research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 71| Part 2| February 2015| Pages 213-216

Crystal structures and conformations of two Diels–Alder adduct derivatives: 1,8-bis­­(thio­phen-2-yl)-14-oxa­tetra­cyclo­[6.5.1.02,7.09,13]tetra­deca-2(7),3,5-trien-10-one and 1,8-di­phenyl-14-oxa­tetra­cyclo[6.5.1.02,7.09,13] tetra­deca-2,4,6-trien-10-one

aDepartment of Physics, RKM Vivekananda College (Autonomous), Chennai 600 004, India, and bDepartment of Organic Chemistry, University of Madras, Guindy Campus, Chennai 600 025, India
*Correspondence e-mail: ksethusankar@yahoo.co.in

Edited by R. F. Baggio, Comisión Nacional de Energía Atómica, Argentina (Received 11 December 2014; accepted 19 January 2015; online 24 January 2015)

The title compounds, C21H16O2S2 (I) and C25H20O2 (II), are products of a tandem `pincer' Diels–Alder reaction consisting of [2 + 2] cyclo­additions between benzo[c]furan and cyclo­penta­none. Each comprises a fused tetra­cyclic ring system containing two five-membered rings (in envelope conformations with the O atom as the flap) and six-membered rings (in boat conformations). In addition, two thio­phene rings in (I) and two phenyl rings in (II) are attached to the tetra­cyclic ring system. The cyclo­penta­none ring adopts a twisted conformation in (I) and an envelope conformation in (II). In (I), the thio­phene rings are positionally disordered over two sets of sites, with occupancy ratios of 0.901 (2):0.099 (2) and 0.666 (2):0.334 (2). In (II), the oxygen atom of the cyclo­penta­none ring is rotationally disordered over two sites with an occupancy ratio of 0.579 (4):0.421 (4). The mol­ecular structure of (I) is stabilized by an intra­molecular C—H⋯O hydrogen bond, which generates an S(7) ring motif. In the crystal, the mol­ecules are linked via weak C—H⋯O hydrogen bonds, which generate R22(16) ring motifs in (I) and C(8) chains in (II). In both structures, the crystal packing also features C—H⋯π inter­actions. The crystal studied of compound (I) was twinned by non-merohedry. The twin component is related by the twin law [−1 0 0 −0.101 1 −0.484 0 0 −1] operated by a twofold rotation axis parallel to the b axis. The structure of (I) was refined with a twin scale factor of 0.275 (2).

1. Chemical Context

The tandem `pincer' Diels–Alder reaction, consisting of two consecutive [2 + 2] cyclo­additions between two dienes and an acetyl­enic bis-dienophile, when furan derivatives are used as the diene components (Lautens & Fillion, 1997[Lautens, M. & Fillion, E. (1997). J. Org. Chem. 62, 4418-4427.]). The Diels–Alder reaction is among the most powerful C—C-bond-forming processes and one of the most widely used and studied transformations in organic chemistry (Denmark & Thorarensen, 1996[Denmark, S. E. & Thorarensen, A. (1996). Chem. Rev. 96, 137-166.]). Thio­phene derivatives are very important heterocyclic compounds, which possess anti­tubercular (Parai et al., 2008[Parai, M. K., Panda, G., Chaturvedi, V., Manju, Y. K. & Sinha, S. (2008). Bioorg. Med. Chem. Lett. 18, 289-292.]), anti-depressant (Wardakhan et al., 2008[Wardakhan, W. W., Abdel-Salam, O. M. E. & Elmegeed, G. A. (2008). Acta Pharm. 58, 1-14.]), anti-inflammatory (Kumar et al., 2004[Kumar, P. R., Raju, S., Goud, P. S., Sailaja, M., Sarma, M. R., Reddy, G. O., Kumar, M. P., Reddy, V. V. R. M. K., Suresh, T. & Hegde, P. (2004). Bioorg. Med. Chem. 12, 1221-1230.]), anti-HIV (Bonini et al., 2005[Bonini, C., Chiummiento, L., Bonis, M. D., Funicello, M., Lupattelli, P., Suanno, G., Berti, F. & Campaner, P. (2005). Tetrahedron, 61, 6580-6589.]) and anti-breast cancer activities (Brault et al., 2005[Brault, L., Migianu, E., Néguesque, A., Battaglia, E., Bagrel, D. & Kirsch, G. (2005). Eur. J. Med. Chem. 40, 757-763.]). Against this background, the conformational studies and X-ray structure determination of the title compounds have been carried out and the results are presented here.

2. Structural Commentary

The mol­ecular structures of (I)[link] and (II)[link] are shown in Figs. 1[link] and 2[link], respectively, along with the atomic as well as ring-labelling schemes. Both compounds exhibit disorder, viz., in the thio­phene rings of (I)[link] and the oxygen atom of the cyclo­penta­none ring in (II)[link]. Further details are given in the Refinement section.

[Scheme 1]
[Figure 1]
Figure 1
The mol­ecular structure of compound (I)[link] is stabilized by a C19—H19⋯O2 intra­molecular inter­action (dashed line), which generates an S(7) ring motif. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 2]
Figure 2
The mol­ecular structure of compound (II)[link] with the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level.

Rings B and C adopt an envelope conformation in both compounds with atom O1 as the flap. In compound (I)[link], the puckering parameters (Cremer & Pople, 1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]) and smallest displacements parameters (Nardelli, 1983[Nardelli, M. (1983). Acta Cryst. C39, 1141-1142.]) are q2 = 0.5246 (15) Å, φ = 358.41 (18)°, ΔCs = 2.45 (14) for B and q2 = 0.5819 (15) Å, φ = 185.54 (17)°, ΔCs = 6.26 (14) for C. In compound (II)[link] they are q2 = 0.5093 (16) Å, φ = 360.0 (2)°, ΔCs = 0.01 (15) for B and q2 = 0.5585 (15) Å, φ = 179.53 (18)°, ΔCs = 0.44 (14) for C. Cyclo­penta­none ring D adopts a twisted conformation on C12–C13 in (I)[link] with puckering and smallest displacement parameters of q2 = 0.184 (2) Å, φ = 133.7 (6)°, ΔC2 = 3.65 (19) whereas in (II)[link], this ring adopts an envelope conformation on C12 with puckering and smallest displacement parameters of q2 = 0.265 (2) Å, φ = 290.1 (5)°, ΔC2 = 1.1 (2).

In both compounds, the cyclo­hexane ring embracing rings B and C (C1/C6–C10) adopts a boat conformation with puckering amplitude and smallest displacement parameters of q = 0.9648 (17) Å, θ = 88.53 (10), φ = 296.96 (10)° and ΔCs = 6.45 (15) in (I)[link] and q = 1.0000 (18) Å, θ = 90.16 (10), φ = 300.17 (10)° and ΔCs = 0.72 (15) in (II)[link].

Rings A and D in (I)[link] form dihedral angles of 57.02 (14) and 82.70 (14)°, respectively, with the S1/C14–C17 thio­phene ring (major occupancy component) and 62.9 (3) and 20.7 (3)°, respectively, with the major component of the S2/C18–C21 thio­phene ring. In (II)[link], rings A and D subtend angles of 65.03 (9) and 71.65 (11)°, respectively with phenyl ring C14–C19, and 65.88 (10) and 72.51 (12)°, respectively, with phenyl ring C20–C25. The dihedral angle between the thio­phene rings in (I)[link] is 70.3 (3)° and that between the phenyl rings in (II)[link] is 6.93 (10)°. In both compounds, rings B and C are almost perpendicular to each other [dihedral angles of 83.61 (10) and 82.26 (10)°, respectively].

In compound (I)[link], an intra­molecular hydrogen bond, C19—H19⋯O2, occurs, which generates an S(7) ring motif (Table 1[link]).

Table 1
Hydrogen-bond geometry (Å, °) for (I)[link]

Cg1 and Cg2 are the centroids of the S1,C14–C17 and S2/C18–C21 rings, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
C19—H19⋯O2 0.93 2.55 3.282 (9) 135
C20—H20⋯O2i 0.93 2.50 3.384 (8) 159
C15—H15⋯Cg2ii 0.93 2.74 3.605 (6) 154
C21—H21⋯Cg1iii 0.93 2.86 3.731 (8) 156
Symmetry codes: (i) -x+1, -y, -z+1; (ii) -x+1, -y+1, -z+1; (iii) -x, -y+1, -z+1.

