organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 71| Part 2| February 2015| Pages o105-o106

Crystal structure of (E)-3-{[2-(2,4-di­chloro­benzyl­­idene)hydrazin-1-yl]carbon­yl}pyridinium chloride trihydrate

aDepartment of Physics, Idhaya College for Women, Kumbakonam 1, India, bDepartment of Physics, Kunthavai Naachiar Govt. Arts College (W) (Autonomous), Thanjavur 7, India, and cPG & Research Department of Chemistry, Jamal Mohamed College, Tiruchirappalli 20, India
*Correspondence e-mail: vasuki.arasi@yahoo.com

Edited by O. Büyükgüngör, Ondokuz Mayıs University, Turkey (Received 31 December 2014; accepted 7 January 2015; online 10 January 2015)

In the title hydrated salt, C13H10Cl2N3O+·Cl·3H2O, the organic cation exhibits a dihedral angle of 8.26 (14)° between the mean planes of the pyridinium and benzene rings, and dihedral angles of 8.70 (15) and 15.93 (5)° between the mean planes of the hydrazide group and the benzene and pyridinium rings, respectively. In the crystal, N—H⋯O, N—H⋯Cl, C—H⋯O, C—H⋯Cl, O—H⋯O, O—H⋯N and O—H⋯Cl hydrogen bonds link the complex cations, chloride anions and solvent water mol­ecules into a three-dimensional network.

1. Related literature

For the biological activity of hydrazones, see: Kaplancikli et al. (2012[Kaplancikli, Z. A., Altintop, M. D., Özdemir, A., Turan-Zitouni, G., Khan, S. I. & Tabanca, N. (2012). Lett. Drug Des. Discov. 9, 310-315.]); Babahan et al. (2013[Babahan, I., Coban, E. P. & Biyik, H. (2013). Maejo Int. J. Sci. Technol. 7, 26-41.]). For related structures, see: Novina et al. (2013[Novina, J. J., Vasuki, G., Suresh, M. & Padusha, M. S. A. (2013). Acta Cryst. E69, o1177-o1178.], 2014[Novina, J. J., Vasuki, G., Suresh, M. & Padusha, M. S. A. (2014). Acta Cryst. E70, o793-o794.]).

[Scheme 1]

2. Experimental

2.1. Crystal data

  • C13H10Cl2N3O+·Cl·3H2O

  • Mr = 384.64

  • Triclinic, [P \overline 1]

  • a = 8.4631 (4) Å

  • b = 9.5968 (5) Å

  • c = 10.8300 (6) Å

  • α = 76.604 (2)°

  • β = 89.155 (2)°

  • γ = 83.195 (2)°

  • V = 849.56 (8) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.56 mm−1

  • T = 293 K

  • 0.35 × 0.30 × 0.25 mm

2.2. Data collection

  • Bruker Kappa APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2008[Bruker (2008). APEX2, SADABS, SAINT and XPREP, Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.875, Tmax = 0.908

  • 6548 measured reflections

  • 4037 independent reflections

  • 3007 reflections with I > 2σ(I)

  • Rint = 0.019

2.3. Refinement

  • R[F2 > 2σ(F2)] = 0.043

  • wR(F2) = 0.124

  • S = 1.04

  • 4037 reflections

  • 234 parameters

  • 8 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.28 e Å−3

  • Δρmin = −0.37 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1N⋯O1Wi 0.88 (2) 1.77 (2) 2.646 (2) 176 (3)
N2—H2N⋯Cl2 0.86 (2) 2.40 (2) 3.2432 (19) 168 (2)
C1—H1⋯O1ii 0.93 2.40 3.214 (3) 146
C3—H3⋯Cl2iii 0.93 2.79 3.608 (2) 147
C7—H7⋯Cl2 0.93 2.76 3.588 (2) 149
O1W—H1WA⋯O2W 0.77 (2) 1.97 (2) 2.711 (3) 163 (3)
O1W—H1WB⋯O1iv 0.81 (2) 2.12 (2) 2.826 (2) 146 (3)
O1W—H1WB⋯N3iv 0.81 (2) 2.53 (2) 3.218 (2) 143 (3)
O2W—H2WA⋯Cl2iii 0.83 (2) 2.36 (2) 3.190 (2) 177 (3)
O2W—H2WB⋯Cl2v 0.81 (2) 2.42 (2) 3.214 (2) 169 (3)
O3W—H3WA⋯Cl2 0.93 (2) 2.28 (2) 3.206 (3) 174 (3)
O3W—H3WB⋯O1Wvi 0.90 (2) 2.25 (2) 3.146 (4) 177 (3)
Symmetry codes: (i) x+1, y, z; (ii) -x+2, -y+1, -z+1; (iii) -x+1, -y+1, -z; (iv) -x+1, -y+1, -z+1; (v) x, y+1, z; (vi) x+1, y-1, z.

Data collection: APEX2 (Bruker, 2008[Bruker (2008). APEX2, SADABS, SAINT and XPREP, Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: APEX2 and SAINT (Bruker, 2008[Bruker (2008). APEX2, SADABS, SAINT and XPREP, Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT and XPREP (Bruker, 2008[Bruker (2008). APEX2, SADABS, SAINT and XPREP, Bruker AXS Inc., Madison, Wisconsin, USA.]); program(s) used to solve structure: SIR92 (Altomare et al., 1993[Altomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst. 26, 343-350.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]); software used to prepare material for publication: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Structural commentary top

Hydro­zones have received considerable attention due to their biological importance in medicinal chemistry. Many studies have confirmed that hydrazone derivatives exhibit a wide spectrum of biological effects including anti-inflammatory activity (Kaplancikli et al., 2012). Moreover, the hydrazone group plays an important role of the anti­microbial and possesses inter­esting anti­bacterial, anti­fungal and anti-tubercular activities (Babahan et al., 2013). As part of our studies on hydrazone derivatives (Novina et al., 2013; 2014), we report herein the crystal structure of the title compound.

The asymmetric unit of the title compound, illustrated in Fig. 1, consists of one organic cation, one Cl- anion and three water molecules. The hydrazone molecule adopts an E–configuration with respect to the N3C7 bond with the torsion angle of N2—N3—C7—C8 = -178.81 (18)°. Phenyl and pyridine rings (C8—C13 and C1/N1/C2—C5, respectively) are each planar with a dihedral angle of 8.26 (14)° between their mean-planes. The mean plane through the hydrazide unit (N3/N2/C6/O1) forms dihedral angle of 8.70 (15) and 15.93 (5)°, respectively, with the phenyl and pyridinium rings. The two chlorine atoms are in anti–periplanar positions with respect to the phenyl rings to which they are attached.

In the crystal, the organic cation, the chloride anion and the three water molecules of crystallization are linked through an intricate hydrogen-bonding network consisting of N—H···O, N—H···Cl, C—H···O, C—H···Cl, O—H···O, O—H···N and O—H···Cl inter­actions that consolidate a three–dimensional network (Table 1). One of the H atoms of the water molecule (O1W) forms bifurcated hydrogen bonds to the azomethine nitro­gen and the carbonyl oxygen atoms of one neighbouring molecule and the same water molecule acts as a hydrogen bond acceptor towards another hydrazone molecule through N–H···O hydrogen bonds (Fig. 2). Further molecules are linked via a pair of C—H···O hydrogen bonds forming inversion dimers with an R22(10) ring motif (Fig. 3). The crystal structure is further stabilized by N—H···Cl, C—H···Cl and O—H···Cl hydrogen bonds.

Synthesis and crystallization top

2,4-di­chloro­benzaldehyde (0.175 g, 0.001 mol) was added to an aqueous solution of nicotinicacid hydrazide (0.34 g, 0.001 mol), followed by 2 drops of concentrated HCl is added. After the addition was complete, the reaction mixture was stirred well at room temperature for 1 h. The colourless solid that formed was filtered, dried and washed with petroleum ether (40–60%). The crude solid obtained was dried and recrystallized from absolute alcohol. The recrystallized product was dried over vacuum. [m.pt: 411–413 K; yield:92%].

Refinement top

The H atoms of the solvent water were located in a difference map and refined freely. All Other H atoms were placed in geometrically idealized positions and constrained to ride on their parent atoms with C—H = 0.93 Å, N—H = 0.86–0.88 Å and with Uiso(H) = 1.2Ueq(CH).

Related literature top

For the biological activity of hydrazones, see: Kaplancikli et al. (2012); Babahan et al. (2013). For related structures, see: Novina et al. (2013, 2014).

Computing details top

Data collection: APEX2 (Bruker, 2008); cell refinement: APEX2 and SAINT (Bruker, 2008); data reduction: SAINT and XPREP (Bruker, 2008); program(s) used to solve structure: SIR92 (Altomare et al., 1993); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and Mercury (Macrae et al., 2008); software used to prepare material for publication: PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, with the atom labelling. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 2] Fig. 2. Crystal packing of the title compound viewed along the a axis. Hydrogen bonds are shown as dashed lines.
[Figure 3] Fig. 3. Part of the crystal packing of the title compound, showing the formation of R22(10) motif. The Cl- and the water molecules are omitted for the sake of clarity.
(E)-3-{[2-(2,4-Dichlorobenzylidene)hydrazin-1-yl]carbonyl}pyridinium chloride trihydrate top
Crystal data top
C13H10Cl2N3O+·Cl·3H2OZ = 2
Mr = 384.64F(000) = 396
Triclinic, P1Dx = 1.504 Mg m3
a = 8.4631 (4) ÅMo Kα radiation, λ = 0.71073 Å
b = 9.5968 (5) ÅCell parameters from 6548 reflections
c = 10.8300 (6) Åθ = 1.0–28.2°
α = 76.604 (2)°µ = 0.56 mm1
β = 89.155 (2)°T = 293 K
γ = 83.195 (2)°Block, colorless
V = 849.56 (8) Å30.35 × 0.30 × 0.25 mm
Data collection top
Bruker Kappa APEXII CCD
diffractometer
4037 independent reflections
Radiation source: fine-focus sealed tube3007 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.019
ω and ϕ scanθmax = 28.2°, θmin = 3.1°
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
h = 1111
Tmin = 0.875, Tmax = 0.908k = 912
6548 measured reflectionsl = 814
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.043Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.124H atoms treated by a mixture of independent and constrained refinement
S = 1.04 w = 1/[σ2(Fo2) + (0.0621P)2 + 0.184P]
where P = (Fo2 + 2Fc2)/3
4037 reflections(Δ/σ)max < 0.001
234 parametersΔρmax = 0.28 e Å3
8 restraintsΔρmin = 0.37 e Å3
Crystal data top
C13H10Cl2N3O+·Cl·3H2Oγ = 83.195 (2)°
Mr = 384.64V = 849.56 (8) Å3
Triclinic, P1Z = 2
a = 8.4631 (4) ÅMo Kα radiation
b = 9.5968 (5) ŵ = 0.56 mm1
c = 10.8300 (6) ÅT = 293 K
α = 76.604 (2)°0.35 × 0.30 × 0.25 mm
β = 89.155 (2)°
Data collection top
Bruker Kappa APEXII CCD
diffractometer
4037 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
3007 reflections with I > 2σ(I)
Tmin = 0.875, Tmax = 0.908Rint = 0.019
6548 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0438 restraints
wR(F2) = 0.124H atoms treated by a mixture of independent and constrained refinement
S = 1.04Δρmax = 0.28 e Å3
4037 reflectionsΔρmin = 0.37 e Å3
234 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.52954 (7)0.24772 (6)0.38718 (6)0.04957 (17)
Cl30.72649 (9)0.56838 (6)0.84324 (7)0.0656 (2)
O10.8879 (2)0.32962 (16)0.49886 (15)0.0485 (4)
N10.8808 (2)0.69456 (19)0.21816 (19)0.0445 (4)
N20.7666 (2)0.21144 (17)0.37617 (17)0.0372 (4)
N30.7793 (2)0.08783 (17)0.47208 (16)0.0367 (4)
C10.8932 (2)0.5703 (2)0.3054 (2)0.0386 (5)
H10.96220.55630.37440.046*
C20.7810 (3)0.7223 (2)0.1195 (2)0.0491 (6)
H20.77340.81120.06170.059*
C30.6892 (3)0.6188 (3)0.1031 (2)0.0501 (6)
H30.61910.63710.03440.060*
C40.7022 (3)0.4873 (2)0.1899 (2)0.0421 (5)
H40.64260.41570.17850.050*
C50.8039 (2)0.4620 (2)0.29380 (19)0.0340 (4)
C60.8238 (2)0.3282 (2)0.39897 (19)0.0343 (4)
C70.7166 (3)0.0174 (2)0.4476 (2)0.0392 (5)
H70.66850.00790.36900.047*
C80.7204 (2)0.1530 (2)0.5436 (2)0.0364 (4)
C90.8056 (3)0.1751 (2)0.6573 (2)0.0423 (5)
H90.86190.10240.67110.051*
C100.8088 (3)0.3016 (2)0.7499 (2)0.0450 (5)
H100.86540.31410.82540.054*
C110.7259 (3)0.4091 (2)0.7274 (2)0.0436 (5)
C120.6423 (3)0.3936 (2)0.6166 (2)0.0439 (5)
H120.58860.46790.60280.053*
C130.6391 (2)0.2655 (2)0.5254 (2)0.0373 (4)
Cl20.59217 (8)0.15917 (7)0.12886 (6)0.05501 (18)
O1W0.0683 (2)0.87717 (19)0.26788 (17)0.0547 (4)
O2W0.3189 (3)0.9558 (3)0.1201 (2)0.0859 (7)
O3W0.9617 (3)0.1595 (4)0.0595 (4)0.1333 (13)
H1N0.947 (3)0.753 (3)0.234 (3)0.066 (8)*
H2N0.725 (3)0.210 (3)0.3047 (18)0.051 (7)*
H1WA0.145 (3)0.882 (4)0.230 (3)0.076*
H1WB0.088 (4)0.849 (3)0.3430 (18)0.076*
H2WA0.344 (4)0.923 (3)0.057 (2)0.076*
H2WB0.389 (3)1.001 (3)0.133 (3)0.076*
H3WA0.853 (2)0.161 (3)0.074 (3)0.076*
H3WB0.991 (4)0.077 (2)0.117 (3)0.076*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0565 (3)0.0471 (3)0.0514 (3)0.0168 (2)0.0045 (3)0.0186 (2)
Cl30.0796 (4)0.0369 (3)0.0704 (4)0.0098 (3)0.0025 (3)0.0091 (3)
O10.0700 (10)0.0389 (8)0.0384 (8)0.0215 (7)0.0140 (7)0.0039 (6)
N10.0479 (10)0.0351 (9)0.0495 (11)0.0170 (8)0.0014 (9)0.0017 (8)
N20.0479 (10)0.0294 (8)0.0344 (9)0.0117 (7)0.0069 (8)0.0040 (7)
N30.0443 (9)0.0282 (8)0.0368 (9)0.0086 (7)0.0015 (7)0.0039 (7)
C10.0400 (10)0.0347 (10)0.0411 (11)0.0117 (8)0.0036 (9)0.0047 (9)
C20.0593 (14)0.0387 (11)0.0442 (12)0.0108 (10)0.0020 (11)0.0034 (10)
C30.0572 (13)0.0476 (12)0.0412 (12)0.0078 (10)0.0140 (10)0.0001 (10)
C40.0476 (12)0.0382 (10)0.0414 (11)0.0117 (9)0.0078 (9)0.0073 (9)
C50.0379 (10)0.0297 (9)0.0352 (10)0.0089 (8)0.0017 (8)0.0065 (8)
C60.0383 (10)0.0304 (9)0.0347 (10)0.0094 (8)0.0026 (8)0.0059 (8)
C70.0491 (11)0.0307 (10)0.0395 (11)0.0106 (8)0.0033 (9)0.0085 (8)
C80.0415 (10)0.0280 (9)0.0414 (11)0.0071 (8)0.0027 (9)0.0098 (8)
C90.0498 (12)0.0315 (10)0.0479 (12)0.0115 (9)0.0007 (10)0.0103 (9)
C100.0505 (12)0.0389 (11)0.0446 (12)0.0062 (9)0.0015 (10)0.0071 (9)
C110.0498 (12)0.0268 (9)0.0509 (13)0.0043 (9)0.0075 (10)0.0027 (9)
C120.0501 (12)0.0295 (10)0.0557 (14)0.0133 (9)0.0073 (10)0.0133 (9)
C130.0407 (10)0.0320 (10)0.0427 (11)0.0084 (8)0.0028 (9)0.0141 (9)
Cl20.0667 (4)0.0567 (4)0.0458 (3)0.0209 (3)0.0107 (3)0.0128 (3)
O1W0.0705 (12)0.0484 (9)0.0457 (10)0.0255 (9)0.0100 (9)0.0022 (8)
O2W0.1004 (17)0.1131 (19)0.0687 (14)0.0676 (15)0.0228 (12)0.0443 (13)
O3W0.0783 (17)0.141 (3)0.150 (3)0.0212 (18)0.0129 (18)0.034 (2)
Geometric parameters (Å, º) top
Cl1—C131.736 (2)C5—C61.501 (3)
Cl3—C111.738 (2)C7—C81.463 (3)
O1—C61.221 (2)C7—H70.9300
N1—C21.330 (3)C8—C91.397 (3)
N1—C11.333 (3)C8—C131.398 (3)
N1—H1N0.882 (17)C9—C101.382 (3)
N2—C61.346 (2)C9—H90.9300
N2—N31.378 (2)C10—C111.382 (3)
N2—H2N0.856 (16)C10—H100.9300
N3—C71.275 (2)C11—C121.371 (3)
C1—C51.385 (3)C12—C131.384 (3)
C1—H10.9300C12—H120.9300
C2—C31.374 (3)O1W—H1WA0.766 (17)
C2—H20.9300O1W—H1WB0.809 (18)
C3—C41.381 (3)O2W—H2WA0.829 (17)
C3—H30.9300O2W—H2WB0.805 (17)
C4—C51.385 (3)O3W—H3WA0.930 (17)
C4—H40.9300O3W—H3WB0.897 (17)
C2—N1—C1122.53 (18)N3—C7—C8119.86 (19)
C2—N1—H1N125.4 (19)N3—C7—H7120.1
C1—N1—H1N112.1 (19)C8—C7—H7120.1
C6—N2—N3117.78 (17)C9—C8—C13117.38 (18)
C6—N2—H2N123.2 (16)C9—C8—C7121.09 (18)
N3—N2—H2N119.0 (16)C13—C8—C7121.53 (19)
C7—N3—N2115.19 (18)C10—C9—C8121.99 (19)
N1—C1—C5120.32 (19)C10—C9—H9119.0
N1—C1—H1119.8C8—C9—H9119.0
C5—C1—H1119.8C11—C10—C9118.3 (2)
N1—C2—C3119.7 (2)C11—C10—H10120.9
N1—C2—H2120.1C9—C10—H10120.9
C3—C2—H2120.1C12—C11—C10121.94 (19)
C2—C3—C4119.3 (2)C12—C11—Cl3118.97 (16)
C2—C3—H3120.3C10—C11—Cl3119.09 (19)
C4—C3—H3120.3C11—C12—C13118.96 (19)
C3—C4—C5120.05 (19)C11—C12—H12120.5
C3—C4—H4120.0C13—C12—H12120.5
C5—C4—H4120.0C12—C13—C8121.4 (2)
C1—C5—C4118.05 (18)C12—C13—Cl1117.93 (15)
C1—C5—C6115.94 (17)C8—C13—Cl1120.64 (16)
C4—C5—C6125.98 (17)H1WA—O1W—H1WB110 (3)
O1—C6—N2123.58 (18)H2WA—O2W—H2WB108 (3)
O1—C6—C5120.06 (17)H3WA—O3W—H3WB96 (3)
N2—C6—C5116.35 (17)
C6—N2—N3—C7176.82 (19)N3—C7—C8—C96.6 (3)
C2—N1—C1—C51.9 (3)N3—C7—C8—C13173.4 (2)
C1—N1—C2—C31.8 (4)C13—C8—C9—C100.9 (3)
N1—C2—C3—C40.0 (4)C7—C8—C9—C10179.1 (2)
C2—C3—C4—C51.6 (4)C8—C9—C10—C110.6 (3)
N1—C1—C5—C40.2 (3)C9—C10—C11—C120.3 (3)
N1—C1—C5—C6178.47 (19)C9—C10—C11—Cl3179.30 (18)
C3—C4—C5—C11.6 (3)C10—C11—C12—C131.0 (3)
C3—C4—C5—C6176.5 (2)Cl3—C11—C12—C13178.67 (16)
N3—N2—C6—O11.0 (3)C11—C12—C13—C80.7 (3)
N3—N2—C6—C5178.36 (17)C11—C12—C13—Cl1178.90 (17)
C1—C5—C6—O114.8 (3)C9—C8—C13—C120.3 (3)
C4—C5—C6—O1163.3 (2)C7—C8—C13—C12179.7 (2)
C1—C5—C6—N2165.78 (19)C9—C8—C13—Cl1179.82 (16)
C4—C5—C6—N216.1 (3)C7—C8—C13—Cl10.2 (3)
N2—N3—C7—C8178.81 (18)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···O1Wi0.88 (2)1.77 (2)2.646 (2)176 (3)
N2—H2N···Cl20.86 (2)2.40 (2)3.2432 (19)168 (2)
C1—H1···O1ii0.932.403.214 (3)146
C3—H3···Cl2iii0.932.793.608 (2)147
C7—H7···Cl20.932.763.588 (2)149
O1W—H1WA···O2W0.77 (2)1.97 (2)2.711 (3)163 (3)
O1W—H1WB···O1iv0.81 (2)2.12 (2)2.826 (2)146 (3)
O1W—H1WB···N3iv0.81 (2)2.53 (2)3.218 (2)143 (3)
O2W—H2WA···Cl2iii0.83 (2)2.36 (2)3.190 (2)177 (3)
O2W—H2WB···Cl2v0.81 (2)2.42 (2)3.214 (2)169 (3)
O3W—H3WA···Cl20.93 (2)2.28 (2)3.206 (3)174 (3)
O3W—H3WB···O1Wvi0.90 (2)2.25 (2)3.146 (4)177 (3)
Symmetry codes: (i) x+1, y, z; (ii) x+2, y+1, z+1; (iii) x+1, y+1, z; (iv) x+1, y+1, z+1; (v) x, y+1, z; (vi) x+1, y1, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···O1Wi0.882 (17)1.765 (18)2.646 (2)176 (3)
N2—H2N···Cl20.856 (16)2.401 (17)3.2432 (19)168 (2)
C1—H1···O1ii0.932.403.214 (3)145.8
C3—H3···Cl2iii0.932.793.608 (2)146.7
C7—H7···Cl20.932.763.588 (2)148.6
O1W—H1WA···O2W0.766 (17)1.97 (2)2.711 (3)163 (3)
O1W—H1WB···O1iv0.809 (18)2.12 (2)2.826 (2)146 (3)
O1W—H1WB···N3iv0.809 (18)2.53 (2)3.218 (2)143 (3)
O2W—H2WA···Cl2iii0.829 (17)2.363 (18)3.190 (2)177 (3)
O2W—H2WB···Cl2v0.805 (17)2.420 (18)3.214 (2)169 (3)
O3W—H3WA···Cl20.930 (17)2.279 (18)3.206 (3)174 (3)
O3W—H3WB···O1Wvi0.897 (17)2.250 (19)3.146 (4)177 (3)
Symmetry codes: (i) x+1, y, z; (ii) x+2, y+1, z+1; (iii) x+1, y+1, z; (iv) x+1, y+1, z+1; (v) x, y+1, z; (vi) x+1, y1, z.
 

Acknowledgements

The authors thank the Sophisticated Analytical Instrument Facility, STIC, Cochin University of Science & Technology, Cochin, for the single-crystal X-ray data collection.

References

First citationAltomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst. 26, 343–350.  CrossRef Web of Science IUCr Journals Google Scholar
First citationKaplancikli, Z. A., Altintop, M. D., Özdemir, A., Turan-Zitouni, G., Khan, S. I. & Tabanca, N. (2012). Lett. Drug Des. Discov. 9, 310–315.  CAS Google Scholar
First citationBabahan, I., Coban, E. P. & Biyik, H. (2013). Maejo Int. J. Sci. Technol. 7, 26–41.  CAS Google Scholar
First citationBruker (2008). APEX2, SADABS, SAINT and XPREP, Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationNovina, J. J., Vasuki, G., Suresh, M. & Padusha, M. S. A. (2013). Acta Cryst. E69, o1177–o1178.  CSD CrossRef CAS IUCr Journals Google Scholar
First citationNovina, J. J., Vasuki, G., Suresh, M. & Padusha, M. S. A. (2014). Acta Cryst. E70, o793–o794.  CSD CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 71| Part 2| February 2015| Pages o105-o106
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds