organic compounds
E)-3-{[2-(2,4-dichlorobenzylidene)hydrazin-1-yl]carbonyl}pyridinium chloride trihydrate
of (aDepartment of Physics, Idhaya College for Women, Kumbakonam 1, India, bDepartment of Physics, Kunthavai Naachiar Govt. Arts College (W) (Autonomous), Thanjavur 7, India, and cPG & Research Department of Chemistry, Jamal Mohamed College, Tiruchirappalli 20, India
*Correspondence e-mail: vasuki.arasi@yahoo.com
In the title hydrated salt, C13H10Cl2N3O+·Cl−·3H2O, the organic cation exhibits a dihedral angle of 8.26 (14)° between the mean planes of the pyridinium and benzene rings, and dihedral angles of 8.70 (15) and 15.93 (5)° between the mean planes of the hydrazide group and the benzene and pyridinium rings, respectively. In the crystal, N—H⋯O, N—H⋯Cl, C—H⋯O, C—H⋯Cl, O—H⋯O, O—H⋯N and O—H⋯Cl hydrogen bonds link the complex cations, chloride anions and solvent water molecules into a three-dimensional network.
Keywords: crystals structure; pyridinium; hydrazide group; hydrogen bonds.
CCDC reference: 1028701
1. Related literature
For the biological activity of et al. (2012); Babahan et al. (2013). For related structures, see: Novina et al. (2013, 2014).
see: Kaplancikli2. Experimental
2.1. Crystal data
|
2.3. Refinement
|
Data collection: APEX2 (Bruker, 2008); cell APEX2 and SAINT (Bruker, 2008); data reduction: SAINT and XPREP (Bruker, 2008); program(s) used to solve structure: SIR92 (Altomare et al., 1993); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and Mercury (Macrae et al., 2008); software used to prepare material for publication: PLATON (Spek, 2009).
Supporting information
CCDC reference: 1028701
10.1107/S2056989015000286/bq2398sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: 10.1107/S2056989015000286/bq2398Isup2.hkl
Supporting information file. DOI: 10.1107/S2056989015000286/bq2398Isup3.cml
Hydrozones have received considerable attention due to their biological importance in medicinal chemistry. Many studies have confirmed that hydrazone derivatives exhibit a wide spectrum of biological effects including anti-inflammatory activity (Kaplancikli et al., 2012). Moreover, the hydrazone group plays an important role of the antimicrobial and possesses interesting antibacterial, antifungal and anti-tubercular activities (Babahan et al., 2013). As part of our studies on hydrazone derivatives (Novina et al., 2013; 2014), we report herein the
of the title compound.The ═C7 bond with the torsion angle of N2—N3—C7—C8 = -178.81 (18)°. Phenyl and pyridine rings (C8—C13 and C1/N1/C2—C5, respectively) are each planar with a dihedral angle of 8.26 (14)° between their mean-planes. The mean plane through the hydrazide unit (N3/N2/C6/O1) forms dihedral angle of 8.70 (15) and 15.93 (5)°, respectively, with the phenyl and pyridinium rings. The two chlorine atoms are in anti–periplanar positions with respect to the phenyl rings to which they are attached.
of the title compound, illustrated in Fig. 1, consists of one organic cation, one Cl- anion and three water molecules. The hydrazone molecule adopts an E–configuration with respect to the N3In the crystal, the organic cation, the chloride anion and the three water molecules of crystallization are linked through an intricate hydrogen-bonding network consisting of N—H···O, N—H···Cl, C—H···O, C—H···Cl, O—H···O, O—H···N and O—H···Cl interactions that consolidate a three–dimensional network (Table 1). One of the H atoms of the water molecule (O1W) forms bifurcated hydrogen bonds to the azomethine nitrogen and the carbonyl oxygen atoms of one neighbouring molecule and the same water molecule acts as a hydrogen bond acceptor towards another hydrazone molecule through N–H···O hydrogen bonds (Fig. 2). Further molecules are linked via a pair of C—H···O hydrogen bonds forming inversion dimers with an R22(10) ring motif (Fig. 3). The
is further stabilized by N—H···Cl, C—H···Cl and O—H···Cl hydrogen bonds.2,4-dichlorobenzaldehyde (0.175 g, 0.001 mol) was added to an aqueous solution of nicotinicacid hydrazide (0.34 g, 0.001 mol), followed by 2 drops of concentrated HCl is added. After the addition was complete, the reaction mixture was stirred well at room temperature for 1 h. The colourless solid that formed was filtered, dried and washed with petroleum ether (40–60%). The crude solid obtained was dried and recrystallized from absolute alcohol. The recrystallized product was dried over vacuum. [m.pt: 411–413 K; yield:92%].
Data collection: APEX2 (Bruker, 2008); cell
APEX2 and SAINT (Bruker, 2008); data reduction: SAINT and XPREP (Bruker, 2008); program(s) used to solve structure: SIR92 (Altomare et al., 1993); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and Mercury (Macrae et al., 2008); software used to prepare material for publication: PLATON (Spek, 2009).Fig. 1. The molecular structure of the title compound, with the atom labelling. Displacement ellipsoids are drawn at the 50% probability level. | |
Fig. 2. Crystal packing of the title compound viewed along the a axis. Hydrogen bonds are shown as dashed lines. | |
Fig. 3. Part of the crystal packing of the title compound, showing the formation of R22(10) motif. The Cl- and the water molecules are omitted for the sake of clarity. |
C13H10Cl2N3O+·Cl−·3H2O | Z = 2 |
Mr = 384.64 | F(000) = 396 |
Triclinic, P1 | Dx = 1.504 Mg m−3 |
a = 8.4631 (4) Å | Mo Kα radiation, λ = 0.71073 Å |
b = 9.5968 (5) Å | Cell parameters from 6548 reflections |
c = 10.8300 (6) Å | θ = 1.0–28.2° |
α = 76.604 (2)° | µ = 0.56 mm−1 |
β = 89.155 (2)° | T = 293 K |
γ = 83.195 (2)° | Block, colorless |
V = 849.56 (8) Å3 | 0.35 × 0.30 × 0.25 mm |
Bruker Kappa APEXII CCD diffractometer | 4037 independent reflections |
Radiation source: fine-focus sealed tube | 3007 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.019 |
ω and ϕ scan | θmax = 28.2°, θmin = 3.1° |
Absorption correction: multi-scan (SADABS; Bruker, 2008) | h = −11→11 |
Tmin = 0.875, Tmax = 0.908 | k = −9→12 |
6548 measured reflections | l = −8→14 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.043 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.124 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.04 | w = 1/[σ2(Fo2) + (0.0621P)2 + 0.184P] where P = (Fo2 + 2Fc2)/3 |
4037 reflections | (Δ/σ)max < 0.001 |
234 parameters | Δρmax = 0.28 e Å−3 |
8 restraints | Δρmin = −0.37 e Å−3 |
C13H10Cl2N3O+·Cl−·3H2O | γ = 83.195 (2)° |
Mr = 384.64 | V = 849.56 (8) Å3 |
Triclinic, P1 | Z = 2 |
a = 8.4631 (4) Å | Mo Kα radiation |
b = 9.5968 (5) Å | µ = 0.56 mm−1 |
c = 10.8300 (6) Å | T = 293 K |
α = 76.604 (2)° | 0.35 × 0.30 × 0.25 mm |
β = 89.155 (2)° |
Bruker Kappa APEXII CCD diffractometer | 4037 independent reflections |
Absorption correction: multi-scan (SADABS; Bruker, 2008) | 3007 reflections with I > 2σ(I) |
Tmin = 0.875, Tmax = 0.908 | Rint = 0.019 |
6548 measured reflections |
R[F2 > 2σ(F2)] = 0.043 | 8 restraints |
wR(F2) = 0.124 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.04 | Δρmax = 0.28 e Å−3 |
4037 reflections | Δρmin = −0.37 e Å−3 |
234 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Cl1 | 0.52954 (7) | −0.24772 (6) | 0.38718 (6) | 0.04957 (17) | |
Cl3 | 0.72649 (9) | −0.56838 (6) | 0.84324 (7) | 0.0656 (2) | |
O1 | 0.8879 (2) | 0.32962 (16) | 0.49886 (15) | 0.0485 (4) | |
N1 | 0.8808 (2) | 0.69456 (19) | 0.21816 (19) | 0.0445 (4) | |
N2 | 0.7666 (2) | 0.21144 (17) | 0.37617 (17) | 0.0372 (4) | |
N3 | 0.7793 (2) | 0.08783 (17) | 0.47208 (16) | 0.0367 (4) | |
C1 | 0.8932 (2) | 0.5703 (2) | 0.3054 (2) | 0.0386 (5) | |
H1 | 0.9622 | 0.5563 | 0.3744 | 0.046* | |
C2 | 0.7810 (3) | 0.7223 (2) | 0.1195 (2) | 0.0491 (6) | |
H2 | 0.7734 | 0.8112 | 0.0617 | 0.059* | |
C3 | 0.6892 (3) | 0.6188 (3) | 0.1031 (2) | 0.0501 (6) | |
H3 | 0.6191 | 0.6371 | 0.0344 | 0.060* | |
C4 | 0.7022 (3) | 0.4873 (2) | 0.1899 (2) | 0.0421 (5) | |
H4 | 0.6426 | 0.4157 | 0.1785 | 0.050* | |
C5 | 0.8039 (2) | 0.4620 (2) | 0.29380 (19) | 0.0340 (4) | |
C6 | 0.8238 (2) | 0.3282 (2) | 0.39897 (19) | 0.0343 (4) | |
C7 | 0.7166 (3) | −0.0174 (2) | 0.4476 (2) | 0.0392 (5) | |
H7 | 0.6685 | −0.0079 | 0.3690 | 0.047* | |
C8 | 0.7204 (2) | −0.1530 (2) | 0.5436 (2) | 0.0364 (4) | |
C9 | 0.8056 (3) | −0.1751 (2) | 0.6573 (2) | 0.0423 (5) | |
H9 | 0.8619 | −0.1024 | 0.6711 | 0.051* | |
C10 | 0.8088 (3) | −0.3016 (2) | 0.7499 (2) | 0.0450 (5) | |
H10 | 0.8654 | −0.3141 | 0.8254 | 0.054* | |
C11 | 0.7259 (3) | −0.4091 (2) | 0.7274 (2) | 0.0436 (5) | |
C12 | 0.6423 (3) | −0.3936 (2) | 0.6166 (2) | 0.0439 (5) | |
H12 | 0.5886 | −0.4679 | 0.6028 | 0.053* | |
C13 | 0.6391 (2) | −0.2655 (2) | 0.5254 (2) | 0.0373 (4) | |
Cl2 | 0.59217 (8) | 0.15917 (7) | 0.12886 (6) | 0.05501 (18) | |
O1W | 0.0683 (2) | 0.87717 (19) | 0.26788 (17) | 0.0547 (4) | |
O2W | 0.3189 (3) | 0.9558 (3) | 0.1201 (2) | 0.0859 (7) | |
O3W | 0.9617 (3) | 0.1595 (4) | 0.0595 (4) | 0.1333 (13) | |
H1N | 0.947 (3) | 0.753 (3) | 0.234 (3) | 0.066 (8)* | |
H2N | 0.725 (3) | 0.210 (3) | 0.3047 (18) | 0.051 (7)* | |
H1WA | 0.145 (3) | 0.882 (4) | 0.230 (3) | 0.076* | |
H1WB | 0.088 (4) | 0.849 (3) | 0.3430 (18) | 0.076* | |
H2WA | 0.344 (4) | 0.923 (3) | 0.057 (2) | 0.076* | |
H2WB | 0.389 (3) | 1.001 (3) | 0.133 (3) | 0.076* | |
H3WA | 0.853 (2) | 0.161 (3) | 0.074 (3) | 0.076* | |
H3WB | 0.991 (4) | 0.077 (2) | 0.117 (3) | 0.076* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Cl1 | 0.0565 (3) | 0.0471 (3) | 0.0514 (3) | −0.0168 (2) | −0.0045 (3) | −0.0186 (2) |
Cl3 | 0.0796 (4) | 0.0369 (3) | 0.0704 (4) | −0.0098 (3) | 0.0025 (3) | 0.0091 (3) |
O1 | 0.0700 (10) | 0.0389 (8) | 0.0384 (8) | −0.0215 (7) | −0.0140 (7) | −0.0039 (6) |
N1 | 0.0479 (10) | 0.0351 (9) | 0.0495 (11) | −0.0170 (8) | −0.0014 (9) | −0.0017 (8) |
N2 | 0.0479 (10) | 0.0294 (8) | 0.0344 (9) | −0.0117 (7) | −0.0069 (8) | −0.0040 (7) |
N3 | 0.0443 (9) | 0.0282 (8) | 0.0368 (9) | −0.0086 (7) | −0.0015 (7) | −0.0039 (7) |
C1 | 0.0400 (10) | 0.0347 (10) | 0.0411 (11) | −0.0117 (8) | −0.0036 (9) | −0.0047 (9) |
C2 | 0.0593 (14) | 0.0387 (11) | 0.0442 (12) | −0.0108 (10) | −0.0020 (11) | 0.0034 (10) |
C3 | 0.0572 (13) | 0.0476 (12) | 0.0412 (12) | −0.0078 (10) | −0.0140 (10) | 0.0001 (10) |
C4 | 0.0476 (12) | 0.0382 (10) | 0.0414 (11) | −0.0117 (9) | −0.0078 (9) | −0.0073 (9) |
C5 | 0.0379 (10) | 0.0297 (9) | 0.0352 (10) | −0.0089 (8) | −0.0017 (8) | −0.0065 (8) |
C6 | 0.0383 (10) | 0.0304 (9) | 0.0347 (10) | −0.0094 (8) | −0.0026 (8) | −0.0059 (8) |
C7 | 0.0491 (11) | 0.0307 (10) | 0.0395 (11) | −0.0106 (8) | −0.0033 (9) | −0.0085 (8) |
C8 | 0.0415 (10) | 0.0280 (9) | 0.0414 (11) | −0.0071 (8) | 0.0027 (9) | −0.0098 (8) |
C9 | 0.0498 (12) | 0.0315 (10) | 0.0479 (12) | −0.0115 (9) | −0.0007 (10) | −0.0103 (9) |
C10 | 0.0505 (12) | 0.0389 (11) | 0.0446 (12) | −0.0062 (9) | −0.0015 (10) | −0.0071 (9) |
C11 | 0.0498 (12) | 0.0268 (9) | 0.0509 (13) | −0.0043 (9) | 0.0075 (10) | −0.0027 (9) |
C12 | 0.0501 (12) | 0.0295 (10) | 0.0557 (14) | −0.0133 (9) | 0.0073 (10) | −0.0133 (9) |
C13 | 0.0407 (10) | 0.0320 (10) | 0.0427 (11) | −0.0084 (8) | 0.0028 (9) | −0.0141 (9) |
Cl2 | 0.0667 (4) | 0.0567 (4) | 0.0458 (3) | −0.0209 (3) | −0.0107 (3) | −0.0128 (3) |
O1W | 0.0705 (12) | 0.0484 (9) | 0.0457 (10) | −0.0255 (9) | −0.0100 (9) | −0.0022 (8) |
O2W | 0.1004 (17) | 0.1131 (19) | 0.0687 (14) | −0.0676 (15) | 0.0228 (12) | −0.0443 (13) |
O3W | 0.0783 (17) | 0.141 (3) | 0.150 (3) | −0.0212 (18) | −0.0129 (18) | 0.034 (2) |
Cl1—C13 | 1.736 (2) | C5—C6 | 1.501 (3) |
Cl3—C11 | 1.738 (2) | C7—C8 | 1.463 (3) |
O1—C6 | 1.221 (2) | C7—H7 | 0.9300 |
N1—C2 | 1.330 (3) | C8—C9 | 1.397 (3) |
N1—C1 | 1.333 (3) | C8—C13 | 1.398 (3) |
N1—H1N | 0.882 (17) | C9—C10 | 1.382 (3) |
N2—C6 | 1.346 (2) | C9—H9 | 0.9300 |
N2—N3 | 1.378 (2) | C10—C11 | 1.382 (3) |
N2—H2N | 0.856 (16) | C10—H10 | 0.9300 |
N3—C7 | 1.275 (2) | C11—C12 | 1.371 (3) |
C1—C5 | 1.385 (3) | C12—C13 | 1.384 (3) |
C1—H1 | 0.9300 | C12—H12 | 0.9300 |
C2—C3 | 1.374 (3) | O1W—H1WA | 0.766 (17) |
C2—H2 | 0.9300 | O1W—H1WB | 0.809 (18) |
C3—C4 | 1.381 (3) | O2W—H2WA | 0.829 (17) |
C3—H3 | 0.9300 | O2W—H2WB | 0.805 (17) |
C4—C5 | 1.385 (3) | O3W—H3WA | 0.930 (17) |
C4—H4 | 0.9300 | O3W—H3WB | 0.897 (17) |
C2—N1—C1 | 122.53 (18) | N3—C7—C8 | 119.86 (19) |
C2—N1—H1N | 125.4 (19) | N3—C7—H7 | 120.1 |
C1—N1—H1N | 112.1 (19) | C8—C7—H7 | 120.1 |
C6—N2—N3 | 117.78 (17) | C9—C8—C13 | 117.38 (18) |
C6—N2—H2N | 123.2 (16) | C9—C8—C7 | 121.09 (18) |
N3—N2—H2N | 119.0 (16) | C13—C8—C7 | 121.53 (19) |
C7—N3—N2 | 115.19 (18) | C10—C9—C8 | 121.99 (19) |
N1—C1—C5 | 120.32 (19) | C10—C9—H9 | 119.0 |
N1—C1—H1 | 119.8 | C8—C9—H9 | 119.0 |
C5—C1—H1 | 119.8 | C11—C10—C9 | 118.3 (2) |
N1—C2—C3 | 119.7 (2) | C11—C10—H10 | 120.9 |
N1—C2—H2 | 120.1 | C9—C10—H10 | 120.9 |
C3—C2—H2 | 120.1 | C12—C11—C10 | 121.94 (19) |
C2—C3—C4 | 119.3 (2) | C12—C11—Cl3 | 118.97 (16) |
C2—C3—H3 | 120.3 | C10—C11—Cl3 | 119.09 (19) |
C4—C3—H3 | 120.3 | C11—C12—C13 | 118.96 (19) |
C3—C4—C5 | 120.05 (19) | C11—C12—H12 | 120.5 |
C3—C4—H4 | 120.0 | C13—C12—H12 | 120.5 |
C5—C4—H4 | 120.0 | C12—C13—C8 | 121.4 (2) |
C1—C5—C4 | 118.05 (18) | C12—C13—Cl1 | 117.93 (15) |
C1—C5—C6 | 115.94 (17) | C8—C13—Cl1 | 120.64 (16) |
C4—C5—C6 | 125.98 (17) | H1WA—O1W—H1WB | 110 (3) |
O1—C6—N2 | 123.58 (18) | H2WA—O2W—H2WB | 108 (3) |
O1—C6—C5 | 120.06 (17) | H3WA—O3W—H3WB | 96 (3) |
N2—C6—C5 | 116.35 (17) | ||
C6—N2—N3—C7 | 176.82 (19) | N3—C7—C8—C9 | −6.6 (3) |
C2—N1—C1—C5 | 1.9 (3) | N3—C7—C8—C13 | 173.4 (2) |
C1—N1—C2—C3 | −1.8 (4) | C13—C8—C9—C10 | −0.9 (3) |
N1—C2—C3—C4 | 0.0 (4) | C7—C8—C9—C10 | 179.1 (2) |
C2—C3—C4—C5 | 1.6 (4) | C8—C9—C10—C11 | 0.6 (3) |
N1—C1—C5—C4 | −0.2 (3) | C9—C10—C11—C12 | 0.3 (3) |
N1—C1—C5—C6 | −178.47 (19) | C9—C10—C11—Cl3 | −179.30 (18) |
C3—C4—C5—C1 | −1.6 (3) | C10—C11—C12—C13 | −1.0 (3) |
C3—C4—C5—C6 | 176.5 (2) | Cl3—C11—C12—C13 | 178.67 (16) |
N3—N2—C6—O1 | 1.0 (3) | C11—C12—C13—C8 | 0.7 (3) |
N3—N2—C6—C5 | −178.36 (17) | C11—C12—C13—Cl1 | −178.90 (17) |
C1—C5—C6—O1 | 14.8 (3) | C9—C8—C13—C12 | 0.3 (3) |
C4—C5—C6—O1 | −163.3 (2) | C7—C8—C13—C12 | −179.7 (2) |
C1—C5—C6—N2 | −165.78 (19) | C9—C8—C13—Cl1 | 179.82 (16) |
C4—C5—C6—N2 | 16.1 (3) | C7—C8—C13—Cl1 | −0.2 (3) |
N2—N3—C7—C8 | −178.81 (18) |
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1N···O1Wi | 0.88 (2) | 1.77 (2) | 2.646 (2) | 176 (3) |
N2—H2N···Cl2 | 0.86 (2) | 2.40 (2) | 3.2432 (19) | 168 (2) |
C1—H1···O1ii | 0.93 | 2.40 | 3.214 (3) | 146 |
C3—H3···Cl2iii | 0.93 | 2.79 | 3.608 (2) | 147 |
C7—H7···Cl2 | 0.93 | 2.76 | 3.588 (2) | 149 |
O1W—H1WA···O2W | 0.77 (2) | 1.97 (2) | 2.711 (3) | 163 (3) |
O1W—H1WB···O1iv | 0.81 (2) | 2.12 (2) | 2.826 (2) | 146 (3) |
O1W—H1WB···N3iv | 0.81 (2) | 2.53 (2) | 3.218 (2) | 143 (3) |
O2W—H2WA···Cl2iii | 0.83 (2) | 2.36 (2) | 3.190 (2) | 177 (3) |
O2W—H2WB···Cl2v | 0.81 (2) | 2.42 (2) | 3.214 (2) | 169 (3) |
O3W—H3WA···Cl2 | 0.93 (2) | 2.28 (2) | 3.206 (3) | 174 (3) |
O3W—H3WB···O1Wvi | 0.90 (2) | 2.25 (2) | 3.146 (4) | 177 (3) |
Symmetry codes: (i) x+1, y, z; (ii) −x+2, −y+1, −z+1; (iii) −x+1, −y+1, −z; (iv) −x+1, −y+1, −z+1; (v) x, y+1, z; (vi) x+1, y−1, z. |
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1N···O1Wi | 0.882 (17) | 1.765 (18) | 2.646 (2) | 176 (3) |
N2—H2N···Cl2 | 0.856 (16) | 2.401 (17) | 3.2432 (19) | 168 (2) |
C1—H1···O1ii | 0.93 | 2.40 | 3.214 (3) | 145.8 |
C3—H3···Cl2iii | 0.93 | 2.79 | 3.608 (2) | 146.7 |
C7—H7···Cl2 | 0.93 | 2.76 | 3.588 (2) | 148.6 |
O1W—H1WA···O2W | 0.766 (17) | 1.97 (2) | 2.711 (3) | 163 (3) |
O1W—H1WB···O1iv | 0.809 (18) | 2.12 (2) | 2.826 (2) | 146 (3) |
O1W—H1WB···N3iv | 0.809 (18) | 2.53 (2) | 3.218 (2) | 143 (3) |
O2W—H2WA···Cl2iii | 0.829 (17) | 2.363 (18) | 3.190 (2) | 177 (3) |
O2W—H2WB···Cl2v | 0.805 (17) | 2.420 (18) | 3.214 (2) | 169 (3) |
O3W—H3WA···Cl2 | 0.930 (17) | 2.279 (18) | 3.206 (3) | 174 (3) |
O3W—H3WB···O1Wvi | 0.897 (17) | 2.250 (19) | 3.146 (4) | 177 (3) |
Symmetry codes: (i) x+1, y, z; (ii) −x+2, −y+1, −z+1; (iii) −x+1, −y+1, −z; (iv) −x+1, −y+1, −z+1; (v) x, y+1, z; (vi) x+1, y−1, z. |
Acknowledgements
The authors thank the Sophisticated Analytical Instrument Facility, STIC, Cochin University of Science & Technology, Cochin, for the single-crystal X-ray data collection.
References
Altomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst. 26, 343–350. CrossRef Web of Science IUCr Journals Google Scholar
Kaplancikli, Z. A., Altintop, M. D., Özdemir, A., Turan-Zitouni, G., Khan, S. I. & Tabanca, N. (2012). Lett. Drug Des. Discov. 9, 310–315. CAS Google Scholar
Babahan, I., Coban, E. P. & Biyik, H. (2013). Maejo Int. J. Sci. Technol. 7, 26–41. CAS Google Scholar
Bruker (2008). APEX2, SADABS, SAINT and XPREP, Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854. Web of Science CrossRef CAS IUCr Journals Google Scholar
Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470. Web of Science CrossRef CAS IUCr Journals Google Scholar
Novina, J. J., Vasuki, G., Suresh, M. & Padusha, M. S. A. (2013). Acta Cryst. E69, o1177–o1178. CSD CrossRef CAS IUCr Journals Google Scholar
Novina, J. J., Vasuki, G., Suresh, M. & Padusha, M. S. A. (2014). Acta Cryst. E70, o793–o794. CSD CrossRef CAS IUCr Journals Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Spek, A. L. (2009). Acta Cryst. D65, 148–155. Web of Science CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.