 (2) | |
N1 | 0.29330 (8) | 0.35524 (7) | −0.14517 (12) | 0.0167 (2) | |
C1 | 0.37928 (9) | 0.35678 (8) | −0.22453 (15) | 0.0171 (3) | |
C2 | 0.49378 (10) | 0.37240 (8) | −0.11979 (15) | 0.0182 (3) | |
C3 | 0.50578 (10) | 0.38012 (8) | 0.05673 (15) | 0.0173 (3) | |
C4 | 0.60836 (10) | 0.39054 (9) | 0.15659 (16) | 0.0202 (3) | |
H4A | 0.6710 | 0.3933 | 0.1108 | 0.024* | |
C5 | 0.61838 (10) | 0.39680 (9) | 0.32253 (16) | 0.0219 (3) | |
H5A | 0.6880 | 0.4043 | 0.3907 | 0.026* | |
C6 | 0.52631 (10) | 0.39207 (9) | 0.39026 (16) | 0.0213 (3) | |
H6A | 0.5339 | 0.3947 | 0.5045 | 0.026* | |
C7 | 0.42389 (10) | 0.38360 (8) | 0.29149 (15) | 0.0191 (3) | |
H7A | 0.3614 | 0.3817 | 0.3377 | 0.023* | |
C8 | 0.41329 (10) | 0.37786 (8) | 0.12429 (15) | 0.0172 (3) | |
C9 | 0.30286 (10) | 0.36955 (8) | 0.02176 (15) | 0.0172 (3) | |
C10 | 0.18389 (9) | 0.34521 (9) | −0.24087 (15) | 0.0180 (3) | |
H10A | 0.1894 | 0.3278 | −0.3539 | 0.022* | |
C11 | 0.11456 (10) | 0.43817 (9) | −0.24898 (16) | 0.0210 (3) | |
C12 | 0.00327 (10) | 0.40620 (9) | −0.24322 (16) | 0.0215 (3) | |
C13 | −0.09105 (10) | 0.46146 (10) | −0.26425 (18) | 0.0276 (3) | |
H13A | −0.0910 | 0.5291 | −0.2893 | 0.033* | |
C14 | −0.18531 (11) | 0.41422 (10) | −0.2473 (2) | 0.0314 (3) | |
H14A | −0.2510 | 0.4502 | −0.2610 | 0.038* | |
C15 | −0.18544 (11) | 0.31468 (10) | −0.21033 (19) | 0.0315 (3) | |
H15A | −0.2513 | 0.2842 | −0.2000 | 0.038* | |
C16 | −0.09097 (11) | 0.25943 (10) | −0.18845 (18) | 0.0267 (3) | |
H16A | −0.0910 | 0.1918 | −0.1629 | 0.032* | |
C17 | 0.00336 (10) | 0.30685 (9) | −0.20540 (15) | 0.0201 (3) | |
C18 | 0.11462 (9) | 0.26700 (8) | −0.18079 (14) | 0.0173 (3) |
U11 | U22 | U33 | U12 | U13 | U23 | |
O1 | 0.0203 (4) | 0.0298 (5) | 0.0183 (5) | −0.0022 (3) | 0.0056 (3) | −0.0011 (4) |
O2 | 0.0176 (4) | 0.0350 (5) | 0.0221 (5) | −0.0004 (3) | 0.0075 (4) | 0.0005 (4) |
O3 | 0.0169 (4) | 0.0267 (5) | 0.0214 (5) | −0.0016 (3) | 0.0072 (3) | −0.0031 (3) |
O4 | 0.0215 (5) | 0.0205 (5) | 0.0501 (7) | −0.0025 (4) | 0.0055 (4) | 0.0081 (4) |
O5 | 0.0218 (4) | 0.0175 (4) | 0.0219 (5) | 0.0011 (3) | 0.0019 (3) | −0.0010 (3) |
N1 | 0.0137 (5) | 0.0192 (5) | 0.0172 (5) | −0.0005 (4) | 0.0031 (4) | −0.0007 (4) |
C1 | 0.0180 (6) | 0.0152 (6) | 0.0189 (7) | 0.0001 (4) | 0.0055 (5) | 0.0008 (4) |
C2 | 0.0169 (6) | 0.0160 (6) | 0.0222 (7) | 0.0003 (4) | 0.0055 (5) | 0.0006 (5) |
C3 | 0.0180 (6) | 0.0149 (5) | 0.0190 (6) | 0.0000 (4) | 0.0043 (5) | 0.0012 (4) |
C4 | 0.0180 (6) | 0.0196 (6) | 0.0234 (7) | −0.0004 (4) | 0.0054 (5) | 0.0014 (5) |
C5 | 0.0185 (6) | 0.0224 (6) | 0.0226 (7) | −0.0017 (5) | −0.0004 (5) | 0.0007 (5) |
C6 | 0.0250 (6) | 0.0207 (6) | 0.0180 (6) | −0.0017 (5) | 0.0036 (5) | −0.0004 (5) |
C7 | 0.0206 (6) | 0.0178 (6) | 0.0202 (6) | −0.0010 (4) | 0.0069 (5) | −0.0003 (4) |
C8 | 0.0181 (6) | 0.0138 (5) | 0.0198 (6) | −0.0005 (4) | 0.0039 (5) | 0.0002 (4) |
C9 | 0.0180 (6) | 0.0146 (5) | 0.0198 (6) | −0.0006 (4) | 0.0060 (5) | −0.0006 (4) |
C10 | 0.0157 (6) | 0.0203 (6) | 0.0174 (6) | −0.0002 (4) | 0.0024 (4) | 0.0001 (4) |
C11 | 0.0177 (6) | 0.0207 (6) | 0.0237 (7) | −0.0003 (5) | 0.0022 (5) | 0.0039 (5) |
C12 | 0.0178 (6) | 0.0202 (6) | 0.0257 (7) | −0.0012 (5) | 0.0031 (5) | 0.0000 (5) |
C13 | 0.0203 (6) | 0.0192 (6) | 0.0423 (8) | 0.0017 (5) | 0.0042 (5) | 0.0014 (6) |
C14 | 0.0177 (6) | 0.0261 (7) | 0.0497 (9) | 0.0029 (5) | 0.0058 (6) | −0.0034 (6) |
C15 | 0.0188 (6) | 0.0264 (7) | 0.0508 (9) | −0.0049 (5) | 0.0107 (6) | −0.0036 (6) |
C16 | 0.0222 (6) | 0.0189 (6) | 0.0398 (8) | −0.0028 (5) | 0.0083 (5) | −0.0010 (5) |
C17 | 0.0183 (6) | 0.0195 (6) | 0.0225 (7) | −0.0007 (5) | 0.0039 (5) | −0.0019 (5) |
C18 | 0.0177 (6) | 0.0180 (6) | 0.0157 (6) | −0.0019 (4) | 0.0025 (4) | −0.0035 (4) |
O1—C1 | 1.2048 (15) | C7—C8 | 1.3927 (18) |
O2—C2 | 1.2102 (15) | C7—H7A | 0.9500 |
O3—C9 | 1.2136 (15) | C8—C9 | 1.4825 (17) |
O4—C11 | 1.2080 (16) | C10—C18 | 1.5332 (16) |
O5—C18 | 1.2088 (15) | C10—C11 | 1.5370 (16) |
N1—C1 | 1.3886 (15) | C10—H10A | 1.0000 |
N1—C9 | 1.4036 (16) | C11—C12 | 1.4802 (17) |
N1—C10 | 1.4525 (15) | C12—C13 | 1.3890 (18) |
C1—C2 | 1.5424 (16) | C12—C17 | 1.3966 (17) |
C2—C3 | 1.4707 (17) | C13—C14 | 1.3863 (19) |
C3—C4 | 1.3961 (17) | C13—H13A | 0.9500 |
C3—C8 | 1.4016 (17) | C14—C15 | 1.398 (2) |
C4—C5 | 1.3835 (18) | C14—H14A | 0.9500 |
C4—H4A | 0.9500 | C15—C16 | 1.3901 (19) |
C5—C6 | 1.3987 (18) | C15—H15A | 0.9500 |
C5—H5A | 0.9500 | C16—C17 | 1.3883 (18) |
C6—C7 | 1.3881 (18) | C16—H16A | 0.9500 |
C6—H6A | 0.9500 | C17—C18 | 1.4787 (16) |
C1—N1—C9 | 124.81 (10) | N1—C10—C18 | 114.97 (10) |
C1—N1—C10 | 118.64 (10) | N1—C10—C11 | 114.32 (10) |
C9—N1—C10 | 116.40 (10) | C18—C10—C11 | 103.57 (9) |
O1—C1—N1 | 122.48 (11) | N1—C10—H10A | 107.9 |
O1—C1—C2 | 120.34 (11) | C18—C10—H10A | 107.9 |
N1—C1—C2 | 117.17 (10) | C11—C10—H10A | 107.9 |
O2—C2—C3 | 124.14 (11) | O4—C11—C12 | 128.41 (12) |
O2—C2—C1 | 117.35 (11) | O4—C11—C10 | 124.84 (11) |
C3—C2—C1 | 118.51 (10) | C12—C11—C10 | 106.74 (10) |
C4—C3—C8 | 120.06 (11) | C13—C12—C17 | 121.27 (12) |
C4—C3—C2 | 120.40 (11) | C13—C12—C11 | 128.83 (12) |
C8—C3—C2 | 119.54 (11) | C17—C12—C11 | 109.86 (11) |
C5—C4—C3 | 119.71 (11) | C14—C13—C12 | 117.55 (12) |
C5—C4—H4A | 120.1 | C14—C13—H13A | 121.2 |
C3—C4—H4A | 120.1 | C12—C13—H13A | 121.2 |
C4—C5—C6 | 120.23 (11) | C13—C14—C15 | 121.24 (12) |
C4—C5—H5A | 119.9 | C13—C14—H14A | 119.4 |
C6—C5—H5A | 119.9 | C15—C14—H14A | 119.4 |
C7—C6—C5 | 120.36 (12) | C16—C15—C14 | 121.26 (12) |
C7—C6—H6A | 119.8 | C16—C15—H15A | 119.4 |
C5—C6—H6A | 119.8 | C14—C15—H15A | 119.4 |
C6—C7—C8 | 119.63 (11) | C17—C16—C15 | 117.44 (12) |
C6—C7—H7A | 120.2 | C17—C16—H16A | 121.3 |
C8—C7—H7A | 120.2 | C15—C16—H16A | 121.3 |
C7—C8—C3 | 119.98 (11) | C16—C17—C12 | 121.25 (11) |
C7—C8—C9 | 118.45 (11) | C16—C17—C18 | 128.40 (11) |
C3—C8—C9 | 121.57 (11) | C12—C17—C18 | 110.28 (10) |
O3—C9—N1 | 118.63 (11) | O5—C18—C17 | 127.71 (11) |
O3—C9—C8 | 123.28 (11) | O5—C18—C10 | 125.71 (11) |
N1—C9—C8 | 118.09 (10) | C17—C18—C10 | 106.57 (10) |
C9—N1—C1—O1 | −177.84 (11) | C1—N1—C10—C18 | 131.20 (11) |
C10—N1—C1—O1 | −2.54 (16) | C9—N1—C10—C18 | −53.10 (13) |
C9—N1—C1—C2 | 1.89 (16) | C1—N1—C10—C11 | −109.16 (12) |
C10—N1—C1—C2 | 177.19 (9) | C9—N1—C10—C11 | 66.53 (13) |
O1—C1—C2—O2 | 2.38 (17) | N1—C10—C11—O4 | 38.25 (18) |
N1—C1—C2—O2 | −177.36 (10) | C18—C10—C11—O4 | 164.10 (13) |
O1—C1—C2—C3 | −177.50 (11) | N1—C10—C11—C12 | −142.00 (11) |
N1—C1—C2—C3 | 2.76 (15) | C18—C10—C11—C12 | −16.15 (13) |
O2—C2—C3—C4 | −2.32 (18) | O4—C11—C12—C13 | 7.3 (2) |
C1—C2—C3—C4 | 177.55 (10) | C10—C11—C12—C13 | −172.42 (13) |
O2—C2—C3—C8 | 177.08 (11) | O4—C11—C12—C17 | −170.35 (14) |
C1—C2—C3—C8 | −3.05 (16) | C10—C11—C12—C17 | 9.92 (14) |
C8—C3—C4—C5 | 1.19 (17) | C17—C12—C13—C14 | −0.4 (2) |
C2—C3—C4—C5 | −179.41 (11) | C11—C12—C13—C14 | −177.81 (14) |
C3—C4—C5—C6 | 0.42 (18) | C12—C13—C14—C15 | 0.0 (2) |
C4—C5—C6—C7 | −1.67 (19) | C13—C14—C15—C16 | 0.3 (2) |
C5—C6—C7—C8 | 1.27 (18) | C14—C15—C16—C17 | −0.3 (2) |
C6—C7—C8—C3 | 0.35 (17) | C15—C16—C17—C12 | −0.1 (2) |
C6—C7—C8—C9 | −179.58 (10) | C15—C16—C17—C18 | 176.66 (13) |
C4—C3—C8—C7 | −1.59 (17) | C13—C12—C17—C16 | 0.4 (2) |
C2—C3—C8—C7 | 179.01 (10) | C11—C12—C17—C16 | 178.31 (12) |
C4—C3—C8—C9 | 178.35 (10) | C13—C12—C17—C18 | −176.86 (12) |
C2—C3—C8—C9 | −1.06 (16) | C11—C12—C17—C18 | 1.01 (15) |
C1—N1—C9—O3 | 174.03 (10) | C16—C17—C18—O5 | −9.2 (2) |
C10—N1—C9—O3 | −1.36 (15) | C12—C17—C18—O5 | 167.87 (12) |
C1—N1—C9—C8 | −5.98 (16) | C16—C17—C18—C10 | 171.40 (13) |
C10—N1—C9—C8 | 178.63 (10) | C12—C17—C18—C10 | −11.55 (14) |
C7—C8—C9—O3 | 5.45 (17) | N1—C10—C18—O5 | −37.31 (17) |
C3—C8—C9—O3 | −174.48 (11) | C11—C10—C18—O5 | −162.74 (12) |
C7—C8—C9—N1 | −174.54 (10) | N1—C10—C18—C17 | 142.12 (10) |
C3—C8—C9—N1 | 5.52 (16) | C11—C10—C18—C17 | 16.70 (12) |
D—H···A | D—H | H···A | D···A | D—H···A |
C6—H6A···O2i | 0.95 | 2.54 | 3.4862 (16) | 171 |
C7—H7A···O1i | 0.95 | 2.51 | 3.1397 (15) | 124 |
C10—H10A···O5ii | 1.00 | 2.24 | 3.2022 (15) | 161 |
C13—H13A···O5iii | 0.95 | 2.37 | 3.2852 (16) | 163 |
C16—H16A···O4iv | 0.95 | 2.50 | 3.3596 (17) | 150 |
Symmetry codes: (i) x, y, z+1; (ii) x, −y+1/2, z−1/2; (iii) −x, y+1/2, −z−1/2; (iv) −x, y−1/2, −z−1/2. |
D—H···A | D—H | H···A | D···A | D—H···A |
C6—H6A···O2i | 0.9500 | 2.5400 | 3.4862 (16) | 171.00 |
C7—H7A···O1i | 0.9500 | 2.5100 | 3.1397 (15) | 124.00 |
C10—H10A···O5ii | 1.0000 | 2.2400 | 3.2022 (15) | 161.00 |
C13—H13A···O5iii | 0.9500 | 2.3700 | 3.2852 (16) | 163.00 |
C16—H16A···O4iv | 0.9500 | 2.5000 | 3.3596 (17) | 150.00 |
Symmetry codes: (i) x, y, z+1; (ii) x, −y+1/2, z−1/2; (iii) −x, y+1/2, −z−1/2; (iv) −x, y−1/2, −z−1/2. |
Acknowledgements
RH and OS acknowledge Universiti Sains Malaysia (USM) for providing research facilities. CSCK thanks Universiti Sains Malaysia (USM) for a postdoctoral research fellowship. The authors extend their appreciation to The Deanship of Scientific Research at King Saud University for the research group project No. RGP VPP-207.
References
Bruker (2009). SADABS, APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Chen, Y. H., Zhang, Y. H., Zhang, H. J., Liu, D. Z., Gu, M., Li, J. Y., Wu, F., Zhu, X. Z., Li, J. & Nan, F. J. (2006). J. Med. Chem. 49, 1613–1623. Web of Science CrossRef PubMed CAS Google Scholar
Du, J. Q., Wu, J., Zhang, H. J., Zhang, Y. H., Qiu, B. Y., Wu, F., Chen, Y. H., Li, J. Y., Nan, F. J., Ding, J. P. & Li, J. (2008). J. Biol. Chem. 283, 30205–30215. Web of Science CrossRef PubMed CAS Google Scholar
Ghalib, R. M., Hashim, R., Mehdi, S. H., Quah, C. K. & Fun, H.-K. (2011). Acta Cryst. E67, o1525. Web of Science CSD CrossRef IUCr Journals Google Scholar
Huang, C. M., Jiang, H., Wang, R. Z., Quah, C. K., Fun, H. K. & Zhang, Y. (2013). Org. Biomol. Chem. 11, 5023–5033. Web of Science CSD CrossRef CAS PubMed Google Scholar
Huang, C. M., Yu, H. T., Miao, Z. R., Zhou, J., Wang, S. A., Fun, H. K., Xu, J. H. & Zhang, Y. (2011). Org. Biomol. Chem. 9, 3629–3631. Web of Science CSD CrossRef CAS PubMed Google Scholar
Schaber, P. M., Colson, J., Higgins, S., Thielen, D., Anspach, B. & Brauer, J. (2004). Thermochim. Acta, 424, 131–142. Web of Science CrossRef CAS Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Spek, A. L. (2009). Acta Cryst. D65, 148–155. Web of Science CrossRef CAS IUCr Journals Google Scholar
Yu, H. T., Li, J. B., Kou, Z. F., Du, X. W., Wei, Y., Fun, H. K., Xu, J. H. & Zhang, Y. (2010). J. Org. Chem. 75, 2989–3001. Web of Science CSD CrossRef CAS PubMed Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.