3. Supra­molecular features

In both structures, the crystal packing features C—H⋯O and C—H⋯π inter­actions (Tables 1[link] and 2[link]). In compound (I)[link], the C20—H20⋯O2(−x + 1, −y, −z + 1) hydrogen bond generates an [R_{2}^{2}](16) graph-set ring motifs around an inversion centre (Bernstein et al., 1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]) while in compound (II)[link], the weak C5—H5⋯O2(x − [{1\over 2}], −y + [{1\over 2}], z − [{1\over 2}]) hydrogen bond generates C(8) chains running parallel to the c axis. The resulting packing in (I)[link] and (II)[link] is shown in Figs. 3[link] and 4[link], respectively. The structures of both compounds also feature C—H⋯π inter­actions (Tables 1[link] and 2[link]).

Table 2
Hydrogen-bond geometry (Å, °) for (II)[link]

Cg1 is the centroid of the C14–C19 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C5—H5⋯O2i 0.93 2.65 3.472 (3) 147
C12—H12BCg1ii 0.97 2.88 3.783 (3) 156
Symmetry codes: (i) [x-{\script{1\over 2}}, -y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (ii) -x+1, -y, -z.
[Figure 3]
Figure 3
The crystal packing of compound (I)[link], viewed down the a axis, showing the C20—H20⋯O2i inter­molecular hydrogen bond (dashed lines), which results in [R_{2}^{2}](16) ring motifs. Hydrogen atoms not involved in this hydrogen bond are excluded for clarity. [Symmetry code: (i) 1 − x, −y, 1 − z.]
[Figure 4]
Figure 4
The crystal packing of compound (II)[link], viewed down the b axis, showing the C5—H5⋯O2i hydrogen bonds (dashed lines), which result in the formation of C(8) chains. Hydrogen atoms not involved in this hydrogen bond are excluded for clarity. [Symmetry code: (i) x − [{1\over 2}], −y + [{1\over 2}], z − [{1\over 2}].]

4. Synthesis and crystallization

The title compounds were prepared in a similar manner using a solution of 1,3-bis­thio­phen-2-yl-2-benzo­furan (0.30 g, 1.00 mmol) in dry 1,2-DCE (20 mL) for compound (I)[link] and a solution of 1,3-diphenyl-2-benzo­furan (0.30 g, 1.011 mmol) in dry DCE (20 mL) for compound (II)[link]. 2-Cyclo­pentenone was added in both cases [0.104 g, 1.2 mmol for (I)[link], 0.11 g, 1.33 mmol for (II)] and refluxed until the disappearance of the fluorescent colour of 1,3-bis­thio­phen-2-yl-2-benzo­furan or 1,3-diphenyl-2-benzo­furan (10 h). Removal of the solvents was followed by column chromatographic purification (silica gel; 10% ethyl acetate in hexa­ne), affording the adduct as a colourless solid for both (I)[link] (yield = 0.23 g, 61%) and (II)[link] (yield = 0.27 g, 68%). Single crystals suitable for X-ray diffraction were prepared by slow evaporation of a solution of compound (I)[link] or (II)[link] in ethyl acetate at room temperature.

5. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3[link]. Compound (I)[link] initially refined to a high R index of 0.103 (2) and the difference Fourier map showed relatively larger peaks [Δρmax = 0.97 (2) e Å−3]. A preliminary check with TWINLAW (Bolte, 2004[Bolte, M. (2004). J. Appl. Cryst. 37, 162-165.]) showed that the crystal had twofold twinning by non-merohedry about [001] with a twin matrix of [−1 00 −0.101 1 −0.484 0 0 −1]. The twin law operated from the FoFc table was used to a generate an HKLF5 format file (Bolte, 2004[Bolte, M. (2004). J. Appl. Cryst. 37, 162-165.]) suitable for twin refinement in SHELXL97 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]). The twinning was a twofold rotation axis parallel to the b axis with a refined twin scale factor of 0.275 (2). The structure was refined to an improved R index of 0.064 (2) with an essentially flatter difference Fourier map [Δρmax = 0.38 (2) e Å−3].

Table 3
Experimental details

  (I) (II)
Crystal data
Chemical formula C21H16O2S2 C25H20O2
Mr 364.46 352.41
Crystal system, space group Triclinic, P[\overline{1}] Monoclinic, P21/n
Temperature (K) 296 296
a, b, c (Å) 7.1679 (11), 10.9915 (17), 11.2041 (16) 7.8610 (2), 16.7327 (5), 14.2260 (4)
α, β, γ (°) 75.491 (4), 83.148 (5), 86.424 (5) 90, 91.583 (2), 90
V3) 848.0 (2) 1870.51 (9)
Z 2 4
Radiation type Mo Kα Mo Kα
μ (mm−1) 0.33 0.08
Crystal size (mm) 0.35 × 0.30 × 0.25 0.35 × 0.30 × 0.25
 
Data collection
Diffractometer Bruker APEXII CCD Bruker APEXII CCD
Absorption correction Multi-scan (SADABS; Bruker, 2008[Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Multi-scan (SADABS; Bruker, 2008[Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.892, 0.922 0.973, 0.981
No. of measured, independent and observed [I > 2σ(I)] reflections 15428, 3661, 12676 16290, 4077, 2892
Rint 0.000 0.030
(sin θ/λ)max−1) 0.639 0.639
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.064, 0.206, 1.08 0.048, 0.142, 1.02
No. of reflections 15439 4077
No. of parameters 305 266
No. of restraints 130 6
H-atom treatment H-atom parameters constrained H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.38, −0.33 0.44, −0.26
Computer programs: APEX2 and SAINT (Bruker, 2008[Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL97 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]), Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

The positions of the hydrogen atoms were localized from difference electron density maps and further idealized and treated as riding atoms, with d(C—H) = 0.93, 0.97 and 0.98 Å for aryl, methyl­ene and methine H atoms, respectively, and Uiso(H) = 1.2Ueq(C). In compound (I)[link], the thio­phene rings C11–C14/S1 and C15–C18/S2 are disordered over two sets of sites with occupancy ratios of 0.901 (2):0.099 (2) and 0.666 (2):0.334 (2), respectively. Geometrical (FLAT) restraints were applied to both the major and minor components of the thio­phene ring atoms to keep the rings planar. Ellipsoid displacement (SIMU and DELU) restraints were also applied to the disordered rings. In compound (II)[link], the oxygen atom O2 is disordered with an occupancy ratio of 0.579 (4):0.421 (4). In both compounds, bond lengths for both major and minor components were restrained to standard values using the command DFIX (s.u. 0.01 Å) in SHELXL97 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]).

Supporting information


Chemical Context top

The tandem `pincer' Diels–Alder reaction, consisting of two consecutive [2 + 2] cyclo­additions between two dienes and an acetyl­enic bis-dienophile, when furan derivatives are used as the diene components (Lautens & Fillion, 1997). The Diels–Alder reaction is among the most powerful C—C-bond-forming processes and one of the most widely used and studied transformations in organic chemistry (Denmark & Thorarensen, 1996). Thio­phene derivatives are very important heterocyclic compounds, which possess anti­tubercular (Parai et al., 2008), anti-depressant (Wardakhan et al., 2008), anti-inflammatory (Kumar et al., 2004), anti-HIV (Bonini et al., 2005) and anti-breast cancer activities (Brault et al., 2005). Against this background, the conformational studies and X-ray structure determination of the title compounds have been carried out and the results are presented here.

Structural Commentary top

The molecular structures of (I) and (II) are shown in Figs. 1 and 2, along with the atomic as well as ring-labelling schemes. Both compounds exhibit disorder, viz., in the thio­phene rings of (I) and the oxygen atom of the cyclo­penta­none ring in (II). Further details are given in the Refinement section.

Rings B and C adopt an envelope conformation in both compounds with atom O1 as the flap. In compound (I), the puckering parameters (Cremer & Pople, 1975) and smallest displacements parameters (Nardelli, 1983) are q2 = 0.5246 (15) Å, ϕ = 358.41 (18)°, ΔCs = 2.45 (14) for B and q2 = 0.5819 (15) Å, ϕ = 185.54 (17)°, ΔCs = 6.26 (14) for C. In compound (II) they are q2 = 0.5093 (16) Å, ϕ = 360.0 (2)°, ΔCs = 0.01 (15) for B and q2 = 0.5585 (15) Å, ϕ = 179.53 (18)°, ΔCs = 0.44 (14) for C. Cyclo­penta­none ring D adopts a twisted conformation on C12–C13 in (I) with puckering and smallest displacement parameters of q2 = 0.184 (2) Å, ϕ = 133.7 (6)°, ΔC2 = 3.65 (19) whereas in (II), this ring adopts an envelope conformation on C12 with puckering and smallest displacement parameters of q2 = 0.265 (2) Å, ϕ = 290.1 (5)°, ΔC2 = 1.1 (2).

In both compounds, the cyclo­hexane ring embracing rings B and C (C1/C6–C10) adopts a boat conformation with puckering amplitude and smallest displacement parameters of q = 0.9648 (17) Å, θ = 88.53 (10), ϕ = 296.96 (10)° and ΔCs = 6.45 (15) in (I) and q = 1.0000 (18) Å, θ = 90.16 (10), ϕ = 300.17 (10)° and ΔCs = 0.72 (15) in (II).

Rings A and D in (I) form dihedral angles of 57.02 (14) and 82.70 (14)°, respectively, with the S1/C14–C17 thio­phene ring (major occupancy component) and 62.9 (3) and 20.7 (3)°, respectively, with the major component of the S2/C18–C21 thio­phene ring. In (II), rings A and D subtend angles of 65.03 (9) and 71.65 (11)°, respectively with phenyl ring C14–C19, 65.88 (10) and 72.51 (12)°, respectively, with phenyl ring C20–C25. The dihedral angle between the thio­phene rings in (I) is 70.3 (3)° and that between the phenyl rings in (II) is 6.93 (10)°. In both compounds, rings B and C are almost perpendicular to each other [dihedral angles of 83.61 (10) and 82.26 (10)°, respectively].

In compound (I), an intra­molecular hydrogen bond, C19—H19···O2, occurs, which generates an S(7) ring motif (Table 1).

Supra­molecular features top

In both structures, the crystal packing features C—H···O and C—H···π inter­actions (Tables 1 and 2). In compound (I), the C20—H20···O2(-x + 1, -y, -z + 1) hydrogen bond generates an R22(16) graph-set ring motifs around an inversion centre (Bernstein et al., 1995) while in compound (II), the weak C5—H5···O2(x - 1/2, -y + 1/2, z - 1/2) hydrogen bond generates C(8) chains running parallel to the c axis. The resulting packing in (I) and (II) is shown in Figs. 3 and 4, respectively. The structures of both compounds also feature C—H···π inter­actions (Tables 1 and 2).

Synthesis and crystallization top

The title compounds were prepared in a similar manner using a solution of 1,3-bis­thio­phen-2-yl-2-benzo­furan (0.30 g, 1.00 mmol) in dry 1,2-DCE (20 mL) for compound (I) and a solution of 1,3-di­phenyl-2-benzo­furan (0.30 g, 1.011 mmol) in dry DCE (20 mL) for compound (II). 2-Cyclo­pentenone was added in both cases [0.104 g, 1.2 mmol for (I), 0.11 g, 1.33 mmol for (II)] and refluxed until the disappearance of the fluorescent colour of 1,3-bis­thio­phen-2-yl-2-benzo­furan or 1,3-di­phenyl-2-benzo­furan (10 h). Removal of the solvents was followed by column chromatographic purification (silica gel; 10% ethyl acetate in hexane), affording the adduct as a colourless solid for both (I) (yield = 0.23 g, 61%) and (II) (yield = 0.27 g, 68%). Single crystals suitable for X-ray diffraction were prepared by slow evaporation of a solution of compound (I) or (II) in ethyl acetate at room temperature.

Refinement top

Crystal data, data collection and structure refinement details are summarized in Table 3. Compound (I) was initially refined to a high R index of 0.103 (2) and the difference Fourier-map show relatively larger peaks [Δρmax = 0.97 (2) e Å-3]. A preliminary check with TWINLAW (Bolte, 2004) showed that the crystal had twofold twinning by non-merohedry about [0 0 1] with a twin matrix of [-1 0 0 -0.101 1 -0.484 0 0 -1]. The twin law operated from the FoFc table was used to a generate an HKLF5 format file (Bolte, 2004) suitable for twin refinement in SHELXL97. The twinning was a twofold rotation axis parallel to the b axis with a refined twin scale factor of 0.275 (2). The structure was refined to an improved R index of 0.064 (2) with an essentially flatter difference Fourier map [Δρmax = 0.38 (2) e Å-3].

The positions of the hydrogen atoms were localized from difference electron density maps and further idealized and treated as riding atoms, with d(C—H) = 0.93, 0.97 and 0.98 Å for aryl, methyl­ene and methine H atoms, respectively, and Uiso(H) = 1.2Ueq(C). In compound (I), the thio­phene rings C11–C14/S1 and C15–C18/S2 are disordered over two sets of sites with occupancy ratios of 0.901 (2):0.099 (2) and 0.666 (2):0.334 (2), respectively. Geometrical (FLAT) restraints were applied to both the major and minor components of the thio­phene ring atoms to keep the rings planar. Ellipsoid displacement (SIMU and DELU) restraints were also applied to the disordered rings. In compound (II), the oxygen atom O2 is disordered with an occupancy ratio of 0.579 (4):0.421 (4). In both compounds, bond lengths for both major and minor components were restrained to standard values using the command DFIX (s.u. 0.01 Å) in SHELXL97 (Sheldrick, 2015).

Related literature top

For related literature, see: Bernstein et al. (1995); Bonini et al. (2005); Brault et al. (2005); Cremer & Pople (1975); Denmark & Thorarensen (1996); Kumar et al. (2004); Lautens & Fillion (1997); Nardelli (1983); Parai et al. (2008); Sheldrick (2008); Wardakhan et al. (2008).

Computing details top

For both compounds, data collection: APEX2 (Bruker, 2008); cell refinement: SAINT (Bruker, 2008); data reduction: SAINT (Bruker, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2015); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and Mercury (Macrae et al., 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2015) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of compound (I) is stabilized by a C19—H19···O2 intramolecular interaction (dashed line), which generates an S(7) ring motif. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 2] Fig. 2. The molecular structure of compound (II) with the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 3] Fig. 3. The crystal packing of compound (I), viewed down the a axis, showing the C20—H20···O2i intermolecular hydrogen bond (dashed lines), which results in R22(16) ring motifs. Hydrogen atoms not involved in this hydrogen bond are excluded for clarity. [Symmetry code: (i) 1 - x, -y, 1 - z.]
[Figure 4] Fig. 4. The crystal packing of compound (II), viewed down the b axis, showing the C5—H5···O2i hydrogen bonds (dashed lines), which result in the formation of C(8) chains. Hydrogen atoms not involved in this hydrogen bond are excluded for clarity. [Symmetry code: (i) x - 1/2, -y + 1/2, z - 1/2.]
(I) 1,8-Bis(thiophen-2-yl)-14-oxatetracyclo[6.5.1.02,7.09,13]tetradeca-2(7),3,5-trien-10-one top
Crystal data top
C21H16O2S2Z = 2
Mr = 364.46F(000) = 380
Triclinic, P1Dx = 1.427 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.1679 (11) ÅCell parameters from 3661 reflections
b = 10.9915 (17) Åθ = 1.9–27.0°
c = 11.2041 (16) ŵ = 0.33 mm1
α = 75.491 (4)°T = 296 K
β = 83.148 (5)°Block, colourless
γ = 86.424 (5)°0.35 × 0.30 × 0.25 mm
V = 848.0 (2) Å3
Data collection top
Bruker APEXII CCD
diffractometer
3661 independent reflections
Radiation source: fine-focus sealed tube12676 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.000
ω & ϕ scansθmax = 27.0°, θmin = 1.9°
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
h = 99
Tmin = 0.892, Tmax = 0.922k = 1414
15428 measured reflectionsl = 1414
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.064H-atom parameters constrained
wR(F2) = 0.206 w = 1/[σ2(Fo2) + (0.1228P)2 + 0.3791P]
where P = (Fo2 + 2Fc2)/3
S = 1.08(Δ/σ)max = 0.001
15439 reflectionsΔρmax = 0.38 e Å3
305 parametersΔρmin = 0.33 e Å3
130 restraintsExtinction correction: SHELXL, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.042 (4)
Crystal data top
C21H16O2S2γ = 86.424 (5)°
Mr = 364.46V = 848.0 (2) Å3
Triclinic, P1Z = 2
a = 7.1679 (11) ÅMo Kα radiation
b = 10.9915 (17) ŵ = 0.33 mm1
c = 11.2041 (16) ÅT = 296 K
α = 75.491 (4)°0.35 × 0.30 × 0.25 mm
β = 83.148 (5)°
Data collection top
Bruker APEXII CCD
diffractometer
3661 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
12676 reflections with I > 2σ(I)
Tmin = 0.892, Tmax = 0.922Rint = 0.000
15428 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.064130 restraints
wR(F2) = 0.206H-atom parameters constrained
S = 1.08Δρmax = 0.38 e Å3
15439 reflectionsΔρmin = 0.33 e Å3
305 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
C10.2966 (2)0.24768 (14)0.80312 (15)0.0320 (4)
C20.2533 (3)0.12787 (16)0.87127 (18)0.0427 (4)
H20.23320.06450.83320.051*
C30.2410 (3)0.10627 (18)1.00035 (19)0.0512 (5)
H30.20980.02701.04930.061*
C40.2738 (3)0.19886 (19)1.05641 (18)0.0503 (5)
H40.26510.18131.14250.060*
C50.3203 (2)0.32007 (17)0.98616 (15)0.0408 (4)
H50.34430.38301.02390.049*
C60.3291 (2)0.34209 (14)0.85894 (14)0.0316 (4)
C70.3858 (2)0.45424 (14)0.75414 (14)0.0303 (3)
C80.5885 (2)0.42773 (15)0.69561 (15)0.0341 (4)
H80.63000.50030.62900.041*
C90.5583 (2)0.31589 (15)0.64140 (15)0.0343 (4)
H90.60110.33400.55250.041*
C100.3398 (2)0.30417 (14)0.66561 (14)0.0313 (4)
C130.7396 (3)0.38703 (18)0.78606 (18)0.0465 (4)
H13A0.85940.42230.74820.056*
H13B0.70340.41510.86130.056*
C120.7534 (3)0.24352 (18)0.81505 (19)0.0506 (5)
H12A0.88370.21420.81710.061*
H12B0.68510.20770.89510.061*
C110.6688 (3)0.20498 (17)0.71388 (19)0.0439 (4)
O10.27812 (15)0.43350 (9)0.65757 (10)0.0315 (3)
O20.6807 (2)0.10143 (13)0.69681 (16)0.0662 (4)
C140.3464 (2)0.58158 (14)0.77580 (15)0.0331 (4)
S10.14784 (9)0.61494 (6)0.86444 (6)0.0503 (2)0.901 (2)
C150.4516 (7)0.6859 (4)0.7309 (5)0.0425 (9)0.901 (2)
H150.56480.68630.68060.051*0.901 (2)
C160.3716 (4)0.7938 (3)0.7684 (3)0.0460 (7)0.901 (2)
H160.42580.87210.74600.055*0.901 (2)
C170.2080 (4)0.7687 (2)0.8404 (3)0.0466 (7)0.901 (2)
H170.13540.82800.87350.056*0.901 (2)
S1'0.483 (2)0.7018 (12)0.7053 (15)0.062 (3)0.099 (2)
C15'0.216 (3)0.5936 (18)0.8800 (16)0.0425 (9)0.099 (2)
H15'0.16430.52900.94380.051*0.099 (2)
C16'0.181 (4)0.7267 (17)0.865 (3)0.039 (4)0.099 (2)
H16'0.08450.76390.90850.047*0.099 (2)
C17'0.319 (3)0.793 (3)0.772 (3)0.042 (5)0.099 (2)
H17'0.32050.87990.74890.051*0.099 (2)
S20.0599 (2)0.3235 (2)0.50935 (18)0.0465 (4)0.666 (2)
C180.2491 (7)0.2522 (5)0.5765 (5)0.0325 (12)0.666 (2)
C190.3072 (13)0.1376 (7)0.5464 (7)0.056 (2)0.666 (2)
H190.40850.08550.57420.067*0.666 (2)
C200.1796 (9)0.1168 (7)0.4643 (6)0.0585 (14)0.666 (2)
H200.19010.04570.43280.070*0.666 (2)
C210.0425 (11)0.2074 (5)0.4352 (7)0.0541 (14)0.666 (2)
H210.04780.20610.38240.065*0.666 (2)
S2'0.2950 (8)0.1143 (4)0.5432 (5)0.0558 (9)0.334 (2)
C18'0.2398 (16)0.2505 (10)0.5834 (11)0.047 (3)0.334 (2)
C19'0.0888 (17)0.3156 (14)0.5201 (12)0.054 (3)0.334 (2)
H19'0.03590.39280.52890.065*0.334 (2)
C20'0.030 (2)0.2443 (11)0.4405 (13)0.052 (3)0.334 (2)
H20'0.06700.27240.39110.062*0.334 (2)
C21'0.1282 (16)0.1300 (14)0.4422 (11)0.047 (2)0.334 (2)
H21'0.10700.07300.39680.057*0.334 (2)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0279 (8)0.0281 (8)0.0361 (9)0.0034 (6)0.0017 (6)0.0028 (7)
C20.0422 (10)0.0311 (9)0.0500 (11)0.0004 (7)0.0003 (8)0.0039 (8)
C30.0519 (12)0.0392 (10)0.0481 (11)0.0016 (9)0.0018 (9)0.0128 (9)
C40.0492 (11)0.0563 (12)0.0337 (9)0.0028 (9)0.0014 (8)0.0070 (9)
C50.0453 (10)0.0435 (10)0.0306 (9)0.0000 (8)0.0037 (7)0.0039 (8)
C60.0274 (8)0.0333 (8)0.0313 (8)0.0014 (6)0.0012 (6)0.0043 (7)
C70.0335 (8)0.0287 (8)0.0280 (8)0.0007 (6)0.0042 (6)0.0052 (6)
C80.0326 (9)0.0304 (8)0.0357 (9)0.0016 (7)0.0012 (7)0.0037 (7)
C90.0369 (9)0.0310 (8)0.0325 (8)0.0008 (7)0.0020 (7)0.0061 (7)
C100.0356 (9)0.0229 (7)0.0327 (8)0.0015 (6)0.0034 (7)0.0025 (6)
C130.0374 (10)0.0515 (11)0.0514 (11)0.0012 (8)0.0059 (8)0.0142 (9)
C120.0412 (11)0.0531 (12)0.0532 (12)0.0095 (9)0.0098 (9)0.0055 (9)
C110.0364 (10)0.0370 (10)0.0531 (11)0.0045 (7)0.0094 (8)0.0090 (8)
O10.0387 (6)0.0243 (5)0.0313 (6)0.0015 (4)0.0071 (5)0.0056 (4)
O20.0718 (10)0.0432 (8)0.0817 (11)0.0155 (7)0.0040 (8)0.0182 (8)
C140.0363 (9)0.0294 (8)0.0326 (8)0.0028 (7)0.0051 (7)0.0062 (7)
S10.0510 (4)0.0399 (3)0.0587 (4)0.0006 (3)0.0117 (3)0.0180 (3)
C150.0459 (18)0.0312 (17)0.048 (2)0.0016 (12)0.0048 (16)0.0055 (14)
C160.0471 (16)0.0316 (12)0.0608 (16)0.0015 (12)0.0115 (13)0.0114 (11)
C170.0575 (17)0.0288 (13)0.0560 (17)0.0017 (13)0.0049 (13)0.0167 (12)
S1'0.092 (7)0.034 (4)0.057 (6)0.014 (4)0.010 (4)0.013 (4)
C15'0.0459 (18)0.0312 (17)0.048 (2)0.0016 (12)0.0048 (16)0.0055 (14)
C16'0.044 (7)0.027 (6)0.050 (8)0.011 (6)0.012 (6)0.011 (6)
C17'0.044 (10)0.024 (7)0.059 (10)0.007 (7)0.011 (8)0.005 (7)
S20.0436 (5)0.0523 (7)0.0469 (7)0.0053 (5)0.0108 (5)0.0146 (5)
C180.036 (2)0.033 (3)0.029 (2)0.009 (2)0.0018 (18)0.010 (2)
C190.073 (3)0.056 (4)0.044 (3)0.010 (3)0.007 (2)0.020 (3)
C200.081 (4)0.052 (2)0.052 (3)0.027 (2)0.000 (2)0.028 (2)
C210.060 (3)0.060 (3)0.055 (2)0.022 (3)0.0015 (19)0.036 (3)
S2'0.0763 (18)0.0347 (12)0.0595 (18)0.0008 (11)0.0097 (14)0.0163 (10)
C18'0.071 (6)0.029 (5)0.041 (6)0.004 (5)0.007 (5)0.006 (4)
C19'0.079 (7)0.051 (5)0.044 (5)0.007 (4)0.017 (4)0.028 (4)
C20'0.059 (4)0.060 (6)0.043 (4)0.006 (4)0.009 (3)0.023 (4)
C21'0.055 (6)0.056 (5)0.041 (5)0.022 (4)0.003 (4)0.026 (4)
Geometric parameters (Å, º) top
C1—C21.380 (2)C14—C15'1.435 (10)
C1—C61.383 (2)C14—S1'1.667 (9)
C1—C101.512 (2)C14—S11.7109 (17)
C2—C31.398 (3)S1—C171.718 (2)
C2—H20.9300C15—C161.421 (5)
C3—C41.368 (3)C15—H150.9300
C3—H30.9300C16—C171.343 (3)
C4—C51.405 (2)C16—H160.9300
C4—H40.9300C17—H170.9300
C5—C61.379 (2)S1'—C17'1.715 (10)
C5—H50.9300C15'—C16'1.440 (10)
C6—C71.512 (2)C15'—H15'0.9300
C7—O11.4709 (18)C16'—C17'1.437 (10)
C7—C141.484 (2)C16'—H16'0.9300
C7—C81.562 (2)C17'—H17'0.9300
C8—C91.538 (2)S2—C181.684 (5)
C8—C131.541 (3)S2—C211.706 (5)
C8—H80.9800C18—C191.410 (7)
C9—C111.520 (2)C19—C201.437 (8)
C9—C101.565 (2)C19—H190.9300
C9—H90.9800C20—C211.362 (6)
C10—O11.4462 (17)C20—H200.9300
C10—C18'1.481 (6)C21—H210.9300
C10—C181.494 (3)S2'—C18'1.680 (7)
C13—C121.528 (2)S2'—C21'1.714 (8)
C13—H13A0.9700C18'—C19'1.420 (9)
C13—H13B0.9700C19'—C20'1.438 (9)
C12—C111.506 (3)C19'—H19'0.9300
C12—H12A0.9700C20'—C21'1.399 (9)
C12—H12B0.9700C20'—H20'0.9300
C11—O21.197 (2)C21'—H21'0.9300
C14—C151.365 (4)
C2—C1—C6121.96 (16)O2—C11—C9125.42 (19)
C2—C1—C10132.73 (15)C12—C11—C9109.52 (15)
C6—C1—C10104.99 (13)C10—O1—C797.08 (11)
C1—C2—C3116.87 (17)C15—C14—C15'111.7 (9)
C1—C2—H2121.6C15—C14—C7128.0 (3)
C3—C2—H2121.6C15'—C14—C7118.0 (8)
C4—C3—C2121.60 (17)C15'—C14—S1'118.7 (10)
C4—C3—H3119.2C7—C14—S1'121.8 (6)
C2—C3—H3119.2C15—C14—S1110.6 (3)
C3—C4—C5121.10 (17)C7—C14—S1121.36 (12)
C3—C4—H4119.5S1'—C14—S1116.7 (6)
C5—C4—H4119.5C14—S1—C1791.77 (12)
C6—C5—C4117.33 (16)C14—C15—C16113.5 (4)
C6—C5—H5121.3C14—C15—H15123.3
C4—C5—H5121.3C16—C15—H15123.3
C5—C6—C1121.12 (15)C17—C16—C15111.7 (4)
C5—C6—C7132.87 (15)C17—C16—H16124.2
C1—C6—C7105.81 (13)C15—C16—H16124.2
O1—C7—C14111.68 (12)C16—C17—S1112.4 (3)
O1—C7—C6100.32 (11)C16—C17—H17123.8
C14—C7—C6118.01 (13)S1—C17—H17123.8
O1—C7—C899.09 (12)C14—S1'—C17'85.9 (13)
C14—C7—C8116.34 (13)C14—C15'—C16'105.4 (17)
C6—C7—C8108.61 (12)C14—C15'—H15'127.3
C9—C8—C13107.84 (13)C16'—C15'—H15'127.3
C9—C8—C7101.82 (12)C17'—C16'—C15'109 (3)
C13—C8—C7116.37 (14)C17'—C16'—H16'125.6
C9—C8—H8110.1C15'—C16'—H16'125.6
C13—C8—H8110.1C16'—C17'—S1'117 (2)
C7—C8—H8110.1C16'—C17'—H17'121.7
C11—C9—C8106.05 (14)S1'—C17'—H17'121.7
C11—C9—C10114.47 (13)C18—S2—C2192.4 (3)
C8—C9—C10101.93 (12)C19—C18—C10123.5 (5)
C11—C9—H9111.3C19—C18—S2114.5 (5)
C8—C9—H9111.3C10—C18—S2122.0 (3)
C10—C9—H9111.3C18—C19—C20106.7 (8)
O1—C10—C18'110.3 (4)C18—C19—H19126.6
O1—C10—C18110.6 (2)C20—C19—H19126.6
O1—C10—C1100.81 (12)C21—C20—C19116.1 (7)
C18'—C10—C1115.8 (5)C21—C20—H20121.9
C18—C10—C1118.9 (3)C19—C20—H20121.9
O1—C10—C9101.51 (11)C20—C21—S2110.3 (6)
C18'—C10—C9119.8 (5)C20—C21—H21124.8
C18—C10—C9116.4 (2)S2—C21—H21124.8
C1—C10—C9106.12 (13)C18'—S2'—C21'96.1 (7)
C12—C13—C8106.01 (14)C19'—C18'—C10122.6 (8)
C12—C13—H13A110.5C19'—C18'—S2'110.9 (8)
C8—C13—H13A110.5C10—C18'—S2'126.3 (7)
C12—C13—H13B110.5C18'—C19'—C20'109.8 (13)
C8—C13—H13B110.5C18'—C19'—H19'125.1
H13A—C13—H13B108.7C20'—C19'—H19'125.1
C11—C12—C13107.02 (16)C21'—C20'—C19'115.6 (15)
C11—C12—H12A110.3C21'—C20'—H20'122.2
C13—C12—H12A110.3C19'—C20'—H20'122.2
C11—C12—H12B110.3C20'—C21'—S2'107.5 (12)
C13—C12—H12B110.3C20'—C21'—H21'126.3
H12A—C12—H12B108.6S2'—C21'—H21'126.3
O2—C11—C12124.99 (19)
C6—C1—C2—C30.9 (2)O1—C7—C14—C15'99.5 (11)
C10—C1—C2—C3173.29 (18)C6—C7—C14—C15'15.9 (11)
C1—C2—C3—C41.2 (3)C8—C7—C14—C15'147.8 (11)
C2—C3—C4—C50.3 (3)O1—C7—C14—S1'95.0 (8)
C3—C4—C5—C60.8 (3)C6—C7—C14—S1'149.6 (8)
C4—C5—C6—C11.1 (2)C8—C7—C14—S1'17.8 (8)
C4—C5—C6—C7175.18 (16)O1—C7—C14—S179.51 (16)
C2—C1—C6—C50.3 (2)C6—C7—C14—S135.94 (19)
C10—C1—C6—C5173.95 (15)C8—C7—C14—S1167.75 (12)
C2—C1—C6—C7175.76 (15)C15—C14—S1—C170.0 (3)
C10—C1—C6—C71.51 (16)C15'—C14—S1—C1797 (3)
C5—C6—C7—O1154.30 (17)C7—C14—S1—C17179.14 (16)
C1—C6—C7—O131.01 (15)S1'—C14—S1—C174.4 (8)
C5—C6—C7—C1432.8 (2)C15'—C14—C15—C1618.8 (11)
C1—C6—C7—C14152.48 (14)C7—C14—C15—C16179.1 (2)
C5—C6—C7—C8102.4 (2)S1'—C14—C15—C16147 (7)
C1—C6—C7—C872.33 (15)S1—C14—C15—C160.1 (4)
O1—C7—C8—C939.30 (14)C14—C15—C16—C170.1 (3)
C14—C7—C8—C9159.08 (13)C15—C16—C17—S10.14 (18)
C6—C7—C8—C964.90 (15)C14—S1—C17—C160.08 (19)
O1—C7—C8—C13156.24 (13)C15—C14—S1'—C17'35 (7)
C14—C7—C8—C1383.98 (18)C15'—C14—S1'—C17'20.5 (18)
C6—C7—C8—C1352.04 (17)C7—C14—S1'—C17'174.1 (10)
C13—C8—C9—C118.25 (17)S1—C14—S1'—C17'0.6 (12)
C7—C8—C9—C11114.71 (14)C15—C14—C15'—C16'25.8 (18)
C13—C8—C9—C10128.33 (14)C7—C14—C15'—C16'170.2 (12)
C7—C8—C9—C105.38 (15)S1'—C14—C15'—C16'24 (2)
C2—C1—C10—O1152.40 (17)S1—C14—C15'—C16'64 (2)
C6—C1—C10—O134.24 (15)C14—C15'—C16'—C17'13.3 (12)
C2—C1—C10—C18'33.4 (5)C15'—C16'—C17'—S1'0.0 (2)
C6—C1—C10—C18'153.2 (5)C14—S1'—C17'—C16'11.0 (10)
C2—C1—C10—C1831.4 (3)O1—C10—C18—C19167.7 (3)
C6—C1—C10—C18155.2 (3)C18'—C10—C18—C19106 (10)
C2—C1—C10—C9102.1 (2)C1—C10—C18—C1976.4 (4)
C6—C1—C10—C971.22 (15)C9—C10—C18—C1952.5 (4)
C11—C9—C10—O1144.99 (13)O1—C10—C18—S215.6 (4)
C8—C9—C10—O130.99 (14)C18'—C10—C18—S271 (10)
C11—C9—C10—C18'93.4 (6)C1—C10—C18—S2100.3 (4)
C8—C9—C10—C18'152.7 (6)C9—C10—C18—S2130.7 (3)
C11—C9—C10—C1894.9 (3)C21—S2—C18—C190.18 (14)
C8—C9—C10—C18151.1 (3)C21—S2—C18—C10177.2 (5)
C11—C9—C10—C140.03 (17)C10—C18—C19—C20176.7 (6)
C8—C9—C10—C173.96 (14)S2—C18—C19—C200.26 (18)
C9—C8—C13—C1216.94 (19)C18—C19—C20—C210.7 (4)
C7—C8—C13—C1296.62 (17)C19—C20—C21—S20.9 (4)
C8—C13—C12—C1119.1 (2)C18—S2—C21—C200.6 (3)
C13—C12—C11—O2168.38 (19)O1—C10—C18'—C19'7.4 (8)
C13—C12—C11—C914.4 (2)C18—C10—C18'—C19'102 (10)
C8—C9—C11—O2179.04 (18)C1—C10—C18'—C19'106.2 (6)
C10—C9—C11—O269.4 (2)C9—C10—C18'—C19'124.6 (5)
C8—C9—C11—C123.79 (18)O1—C10—C18'—S2'167.7 (7)
C10—C9—C11—C12107.75 (17)C18—C10—C18'—S2'73 (10)
C18'—C10—O1—C7175.2 (6)C1—C10—C18'—S2'78.6 (10)
C18—C10—O1—C7179.1 (3)C9—C10—C18'—S2'50.5 (11)
C1—C10—O1—C752.34 (13)C21'—S2'—C18'—C19'0.10 (15)
C9—C10—O1—C756.77 (13)C21'—S2'—C18'—C10175.7 (12)
C14—C7—O1—C10177.00 (13)C10—C18'—C19'—C20'175.6 (12)
C6—C7—O1—C1051.13 (13)S2'—C18'—C19'—C20'0.16 (19)
C8—C7—O1—C1059.83 (12)C18'—C19'—C20'—C21'0.4 (4)
O1—C7—C14—C1599.5 (3)C19'—C20'—C21'—S2'0.5 (4)
C6—C7—C14—C15145.1 (3)C18'—S2'—C21'—C20'0.3 (3)
C8—C7—C14—C1513.3 (4)
Hydrogen-bond geometry (Å, º) top
Cg1 and Cg2 are the centroids of the S1,C14–C17 and S2/C18–C21 rings, respectively.
D—H···AD—HH···AD···AD—H···A
C19—H19···O20.932.553.282 (9)135
C20—H20···O2i0.932.503.384 (8)159
C15—H15···Cg2ii0.932.743.605 (6)154
C21—H21···Cg1iii0.932.863.731 (8)156
Symmetry codes: (i) x+1, y, z+1; (ii) x+1, y+1, z+1; (iii) x, y+1, z+1.
(II) 1,8-Diphenyl-14-oxatetracyclo[6.5.1.02,7.09,13] tetradeca-2,4,6-trien-10-one top
Crystal data top
C25H20O2F(000) = 744
Mr = 352.41Dx = 1.251 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 4077 reflections
a = 7.8610 (2) Åθ = 1.9–27.0°
b = 16.7327 (5) ŵ = 0.08 mm1
c = 14.2260 (4) ÅT = 296 K
β = 91.583 (2)°Block, colourless
V = 1870.51 (9) Å30.35 × 0.30 × 0.25 mm
Z = 4
Data collection top
Bruker APEXII CCD
diffractometer
4077 independent reflections
Radiation source: fine-focus sealed tube2892 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.030
ω & ϕ scansθmax = 27.0°, θmin = 1.9°
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
h = 910
Tmin = 0.973, Tmax = 0.981k = 1921
16290 measured reflectionsl = 1818
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.048Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.142H atoms treated by a mixture of independent and constrained refinement
S = 1.02 w = 1/[σ2(Fo2) + (0.0536P)2 + 0.6324P]
where P = (Fo2 + 2Fc2)/3
4077 reflections(Δ/σ)max < 0.001
266 parametersΔρmax = 0.44 e Å3
6 restraintsΔρmin = 0.26 e Å3
Crystal data top
C25H20O2V = 1870.51 (9) Å3
Mr = 352.41Z = 4
Monoclinic, P21/nMo Kα radiation
a = 7.8610 (2) ŵ = 0.08 mm1
b = 16.7327 (5) ÅT = 296 K
c = 14.2260 (4) Å0.35 × 0.30 × 0.25 mm
β = 91.583 (2)°
Data collection top
Bruker APEXII CCD
diffractometer
4077 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
2892 reflections with I > 2σ(I)
Tmin = 0.973, Tmax = 0.981Rint = 0.030
16290 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0486 restraints
wR(F2) = 0.142H atoms treated by a mixture of independent and constrained refinement
S = 1.02Δρmax = 0.44 e Å3
4077 reflectionsΔρmin = 0.26 e Å3
266 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
C50.1799 (2)0.33834 (11)0.02163 (16)0.0658 (5)
H50.18170.33700.04370.079*
C40.1426 (3)0.40825 (12)0.0699 (2)0.0815 (7)
H40.11820.45460.03610.098*
C30.1410 (3)0.41030 (12)0.1663 (2)0.0841 (7)
H30.11490.45790.19630.101*
C20.1774 (2)0.34310 (11)0.21975 (17)0.0680 (5)
H20.17720.34470.28510.082*
C10.2140 (2)0.27359 (10)0.17223 (13)0.0525 (4)
C60.2141 (2)0.27118 (9)0.07483 (13)0.0514 (4)
C70.2701 (2)0.18689 (9)0.05029 (12)0.0458 (4)
C80.4653 (2)0.18451 (10)0.07563 (12)0.0502 (4)
H80.52420.23100.05010.060*
C90.4652 (2)0.18675 (9)0.18437 (12)0.0493 (4)
H90.52570.23370.20930.059*
C100.2700 (2)0.19076 (9)0.20431 (12)0.0472 (4)
C200.2116 (2)0.16250 (10)0.29781 (12)0.0526 (4)
C250.0743 (3)0.11180 (11)0.30508 (14)0.0629 (5)
H250.01790.09370.25090.075*
C240.0199 (3)0.08766 (13)0.39196 (16)0.0801 (7)
H240.07350.05390.39600.096*
C230.1031 (4)0.11334 (15)0.47233 (17)0.0852 (7)
H230.06710.09640.53080.102*
C220.2397 (3)0.16412 (17)0.46657 (15)0.0852 (7)
H220.29600.18160.52110.102*
C210.2937 (3)0.18934 (14)0.37959 (14)0.0722 (6)
H210.38510.22440.37590.087*
C140.2107 (2)0.15404 (9)0.04292 (12)0.0488 (4)
C190.0741 (2)0.10191 (11)0.05016 (13)0.0571 (4)
H190.01970.08560.00380.069*
C180.0180 (3)0.07400 (12)0.13688 (14)0.0695 (5)
H180.07380.03900.14090.083*
C170.0967 (3)0.09743 (13)0.21708 (14)0.0713 (6)
H170.05850.07840.27530.086*
C160.2318 (3)0.14902 (13)0.21109 (14)0.0716 (6)
H160.28540.16490.26550.086*
C150.2892 (3)0.17770 (12)0.12477 (13)0.0626 (5)
H150.38060.21300.12140.075*
O10.20140 (13)0.14227 (6)0.12775 (7)0.0462 (3)
C110.5511 (3)0.10887 (12)0.21700 (14)0.0602 (5)
C120.5542 (4)0.05380 (14)0.13504 (15)0.0900 (8)
H12A0.45490.01930.13390.108*
H12B0.65560.02080.13790.108*
C130.5538 (3)0.10651 (13)0.04969 (14)0.0639 (5)
O20.5955 (4)0.09193 (17)0.29524 (17)0.0767 (10)0.579 (4)
O2'0.6160 (5)0.0954 (2)0.0248 (3)0.0793 (14)0.421 (4)
H13A0.505 (5)0.080 (2)0.0058 (19)0.095*0.579 (4)
H13B0.6752 (15)0.113 (2)0.044 (3)0.095*0.579 (4)
H11A0.662 (3)0.129 (3)0.238 (4)0.095*0.421 (4)
H11B0.498 (7)0.086 (3)0.272 (2)0.095*0.421 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C50.0512 (10)0.0493 (10)0.0966 (15)0.0025 (8)0.0028 (10)0.0124 (10)
C40.0635 (13)0.0455 (11)0.135 (2)0.0101 (9)0.0049 (13)0.0116 (12)
C30.0682 (14)0.0482 (12)0.136 (2)0.0126 (10)0.0028 (14)0.0180 (13)
C20.0527 (11)0.0538 (11)0.0975 (15)0.0043 (8)0.0039 (10)0.0190 (10)
C10.0395 (8)0.0436 (9)0.0745 (12)0.0005 (7)0.0014 (8)0.0080 (8)
C60.0384 (8)0.0418 (9)0.0739 (12)0.0000 (6)0.0008 (7)0.0016 (8)
C70.0424 (8)0.0382 (8)0.0568 (9)0.0018 (6)0.0035 (7)0.0041 (7)
C80.0432 (9)0.0430 (9)0.0645 (10)0.0013 (7)0.0044 (7)0.0030 (7)
C90.0414 (9)0.0424 (8)0.0640 (10)0.0015 (6)0.0011 (7)0.0076 (7)
C100.0425 (8)0.0422 (8)0.0567 (9)0.0024 (6)0.0004 (7)0.0088 (7)
C200.0506 (10)0.0519 (10)0.0553 (10)0.0085 (7)0.0036 (8)0.0076 (8)
C250.0728 (13)0.0538 (11)0.0626 (11)0.0048 (9)0.0116 (9)0.0071 (9)
C240.0997 (18)0.0633 (13)0.0789 (15)0.0023 (11)0.0314 (13)0.0009 (11)
C230.104 (2)0.0887 (17)0.0645 (13)0.0329 (15)0.0241 (13)0.0103 (12)
C220.0789 (16)0.121 (2)0.0553 (12)0.0354 (15)0.0007 (11)0.0150 (12)
C210.0566 (11)0.0944 (16)0.0655 (12)0.0067 (10)0.0003 (9)0.0165 (11)
C140.0484 (9)0.0442 (9)0.0539 (9)0.0052 (7)0.0007 (7)0.0049 (7)
C190.0592 (11)0.0538 (10)0.0581 (10)0.0036 (8)0.0017 (8)0.0008 (8)
C180.0728 (13)0.0664 (12)0.0684 (13)0.0021 (10)0.0132 (10)0.0056 (10)
C170.0818 (15)0.0737 (13)0.0576 (11)0.0183 (11)0.0129 (10)0.0064 (10)
C160.0791 (14)0.0835 (15)0.0524 (11)0.0246 (12)0.0061 (10)0.0137 (10)
C150.0590 (11)0.0667 (12)0.0624 (11)0.0037 (9)0.0040 (9)0.0114 (9)
O10.0462 (6)0.0423 (6)0.0501 (6)0.0068 (5)0.0018 (5)0.0020 (5)
C110.0576 (11)0.0595 (11)0.0632 (12)0.0123 (9)0.0045 (9)0.0026 (9)
C120.126 (2)0.0669 (14)0.0768 (14)0.0412 (14)0.0065 (13)0.0058 (11)
C130.0594 (12)0.0681 (12)0.0642 (12)0.0189 (9)0.0037 (9)0.0051 (9)
O20.0843 (19)0.0811 (18)0.0637 (16)0.0222 (14)0.0165 (13)0.0040 (12)
O2'0.074 (2)0.089 (3)0.075 (3)0.0169 (19)0.0201 (19)0.0083 (19)
Geometric parameters (Å, º) top
C5—C61.377 (2)C23—H230.9300
C5—C41.392 (3)C22—C211.385 (3)
C5—H50.9300C22—H220.9300
C4—C31.372 (4)C21—H210.9300
C4—H40.9300C14—C191.385 (2)
C3—C21.383 (3)C14—C151.390 (2)
C3—H30.9300C19—C181.380 (3)
C2—C11.380 (2)C19—H190.9300
C2—H20.9300C18—C171.370 (3)
C1—C61.386 (3)C18—H180.9300
C1—C101.520 (2)C17—C161.370 (3)
C6—C71.521 (2)C17—H170.9300
C7—O11.4480 (19)C16—C151.382 (3)
C7—C141.498 (2)C16—H160.9300
C7—C81.567 (2)C15—H150.9300
C8—C131.529 (2)C11—O21.191 (3)
C8—C91.547 (2)C11—C121.487 (3)
C8—H80.9800C11—H11A0.975 (10)
C9—C111.534 (2)C11—H11B0.975 (10)
C9—C101.570 (2)C12—C131.501 (3)
C9—H90.9800C12—H12A0.9700
C10—O11.4500 (18)C12—H12B0.9700
C10—C201.496 (2)C13—O2'1.194 (4)
C20—C251.379 (3)C13—H13A0.973 (10)
C20—C211.389 (3)C13—H13B0.967 (10)
C25—C241.380 (3)O2—H11A1.16 (5)
C25—H250.9300O2—H11B0.83 (5)
C24—C231.371 (3)O2'—H13A0.95 (4)
C24—H240.9300O2'—H13B1.11 (4)
C23—C221.374 (4)
C6—C5—C4117.1 (2)C23—C22—H22120.0
C6—C5—H5121.5C21—C22—H22120.0
C4—C5—H5121.5C22—C21—C20120.2 (2)
C3—C4—C5121.5 (2)C22—C21—H21119.9
C3—C4—H4119.3C20—C21—H21119.9
C5—C4—H4119.3C19—C14—C15118.56 (17)
C4—C3—C2121.4 (2)C19—C14—C7121.26 (15)
C4—C3—H3119.3C15—C14—C7120.14 (16)
C2—C3—H3119.3C18—C19—C14120.48 (18)
C1—C2—C3117.3 (2)C18—C19—H19119.8
C1—C2—H2121.3C14—C19—H19119.8
C3—C2—H2121.3C17—C18—C19120.5 (2)
C2—C1—C6121.34 (17)C17—C18—H18119.7
C2—C1—C10133.16 (18)C19—C18—H18119.7
C6—C1—C10105.39 (14)C18—C17—C16119.71 (19)
C5—C6—C1121.35 (17)C18—C17—H17120.1
C5—C6—C7133.14 (18)C16—C17—H17120.1
C1—C6—C7105.34 (14)C17—C16—C15120.49 (19)
O1—C7—C14111.76 (12)C17—C16—H16119.8
O1—C7—C6100.77 (12)C15—C16—H16119.8
C14—C7—C6117.27 (14)C16—C15—C14120.2 (2)
O1—C7—C8101.26 (12)C16—C15—H15119.9
C14—C7—C8118.27 (14)C14—C15—H15119.9
C6—C7—C8105.00 (13)C7—O1—C1098.30 (11)
C13—C8—C9105.95 (14)O2—C11—C12125.1 (2)
C13—C8—C7114.54 (15)O2—C11—C9126.9 (2)
C9—C8—C7101.66 (13)C12—C11—C9107.80 (16)
C13—C8—H8111.4O2—C11—H11A64 (3)
C9—C8—H8111.4C12—C11—H11A115 (3)
C7—C8—H8111.4C9—C11—H11A101 (3)
C11—C9—C8105.64 (13)C12—C11—H11B114 (3)
C11—C9—C10113.96 (14)C9—C11—H11B112 (4)
C8—C9—C10102.06 (12)H11A—C11—H11B107 (2)
C11—C9—H9111.5C11—C12—C13105.70 (18)
C8—C9—H9111.5C11—C12—H12A110.6
C10—C9—H9111.5C13—C12—H12A110.6
O1—C10—C20111.98 (13)C11—C12—H12B110.6
O1—C10—C1100.73 (12)C13—C12—H12B110.6
C20—C10—C1117.50 (14)H12A—C12—H12B108.7
O1—C10—C9100.68 (12)O2'—C13—C12129.4 (2)
C20—C10—C9118.19 (14)O2'—C13—C8123.2 (3)
C1—C10—C9105.14 (13)C12—C13—C8107.28 (16)
C25—C20—C21118.84 (18)O2'—C13—H13A51 (2)
C25—C20—C10121.40 (16)C12—C13—H13A112 (3)
C21—C20—C10119.73 (17)C8—C13—H13A114 (3)
C20—C25—C24120.7 (2)O2'—C13—H13B61 (2)
C20—C25—H25119.7C12—C13—H13B99 (3)
C24—C25—H25119.7C8—C13—H13B112 (2)
C23—C24—C25120.2 (2)H13A—C13—H13B111 (2)
C23—C24—H24119.9C11—O2—H11A49.1 (11)
C25—C24—H24119.9C11—O2—H11B54.1 (9)
C24—C23—C22120.0 (2)H11A—O2—H11B102.4 (16)
C24—C23—H23120.0C13—O2'—H13A52.4 (9)
C22—C23—H23120.0C13—O2'—H13B49.4 (9)
C23—C22—C21120.1 (2)H13A—O2'—H13B100.6 (14)
C6—C5—C4—C30.4 (3)C1—C10—C20—C2178.9 (2)
C5—C4—C3—C20.4 (4)C9—C10—C20—C2148.9 (2)
C4—C3—C2—C10.6 (3)C21—C20—C25—C240.4 (3)
C3—C2—C1—C60.1 (3)C10—C20—C25—C24178.60 (18)
C3—C2—C1—C10175.47 (18)C20—C25—C24—C230.6 (3)
C4—C5—C6—C11.0 (3)C25—C24—C23—C220.9 (4)
C4—C5—C6—C7175.42 (18)C24—C23—C22—C210.1 (4)
C2—C1—C6—C50.9 (3)C23—C22—C21—C201.0 (3)
C10—C1—C6—C5175.74 (15)C25—C20—C21—C221.2 (3)
C2—C1—C6—C7176.63 (15)C10—C20—C21—C22179.41 (18)
C10—C1—C6—C70.02 (16)O1—C7—C14—C1915.4 (2)
C5—C6—C7—O1153.23 (18)C6—C7—C14—C19100.16 (19)
C1—C6—C7—O131.73 (15)C8—C7—C14—C19132.40 (16)
C5—C6—C7—C1431.7 (3)O1—C7—C14—C15166.71 (14)
C1—C6—C7—C14153.24 (14)C6—C7—C14—C1577.7 (2)
C5—C6—C7—C8101.9 (2)C8—C7—C14—C1549.7 (2)
C1—C6—C7—C873.15 (16)C15—C14—C19—C180.3 (3)
O1—C7—C8—C1379.95 (17)C7—C14—C19—C18178.16 (16)
C14—C7—C8—C1342.5 (2)C14—C19—C18—C170.0 (3)
C6—C7—C8—C13175.54 (15)C19—C18—C17—C160.1 (3)
O1—C7—C8—C933.79 (14)C18—C17—C16—C150.1 (3)
C14—C7—C8—C9156.22 (13)C17—C16—C15—C140.4 (3)
C6—C7—C8—C970.72 (15)C19—C14—C15—C160.5 (3)
C13—C8—C9—C111.02 (18)C7—C14—C15—C16178.37 (16)
C7—C8—C9—C11118.98 (14)C14—C7—O1—C10176.13 (12)
C13—C8—C9—C10120.44 (15)C6—C7—O1—C1050.81 (14)
C7—C8—C9—C100.44 (14)C8—C7—O1—C1057.03 (13)
C2—C1—C10—O1152.25 (18)C20—C10—O1—C7176.51 (12)
C6—C1—C10—O131.71 (16)C1—C10—O1—C750.82 (14)
C2—C1—C10—C2030.4 (3)C9—C10—O1—C757.02 (13)
C6—C1—C10—C20153.59 (14)C8—C9—C11—O2169.8 (3)
C2—C1—C10—C9103.5 (2)C10—C9—C11—O279.0 (3)
C6—C1—C10—C972.57 (15)C8—C9—C11—C1215.9 (2)
C11—C9—C10—O178.96 (16)C10—C9—C11—C1295.3 (2)
C8—C9—C10—O134.42 (14)O2—C11—C12—C13158.7 (3)
C11—C9—C10—C2043.3 (2)C9—C11—C12—C1326.8 (2)
C8—C9—C10—C20156.64 (14)C11—C12—C13—O2'148.9 (4)
C11—C9—C10—C1176.73 (14)C11—C12—C13—C827.4 (2)
C8—C9—C10—C169.90 (15)C9—C8—C13—O2'159.2 (3)
O1—C10—C20—C2516.6 (2)C7—C8—C13—O2'89.6 (4)
C1—C10—C20—C2599.27 (19)C9—C8—C13—C1217.4 (2)
C9—C10—C20—C25132.91 (17)C7—C8—C13—C1293.8 (2)
O1—C10—C20—C21165.24 (15)
Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the C14–C19 ring.
D—H···AD—HH···AD···AD—H···A
C5—H5···O2i0.932.653.472 (3)147
C12—H12B···Cg1ii0.972.883.783 (3)156
Symmetry codes: (i) x1/2, y+1/2, z1/2; (ii) x+1, y, z.
Hydrogen-bond geometry (Å, º) for (I) top
Cg1 and Cg2 are the centroids of the S1,C14–C17 and S2/C18–C21 rings, respectively.
D—H···AD—HH···AD···AD—H···A
C19—H19···O20.932.553.282 (9)135
C20—H20···O2i0.932.503.384 (8)159
C15—H15···Cg2ii0.932.743.605 (6)154
C21—H21···Cg1iii0.932.863.731 (8)156
Symmetry codes: (i) x+1, y, z+1; (ii) x+1, y+1, z+1; (iii) x, y+1, z+1.
Hydrogen-bond geometry (Å, º) for (II) top
Cg1 is the centroid of the C14–C19 ring.
D—H···AD—HH···AD···AD—H···A
C5—H5···O2i0.932.653.472 (3)147.4
C12—H12B···Cg1ii0.972.883.783 (3)156
Symmetry codes: (i) x1/2, y+1/2, z1/2; (ii) x+1, y, z.

Experimental details

(I)(II)
Crystal data
Chemical formulaC21H16O2S2C25H20O2
Mr364.46352.41
Crystal system, space groupTriclinic, P1Monoclinic, P21/n
Temperature (K)296296
a, b, c (Å)7.1679 (11), 10.9915 (17), 11.2041 (16)7.8610 (2), 16.7327 (5), 14.2260 (4)
α, β, γ (°)75.491 (4), 83.148 (5), 86.424 (5)90, 91.583 (2), 90
V3)848.0 (2)1870.51 (9)
Z24
Radiation typeMo KαMo Kα
µ (mm1)0.330.08
Crystal size (mm)0.35 × 0.30 × 0.250.35 × 0.30 × 0.25
Data collection
DiffractometerBruker APEXII CCD
diffractometer
Bruker APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2008)
Multi-scan
(SADABS; Bruker, 2008)
Tmin, Tmax0.892, 0.9220.973, 0.981
No. of measured, independent and
observed [I > 2σ(I)] reflections
15428, 3661, 12676 16290, 4077, 2892
Rint0.0000.030
(sin θ/λ)max1)0.6390.639
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.064, 0.206, 1.08 0.048, 0.142, 1.02
No. of reflections154394077
No. of parameters305266
No. of restraints1306
H-atom treatmentH-atom parameters constrainedH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.38, 0.330.44, 0.26

Computer programs: APEX2 (Bruker, 2008), SAINT (Bruker, 2008), SHELXS97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 2012) and Mercury (Macrae et al., 2008), SHELXL97 (Sheldrick, 2015) and PLATON (Spek, 2009).

 

Acknowledgements

The authors thank Dr Babu Varghese, Senior Scientific Officer, SAIF, IIT Madras, Chennai, India, for the data collection.

References

First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBolte, M. (2004). J. Appl. Cryst. 37, 162–165.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationBonini, C., Chiummiento, L., Bonis, M. D., Funicello, M., Lupattelli, P., Suanno, G., Berti, F. & Campaner, P. (2005). Tetrahedron, 61, 6580–6589.  Google Scholar
First citationBrault, L., Migianu, E., Néguesque, A., Battaglia, E., Bagrel, D. & Kirsch, G. (2005). Eur. J. Med. Chem. 40, 757–763.  Web of Science CrossRef PubMed CAS Google Scholar
First citationBruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationDenmark, S. E. & Thorarensen, A. (1996). Chem. Rev. 96, 137–166.  CrossRef PubMed CAS Web of Science Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationKumar, P. R., Raju, S., Goud, P. S., Sailaja, M., Sarma, M. R., Reddy, G. O., Kumar, M. P., Reddy, V. V. R. M. K., Suresh, T. & Hegde, P. (2004). Bioorg. Med. Chem. 12, 1221–1230.  Google Scholar
First citationLautens, M. & Fillion, E. (1997). J. Org. Chem. 62, 4418–4427.  CSD CrossRef PubMed CAS Web of Science Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationNardelli, M. (1983). Acta Cryst. C39, 1141–1142.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationParai, M. K., Panda, G., Chaturvedi, V., Manju, Y. K. & Sinha, S. (2008). Bioorg. Med. Chem. Lett. 18, 289–292.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWardakhan, W. W., Abdel-Salam, O. M. E. & Elmegeed, G. A. (2008). Acta Pharm. 58, 1–14.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 71| Part 2| February 2015| Pages 213-216
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds