organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of 2-(1,3-dioxoindan-2-yl)iso­quinoline-1,3,4-trione

aDepartment of Chemistry, Faculty of Sciences & Arts Khulais, King Abdulaziz University, Jeddah, KSA, bX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, cDepartment of Chemistry, Alva's Institute of Engineering & Technology, Mijar, Moodbidri 574 225, Karnataka, India, dSchool of Industrial Technology, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, and eDepartment of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, PO Box 2457, Riaydh 11451, Saudi Arabia
*Correspondence e-mail: raza2005communications@gmail.com, hfun.c@ksu.edu.sa

Edited by M. Zeller, Youngstown State University, USA (Received 30 October 2014; accepted 26 November 2014; online 1 January 2015)

In the title iso­quinoline-1,3,4-trione derivative, C18H9NO5, the five-membered ring of the indane fragment adopts an envelope conformation with the nitro­gen-substituted C atom being the flap. The planes of the indane benzene ring and the iso­quinoline-1,3,4-trione ring make a dihedral angle of 82.06 (6)°. In the crystal, mol­ecules are linked into chains extending along the bc plane via C—H⋯O hydrogen-bonding inter­actions, enclosing R22(8) and R22(10) loops. The chains are further connected by ππ stacking inter­ations, with centroid-to-centroid distances of 3.9050 (7) Å, forming layers parallel to the b axis.

1. Related literature

For the biological activity of iso­quinoline-1,3,4-triones, see: Chen et al. (2006[Chen, Y. H., Zhang, Y. H., Zhang, H. J., Liu, D. Z., Gu, M., Li, J. Y., Wu, F., Zhu, X. Z., Li, J. & Nan, F. J. (2006). J. Med. Chem. 49, 1613-1623.]); Du et al. (2008[Du, J. Q., Wu, J., Zhang, H. J., Zhang, Y. H., Qiu, B. Y., Wu, F., Chen, Y. H., Li, J. Y., Nan, F. J., Ding, J. P. & Li, J. (2008). J. Biol. Chem. 283, 30205-30215.]). For related iso­quinoline-1,3,4-trione structures, see: Yu et al. (2010[Yu, H. T., Li, J. B., Kou, Z. F., Du, X. W., Wei, Y., Fun, H. K., Xu, J. H. & Zhang, Y. (2010). J. Org. Chem. 75, 2989-3001.]); Huang et al. (2013[Huang, C. M., Jiang, H., Wang, R. Z., Quah, C. K., Fun, H. K. & Zhang, Y. (2013). Org. Biomol. Chem. 11, 5023-5033.]). For synthetic applications of iso­quinoline-1,3,4-trione, see: Yu et al. (2010[Yu, H. T., Li, J. B., Kou, Z. F., Du, X. W., Wei, Y., Fun, H. K., Xu, J. H. & Zhang, Y. (2010). J. Org. Chem. 75, 2989-3001.]); Huang et al. (2011[Huang, C. M., Yu, H. T., Miao, Z. R., Zhou, J., Wang, S. A., Fun, H. K., Xu, J. H. & Zhang, Y. (2011). Org. Biomol. Chem. 9, 3629-3631.], 2013[Huang, C. M., Jiang, H., Wang, R. Z., Quah, C. K., Fun, H. K. & Zhang, Y. (2013). Org. Biomol. Chem. 11, 5023-5033.]). For the synthesis of related compounds, see: Chen et al. (2006[Chen, Y. H., Zhang, Y. H., Zhang, H. J., Liu, D. Z., Gu, M., Li, J. Y., Wu, F., Zhu, X. Z., Li, J. & Nan, F. J. (2006). J. Med. Chem. 49, 1613-1623.]); Du et al. (2008[Du, J. Q., Wu, J., Zhang, H. J., Zhang, Y. H., Qiu, B. Y., Wu, F., Chen, Y. H., Li, J. Y., Nan, F. J., Ding, J. P. & Li, J. (2008). J. Biol. Chem. 283, 30205-30215.]); Ghalib et al. 2011[Ghalib, R. M., Hashim, R., Mehdi, S. H., Quah, C. K. & Fun, H.-K. (2011). Acta Cryst. E67, o1525.]; Schaber et al. 2004[Schaber, P. M., Colson, J., Higgins, S., Thielen, D., Anspach, B. & Brauer, J. (2004). Thermochim. Acta, 424, 131-142.]; Huang et al. (2013[Huang, C. M., Jiang, H., Wang, R. Z., Quah, C. K., Fun, H. K. & Zhang, Y. (2013). Org. Biomol. Chem. 11, 5023-5033.]).

[Scheme 1]

2. Experimental

2.1. Crystal data

  • C18H9NO5

  • Mr = 319.26

  • Monoclinic, P 21 /c

  • a = 12.6080 (1) Å

  • b = 13.6849 (2) Å

  • c = 8.4467 (1) Å

  • β = 102.051 (1)°

  • V = 1425.27 (3) Å3

  • Z = 4

  • Cu Kα radiation

  • μ = 0.93 mm−1

  • T = 100 K

  • 0.24 × 0.15 × 0.14 mm

2.2. Data collection

  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009[Bruker (2009). SADABS, APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.808, Tmax = 0.879

  • 9639 measured reflections

  • 2597 independent reflections

  • 2458 reflections with I > 2σ(I)

  • Rint = 0.024

2.3. Refinement

  • R[F2 > 2σ(F2)] = 0.035

  • wR(F2) = 0.093

  • S = 1.04

  • 2597 reflections

  • 217 parameters

  • H-atom parameters constrained

  • Δρmax = 0.27 e Å−3

  • Δρmin = −0.20 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C6—H6A⋯O2i 0.95 2.54 3.4862 (16) 171
C7—H7A⋯O1i 0.95 2.51 3.1397 (15) 124
C10—H10A⋯O5ii 1.00 2.24 3.2022 (15) 161
C13—H13A⋯O5iii 0.95 2.37 3.2852 (16) 163
C16—H16A⋯O4iv 0.95 2.50 3.3596 (17) 150
Symmetry codes: (i) x, y, z+1; (ii) [x, -y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (iii) [-x, y+{\script{1\over 2}}, -z-{\script{1\over 2}}]; (iv) [-x, y-{\script{1\over 2}}, -z-{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2009[Bruker (2009). SADABS, APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). SADABS, APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL2013 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Chemical context top

Urea has a complicated thermal behavior. It is thermally very liable to change. Thermal decomposition of urea under open reaction vessel conditions at temperatures in excess of 152 °C primarily gives cyanic acid (HNCO). HNCO on contact with additional urea in turn yields biuret which at a temperature of greater than 190 °C is liable to transform into cyanuric acid (Schaber et al., 2004). High-temperature thermal decomposition of cyanuric acid also gives cyanic acid again.

Heating of a mixture of ninhydrin and urea above the melting point of urea gives a mixture of 3a,8a-di­hydroxy-1,3,3a,8a-tetra­hydro- indeno­[1,2-d]imidazole-2,8-dione (3) and the title compound 2-(1,3-dioxoindan-2-yl)-iso­quinoline-1,3,4-trione (4) in about equal amounts, figure 4 (Ghalib et al. 2011). Compound 4 is most probably the product of reaction of nihyrin with cyanic acid. The formation of an iso­quinoline-1,3,4-triones is of inter­est as some of these compounds have been known for their potent anti­cancer activity (Chen et al., 2006; Du et al. 2008). In continuation to our inter­est in the chemical and pharmacological properties of ninhydrin derivatives (Ghalib et al., 2011), we synthesized the title compound 4 as a precursor for the synthesis of potential chemotherapeutic agents (Chen et al., 2006).

Structural commentary top

In the title compound (Fig. 1), the study of torsion angles, asymmetric parameters and least squares planes reveals that the indane (C10–C12/C17/C18) ring adopts an envelope conformation with the nitro­gen substituted C atom deviating by -0.104 (1) Å from the least-squares plane. The indane benzene ring (C12–C17) and the iso­quinoline-1,3,4-trione ring exhibit a dihedral angle of 82.06 (6)°, suggesting they are almost perpendicular to each other.

Supra­molecular features top

In the crystal structure, the molecules are connected into chains extending along the bc plane via inter­molecular C–H···O hydrogen bonds (Table 1) enclosing R22(8) and R22(10) loops (Fig. 2 & 3). In addition, ππ inter­actions (Cg2···Cg3 = 3.9050 (7) Å; symmetry code: 1-x, 1-y, 1-z) stack the molecules into layers parallel to the b axis, where Cg2 and Cg3 are the centroids of the pyridine-2,3,6-trione and the benzene (C3–C8) rings respectively.

Synthesis and crystallization top

A dry mixture of ninhydrin (1) (1.78 g) and urea (2) (0.60 g) in molar ratio 1:1 was heated for 15 minutes to 150 °C above the melting point of urea (130–135 °C). The reaction mixture was cooled and then fractionally crystallized with an alcohol-chloro­form (1:1) mixture to give colorless crystals of 3 as 3a,8a-di­hydroxy-1,3,3a,8a-tetra­hydro- indeno­[1,2-d]imidazole-2,8-dione (yield 40%, M.P.: 220 °C) (Ghalib et al. 2011) and brownish crystals of the title compound 4 as 2-(1,3-dioxo-indan-2-yl)-iso­quinoline-1,3,4-trione (yield 35%, m.p., 290 °C, Fig. 4).

Refinement details top

All the H atoms were positioned geometrically (C=H 0.93–0.98 Å) and refined using a riding model with Uiso(H) = 1.2 Ueq(C).

Related literature top

For the biological activity of isoquinoline-1,3,4-triones, see: Chen et al. (2006); Du et al. (2008). For related isoquinoline-1,3,4-trione structures, see: Yu et al. (2010); Huang et al. (2013). For synthetic applications of isoquinoline-1,3,4-trione, see: Yu et al. (2010); Huang et al. (2011, 2013). For the synthesis of related compounds, see: Chen et al. (2006); Du et al. (2008); Ghalib et al. 2011; Schaber et al. 2004; Huang et al. (2013).

Structure description top

Urea has a complicated thermal behavior. It is thermally very liable to change. Thermal decomposition of urea under open reaction vessel conditions at temperatures in excess of 152 °C primarily gives cyanic acid (HNCO). HNCO on contact with additional urea in turn yields biuret which at a temperature of greater than 190 °C is liable to transform into cyanuric acid (Schaber et al., 2004). High-temperature thermal decomposition of cyanuric acid also gives cyanic acid again.

Heating of a mixture of ninhydrin and urea above the melting point of urea gives a mixture of 3a,8a-di­hydroxy-1,3,3a,8a-tetra­hydro- indeno­[1,2-d]imidazole-2,8-dione (3) and the title compound 2-(1,3-dioxoindan-2-yl)-iso­quinoline-1,3,4-trione (4) in about equal amounts, figure 4 (Ghalib et al. 2011). Compound 4 is most probably the product of reaction of nihyrin with cyanic acid. The formation of an iso­quinoline-1,3,4-triones is of inter­est as some of these compounds have been known for their potent anti­cancer activity (Chen et al., 2006; Du et al. 2008). In continuation to our inter­est in the chemical and pharmacological properties of ninhydrin derivatives (Ghalib et al., 2011), we synthesized the title compound 4 as a precursor for the synthesis of potential chemotherapeutic agents (Chen et al., 2006).

In the title compound (Fig. 1), the study of torsion angles, asymmetric parameters and least squares planes reveals that the indane (C10–C12/C17/C18) ring adopts an envelope conformation with the nitro­gen substituted C atom deviating by -0.104 (1) Å from the least-squares plane. The indane benzene ring (C12–C17) and the iso­quinoline-1,3,4-trione ring exhibit a dihedral angle of 82.06 (6)°, suggesting they are almost perpendicular to each other.

In the crystal structure, the molecules are connected into chains extending along the bc plane via inter­molecular C–H···O hydrogen bonds (Table 1) enclosing R22(8) and R22(10) loops (Fig. 2 & 3). In addition, ππ inter­actions (Cg2···Cg3 = 3.9050 (7) Å; symmetry code: 1-x, 1-y, 1-z) stack the molecules into layers parallel to the b axis, where Cg2 and Cg3 are the centroids of the pyridine-2,3,6-trione and the benzene (C3–C8) rings respectively.

For the biological activity of isoquinoline-1,3,4-triones, see: Chen et al. (2006); Du et al. (2008). For related isoquinoline-1,3,4-trione structures, see: Yu et al. (2010); Huang et al. (2013). For synthetic applications of isoquinoline-1,3,4-trione, see: Yu et al. (2010); Huang et al. (2011, 2013). For the synthesis of related compounds, see: Chen et al. (2006); Du et al. (2008); Ghalib et al. 2011; Schaber et al. 2004; Huang et al. (2013).

Synthesis and crystallization top

A dry mixture of ninhydrin (1) (1.78 g) and urea (2) (0.60 g) in molar ratio 1:1 was heated for 15 minutes to 150 °C above the melting point of urea (130–135 °C). The reaction mixture was cooled and then fractionally crystallized with an alcohol-chloro­form (1:1) mixture to give colorless crystals of 3 as 3a,8a-di­hydroxy-1,3,3a,8a-tetra­hydro- indeno­[1,2-d]imidazole-2,8-dione (yield 40%, M.P.: 220 °C) (Ghalib et al. 2011) and brownish crystals of the title compound 4 as 2-(1,3-dioxo-indan-2-yl)-iso­quinoline-1,3,4-trione (yield 35%, m.p., 290 °C, Fig. 4).

Refinement details top

All the H atoms were positioned geometrically (C=H 0.93–0.98 Å) and refined using a riding model with Uiso(H) = 1.2 Ueq(C).

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2013 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with atom labels and 50% probability displacement ellipsoids.
[Figure 2] Fig. 2. Crystal packing of the title compound, showing the C6–H6A···O2 and C7–H7A···O1 hydrogen bonding interactions (Symmetry codes: x, y, z + 1) as dashed lines incorporating R22(8) loops. Other H-atoms are omited for clarity.
[Figure 3] Fig. 3. Crystal packing of the title compound, showing the C–H···O hydrogen bonding interactions (Symmetry codes: x, -y + 1/2, z - 1/2; -x, y + 1/2, -z - 1/2; -x, y - 1/2, -z - 1/2) as dashed lines incorporating R22(10) loops. Other H-atoms are omited for clarity.
[Figure 4] Fig. 4. Reaction scheme for the title compound.
2-(1,3-Dioxoindan-2-yl)isoquinoline-1,3,4-trione top
Crystal data top
C18H9NO5F(000) = 656
Mr = 319.26Dx = 1.488 Mg m3
Monoclinic, P21/cCu Kα radiation, λ = 1.54178 Å
a = 12.6080 (1) ÅCell parameters from 6347 reflections
b = 13.6849 (2) Åθ = 6.3–71.7°
c = 8.4467 (1) ŵ = 0.93 mm1
β = 102.051 (1)°T = 100 K
V = 1425.27 (3) Å3Block, orange
Z = 40.24 × 0.15 × 0.14 mm
Data collection top
Bruker APEXII CCD
diffractometer
2458 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.024
φ and ω scansθmax = 72.0°, θmin = 6.3°
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
h = 1514
Tmin = 0.808, Tmax = 0.879k = 1616
9639 measured reflectionsl = 98
2597 independent reflections
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.035H-atom parameters constrained
wR(F2) = 0.093 w = 1/[σ2(Fo2) + (0.0504P)2 + 0.5485P]
where P = (Fo2 + 2Fc2)/3
S = 1.04(Δ/σ)max < 0.001
2597 reflectionsΔρmax = 0.27 e Å3
217 parametersΔρmin = 0.20 e Å3
Crystal data top
C18H9NO5V = 1425.27 (3) Å3
Mr = 319.26Z = 4
Monoclinic, P21/cCu Kα radiation
a = 12.6080 (1) ŵ = 0.93 mm1
b = 13.6849 (2) ÅT = 100 K
c = 8.4467 (1) Å0.24 × 0.15 × 0.14 mm
β = 102.051 (1)°
Data collection top
Bruker APEXII CCD
diffractometer
2597 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
2458 reflections with I > 2σ(I)
Tmin = 0.808, Tmax = 0.879Rint = 0.024
9639 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0350 restraints
wR(F2) = 0.093H-atom parameters constrained
S = 1.04Δρmax = 0.27 e Å3
2597 reflectionsΔρmin = 0.20 e Å3
217 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.36681 (7)0.34686 (7)0.36897 (11)0.0226 (2)
O20.56844 (7)0.37737 (7)0.18918 (11)0.0244 (2)
O30.22076 (7)0.37449 (6)0.07501 (11)0.0212 (2)
O40.14773 (7)0.52030 (7)0.25876 (13)0.0310 (3)
O50.14677 (7)0.18880 (6)0.12358 (10)0.0208 (2)
N10.29330 (8)0.35524 (7)0.14517 (12)0.0167 (2)
C10.37928 (9)0.35678 (8)0.22453 (15)0.0171 (3)
C20.49378 (10)0.37240 (8)0.11979 (15)0.0182 (3)
C30.50578 (10)0.38012 (8)0.05673 (15)0.0173 (3)
C40.60836 (10)0.39054 (9)0.15659 (16)0.0202 (3)
H4A0.67100.39330.11080.024*
C50.61838 (10)0.39680 (9)0.32253 (16)0.0219 (3)
H5A0.68800.40430.39070.026*
C60.52631 (10)0.39207 (9)0.39026 (16)0.0213 (3)
H6A0.53390.39470.50450.026*
C70.42389 (10)0.38360 (8)0.29149 (15)0.0191 (3)
H7A0.36140.38170.33770.023*
C80.41329 (10)0.37786 (8)0.12429 (15)0.0172 (3)
C90.30286 (10)0.36955 (8)0.02176 (15)0.0172 (3)
C100.18389 (9)0.34521 (9)0.24087 (15)0.0180 (3)
H10A0.18940.32780.35390.022*
C110.11456 (10)0.43817 (9)0.24898 (16)0.0210 (3)
C120.00327 (10)0.40620 (9)0.24322 (16)0.0215 (3)
C130.09105 (10)0.46146 (10)0.26425 (18)0.0276 (3)
H13A0.09100.52910.28930.033*
C140.18531 (11)0.41422 (10)0.2473 (2)0.0314 (3)
H14A0.25100.45020.26100.038*
C150.18544 (11)0.31468 (10)0.21033 (19)0.0315 (3)
H15A0.25130.28420.20000.038*
C160.09097 (11)0.25943 (10)0.18845 (18)0.0267 (3)
H16A0.09100.19180.16290.032*
C170.00336 (10)0.30685 (9)0.20540 (15)0.0201 (3)
C180.11462 (9)0.26700 (8)0.18079 (14)0.0173 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0203 (4)0.0298 (5)0.0183 (5)0.0022 (3)0.0056 (3)0.0011 (4)
O20.0176 (4)0.0350 (5)0.0221 (5)0.0004 (3)0.0075 (4)0.0005 (4)
O30.0169 (4)0.0267 (5)0.0214 (5)0.0016 (3)0.0072 (3)0.0031 (3)
O40.0215 (5)0.0205 (5)0.0501 (7)0.0025 (4)0.0055 (4)0.0081 (4)
O50.0218 (4)0.0175 (4)0.0219 (5)0.0011 (3)0.0019 (3)0.0010 (3)
N10.0137 (5)0.0192 (5)0.0172 (5)0.0005 (4)0.0031 (4)0.0007 (4)
C10.0180 (6)0.0152 (6)0.0189 (7)0.0001 (4)0.0055 (5)0.0008 (4)
C20.0169 (6)0.0160 (6)0.0222 (7)0.0003 (4)0.0055 (5)0.0006 (5)
C30.0180 (6)0.0149 (5)0.0190 (6)0.0000 (4)0.0043 (5)0.0012 (4)
C40.0180 (6)0.0196 (6)0.0234 (7)0.0004 (4)0.0054 (5)0.0014 (5)
C50.0185 (6)0.0224 (6)0.0226 (7)0.0017 (5)0.0004 (5)0.0007 (5)
C60.0250 (6)0.0207 (6)0.0180 (6)0.0017 (5)0.0036 (5)0.0004 (5)
C70.0206 (6)0.0178 (6)0.0202 (6)0.0010 (4)0.0069 (5)0.0003 (4)
C80.0181 (6)0.0138 (5)0.0198 (6)0.0005 (4)0.0039 (5)0.0002 (4)
C90.0180 (6)0.0146 (5)0.0198 (6)0.0006 (4)0.0060 (5)0.0006 (4)
C100.0157 (6)0.0203 (6)0.0174 (6)0.0002 (4)0.0024 (4)0.0001 (4)
C110.0177 (6)0.0207 (6)0.0237 (7)0.0003 (5)0.0022 (5)0.0039 (5)
C120.0178 (6)0.0202 (6)0.0257 (7)0.0012 (5)0.0031 (5)0.0000 (5)
C130.0203 (6)0.0192 (6)0.0423 (8)0.0017 (5)0.0042 (5)0.0014 (6)
C140.0177 (6)0.0261 (7)0.0497 (9)0.0029 (5)0.0058 (6)0.0034 (6)
C150.0188 (6)0.0264 (7)0.0508 (9)0.0049 (5)0.0107 (6)0.0036 (6)
C160.0222 (6)0.0189 (6)0.0398 (8)0.0028 (5)0.0083 (5)0.0010 (5)
C170.0183 (6)0.0195 (6)0.0225 (7)0.0007 (5)0.0039 (5)0.0019 (5)
C180.0177 (6)0.0180 (6)0.0157 (6)0.0019 (4)0.0025 (4)0.0035 (4)
Geometric parameters (Å, º) top
O1—C11.2048 (15)C7—C81.3927 (18)
O2—C21.2102 (15)C7—H7A0.9500
O3—C91.2136 (15)C8—C91.4825 (17)
O4—C111.2080 (16)C10—C181.5332 (16)
O5—C181.2088 (15)C10—C111.5370 (16)
N1—C11.3886 (15)C10—H10A1.0000
N1—C91.4036 (16)C11—C121.4802 (17)
N1—C101.4525 (15)C12—C131.3890 (18)
C1—C21.5424 (16)C12—C171.3966 (17)
C2—C31.4707 (17)C13—C141.3863 (19)
C3—C41.3961 (17)C13—H13A0.9500
C3—C81.4016 (17)C14—C151.398 (2)
C4—C51.3835 (18)C14—H14A0.9500
C4—H4A0.9500C15—C161.3901 (19)
C5—C61.3987 (18)C15—H15A0.9500
C5—H5A0.9500C16—C171.3883 (18)
C6—C71.3881 (18)C16—H16A0.9500
C6—H6A0.9500C17—C181.4787 (16)
C1—N1—C9124.81 (10)N1—C10—C18114.97 (10)
C1—N1—C10118.64 (10)N1—C10—C11114.32 (10)
C9—N1—C10116.40 (10)C18—C10—C11103.57 (9)
O1—C1—N1122.48 (11)N1—C10—H10A107.9
O1—C1—C2120.34 (11)C18—C10—H10A107.9
N1—C1—C2117.17 (10)C11—C10—H10A107.9
O2—C2—C3124.14 (11)O4—C11—C12128.41 (12)
O2—C2—C1117.35 (11)O4—C11—C10124.84 (11)
C3—C2—C1118.51 (10)C12—C11—C10106.74 (10)
C4—C3—C8120.06 (11)C13—C12—C17121.27 (12)
C4—C3—C2120.40 (11)C13—C12—C11128.83 (12)
C8—C3—C2119.54 (11)C17—C12—C11109.86 (11)
C5—C4—C3119.71 (11)C14—C13—C12117.55 (12)
C5—C4—H4A120.1C14—C13—H13A121.2
C3—C4—H4A120.1C12—C13—H13A121.2
C4—C5—C6120.23 (11)C13—C14—C15121.24 (12)
C4—C5—H5A119.9C13—C14—H14A119.4
C6—C5—H5A119.9C15—C14—H14A119.4
C7—C6—C5120.36 (12)C16—C15—C14121.26 (12)
C7—C6—H6A119.8C16—C15—H15A119.4
C5—C6—H6A119.8C14—C15—H15A119.4
C6—C7—C8119.63 (11)C17—C16—C15117.44 (12)
C6—C7—H7A120.2C17—C16—H16A121.3
C8—C7—H7A120.2C15—C16—H16A121.3
C7—C8—C3119.98 (11)C16—C17—C12121.25 (11)
C7—C8—C9118.45 (11)C16—C17—C18128.40 (11)
C3—C8—C9121.57 (11)C12—C17—C18110.28 (10)
O3—C9—N1118.63 (11)O5—C18—C17127.71 (11)
O3—C9—C8123.28 (11)O5—C18—C10125.71 (11)
N1—C9—C8118.09 (10)C17—C18—C10106.57 (10)
C9—N1—C1—O1177.84 (11)C1—N1—C10—C18131.20 (11)
C10—N1—C1—O12.54 (16)C9—N1—C10—C1853.10 (13)
C9—N1—C1—C21.89 (16)C1—N1—C10—C11109.16 (12)
C10—N1—C1—C2177.19 (9)C9—N1—C10—C1166.53 (13)
O1—C1—C2—O22.38 (17)N1—C10—C11—O438.25 (18)
N1—C1—C2—O2177.36 (10)C18—C10—C11—O4164.10 (13)
O1—C1—C2—C3177.50 (11)N1—C10—C11—C12142.00 (11)
N1—C1—C2—C32.76 (15)C18—C10—C11—C1216.15 (13)
O2—C2—C3—C42.32 (18)O4—C11—C12—C137.3 (2)
C1—C2—C3—C4177.55 (10)C10—C11—C12—C13172.42 (13)
O2—C2—C3—C8177.08 (11)O4—C11—C12—C17170.35 (14)
C1—C2—C3—C83.05 (16)C10—C11—C12—C179.92 (14)
C8—C3—C4—C51.19 (17)C17—C12—C13—C140.4 (2)
C2—C3—C4—C5179.41 (11)C11—C12—C13—C14177.81 (14)
C3—C4—C5—C60.42 (18)C12—C13—C14—C150.0 (2)
C4—C5—C6—C71.67 (19)C13—C14—C15—C160.3 (2)
C5—C6—C7—C81.27 (18)C14—C15—C16—C170.3 (2)
C6—C7—C8—C30.35 (17)C15—C16—C17—C120.1 (2)
C6—C7—C8—C9179.58 (10)C15—C16—C17—C18176.66 (13)
C4—C3—C8—C71.59 (17)C13—C12—C17—C160.4 (2)
C2—C3—C8—C7179.01 (10)C11—C12—C17—C16178.31 (12)
C4—C3—C8—C9178.35 (10)C13—C12—C17—C18176.86 (12)
C2—C3—C8—C91.06 (16)C11—C12—C17—C181.01 (15)
C1—N1—C9—O3174.03 (10)C16—C17—C18—O59.2 (2)
C10—N1—C9—O31.36 (15)C12—C17—C18—O5167.87 (12)
C1—N1—C9—C85.98 (16)C16—C17—C18—C10171.40 (13)
C10—N1—C9—C8178.63 (10)C12—C17—C18—C1011.55 (14)
C7—C8—C9—O35.45 (17)N1—C10—C18—O537.31 (17)
C3—C8—C9—O3174.48 (11)C11—C10—C18—O5162.74 (12)
C7—C8—C9—N1174.54 (10)N1—C10—C18—C17142.12 (10)
C3—C8—C9—N15.52 (16)C11—C10—C18—C1716.70 (12)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C6—H6A···O2i0.952.543.4862 (16)171
C7—H7A···O1i0.952.513.1397 (15)124
C10—H10A···O5ii1.002.243.2022 (15)161
C13—H13A···O5iii0.952.373.2852 (16)163
C16—H16A···O4iv0.952.503.3596 (17)150
Symmetry codes: (i) x, y, z+1; (ii) x, y+1/2, z1/2; (iii) x, y+1/2, z1/2; (iv) x, y1/2, z1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C6—H6A···O2i0.95002.54003.4862 (16)171.00
C7—H7A···O1i0.95002.51003.1397 (15)124.00
C10—H10A···O5ii1.00002.24003.2022 (15)161.00
C13—H13A···O5iii0.95002.37003.2852 (16)163.00
C16—H16A···O4iv0.95002.50003.3596 (17)150.00
Symmetry codes: (i) x, y, z+1; (ii) x, y+1/2, z1/2; (iii) x, y+1/2, z1/2; (iv) x, y1/2, z1/2.
 

Footnotes

Thomson Reuters ResearcherID: C-3194-2011.

§Thomson Reuters ResearcherID: A-3561-2009.

Acknowledgements

RH and OS acknowledge Universiti Sains Malaysia (USM) for providing research facilities. CSCK thanks Universiti Sains Malaysia (USM) for a postdoctoral research fellowship. The authors extend their appreciation to The Deanship of Scientific Research at King Saud University for the research group project No. RGP VPP-207.

References

First citationBruker (2009). SADABS, APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChen, Y. H., Zhang, Y. H., Zhang, H. J., Liu, D. Z., Gu, M., Li, J. Y., Wu, F., Zhu, X. Z., Li, J. & Nan, F. J. (2006). J. Med. Chem. 49, 1613–1623.  Web of Science CrossRef PubMed CAS Google Scholar
First citationDu, J. Q., Wu, J., Zhang, H. J., Zhang, Y. H., Qiu, B. Y., Wu, F., Chen, Y. H., Li, J. Y., Nan, F. J., Ding, J. P. & Li, J. (2008). J. Biol. Chem. 283, 30205–30215.  Web of Science CrossRef PubMed CAS Google Scholar
First citationGhalib, R. M., Hashim, R., Mehdi, S. H., Quah, C. K. & Fun, H.-K. (2011). Acta Cryst. E67, o1525.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHuang, C. M., Jiang, H., Wang, R. Z., Quah, C. K., Fun, H. K. & Zhang, Y. (2013). Org. Biomol. Chem. 11, 5023–5033.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationHuang, C. M., Yu, H. T., Miao, Z. R., Zhou, J., Wang, S. A., Fun, H. K., Xu, J. H. & Zhang, Y. (2011). Org. Biomol. Chem. 9, 3629–3631.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationSchaber, P. M., Colson, J., Higgins, S., Thielen, D., Anspach, B. & Brauer, J. (2004). Thermochim. Acta, 424, 131–142.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYu, H. T., Li, J. B., Kou, Z. F., Du, X. W., Wei, Y., Fun, H. K., Xu, J. H. & Zhang, Y. (2010). J. Org. Chem. 75, 2989–3001.  Web of Science CSD CrossRef CAS PubMed Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds