research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 71| Part 2| February 2015| Pages 157-160

Crystal structure of the Anderson-type hetero­polyoxometalate; K2[H7CrIIIMo6O24]·8H2O: a redetermination revealing the position of the extra H atom in the polyanion

aDepartment of Chemistry, Pukyong National University, 599-1 Daeyeon 3-dong, Nam-gu, Busan 608-737, Republic of Korea, and bThe Research Institute of Natural Science, Gyeongsan National University, Jinju 660-701, Republic of Korea
*Correspondence e-mail: uklee@pknu.ac.kr

Edited by I. D. Brown, McMaster University, Canada (Received 10 October 2014; accepted 8 January 2015; online 17 January 2015)

The title compound contains a symmetric hydrogen bond in which the H atom does not lie on a crystallographic centre of symmetry. The structure of K2[H7CrIIIMo6O24]·8H2O, namely dipotassium hepta­hydrogen hexa­molybdochromate(III) octa­hydrate, previously reported by Lee [Acta Cryst. (2007), E63, i5–i7], has been redetermined in order to locate the position of the seventh H atom in the anion. Six of the H atoms are bonded to the six μ3-O atoms and form hydrogen bonds of medium strength either to water mol­ecules or to the terminal O atoms of other polyanions. The seventh H atom forms a very short hydrogen bond between two μ2-O atoms on adjacent polyanions. This short bond, together with two normal hydrogen bonds, link the two crystallographically distinct centrosymmetric polyanions into chains along [011], while the length of this bond [2.461 (3) Å] suggests that the H atom lies at its centre, but unusually for such a bond, this point is not a crystallographic centre of symmetry.

1. Chemical context

This redetermined structure of a typical Anderson-type heteropolyoxometalate (Anderson, 1937[Anderson, J. S. (1937). Nature (London), 140, 850.]), K2[H7CrIIIMo6O24]·8H2O reveals the position of the extra or seventh H atom in the [HCrIII(OH)6Mo6O18]2− polyanion. This has not only an extra H atom but this atom also forms a very short hydrogen bond [2.461 (3) Å]; however, the H atom that contributes to the short hydrogen bond does not lie on a crystallographic centre of symmetry.

An example of a relatively short hydrogen bond in which the H atom does lie on a crystallographic centre of symmetry in an Anderson-type polyanion was reported in the polyoxometalate, viz. K7[H4.5α-PtMo6O24]2·11H2O (Lee et al., 2010[Lee, U., Joo, H.-C. & Park, K.-M. (2010). Acta Cryst. E66, i25.]). In this compound, the two polyanions form a dimer, viz. [(H4.5PtMo6O24)2]7− via seven hydrogen bonds, viz. four μ3-O—H⋯μ1–O (terminal Mo=O atom), two μ2-O—H⋯μ2-O and one central/symmetric μ3-O⋯H⋯μ3-O. The H atom of the central hydrogen bond lies on a crystallographic centre of symmetry (space group P[\overline{1}]: ½, 0, ½) with a μ3-O⋯H⋯μ3-O ([\overline{1}]) distance of 2.553 (3) Å. In this way, the hydrogen bond is symmetric, O⋯H⋯O, and the donor and acceptor cannot be distinguished. The dimerization of the polyanion by these hydrogen bonds is possible because the μ3-O atoms in the polyanion are only partially protonated. The location of the H atom in the central μ3-O⋯H⋯μ3-O unit was determined from a centrosymmetric electron density map around the H-atom position. This centrosymmetric inter­pretation of the hydrogen bond is strongly supported by the bond-valence sums (BVS; Brown & Altermatt, 1985[Brown, I. D. & Altermatt, D. (1985). Acta Cryst. B41, 244-247.]; Brese & O'Keeffe, 1991[Brese, N. E. & O'Keeffe, M. (1991). Acta Cryst. B47, 192-197.]). The sum around the strongly bonded μ3-O atom is 1.92 valence units (v.u.) in the [(H4.5PtMo6O24)2]7− polyanion. The reasonable BVS values of very short or very long O—H bond distances can be obtained from the graphical correlation (Brown, 2001[Brown, I. D. (2001). In The Chemical Bond in Inorganic Chemistry. Oxford Science Publications.]).

However, the title compound belongs to the B-series Anderson-type polyanions (Tsigdinos, 1978[Tsigdinos, G. A. (1978). Top. Curr. Chem. 76, 36-40.]) viz. [Xn+(OH)6MoO18](12−n)− (X = heteroatom), in which such dimerization is impossible because all six μ3-O atoms are fully protonated. The polyanion structure in the title compound is shown in Fig. 1[link].

[Figure 1]
Figure 1
The polyanion structure in the title compound. Displacement ellipsoids are drawn at the 50% probability level for non-H atoms. H atoms are shown as small spheres of arbitrary radius. [Symmetry codes: (i) −x + 1, −y, −z + 2; (ii) −x + 1, −y + 1, −z + 1.]

2. Structural commentary

This study was carried out to clearly identify the position of the seventh or extra H atom in the [HCrIII(OH)6Mo6O18]2− polyanion. After considering the electron density maps and BVS values of the protonated OB (O-bridged μ2-O atom) atoms in the previously reported structure (Lee, 2007[Lee, U. (2007). Acta Cryst. E63, i5-i7.]), we came to the conclusion that the positional disorder model of the H atom was wrong. The electron density (Fig. 2[link]) is not symmetric in the title compound, but we expect the H atoms to lie in the middle of the bond because of the short O⋯O distance of 2.461 (3) Å, which corresponds to a pseudosymmetric hydrogen bond. The description of the rest of the structure and the composition of the atoms in the polyanion are the same as in the previous report of the compound, viz. K2[H7CrIIIMo6O24]·8H2O (Lee, 2007[Lee, U. (2007). Acta Cryst. E63, i5-i7.]). The O atoms of the polyoxometalate are designated as OT (terminal Mo=O atom), OB, and OC (centre of two Mo and one Cr atom, μ3-O atom), respectively.

[Figure 2]
Figure 2
Difference Fourier map around atom H5 where atom H5 is absent.

In the present case, the O5B⋯H5 and O16Bi⋯H5 distances are both 1.23 Å (Table 1[link]). However, since the H atom does not lie on a crystallographic centre of symmetry, the present structure is considered to be particularly significant. As a result, the H5 atom is co-shared as O5B⋯H5⋯O16Bi, and the average equation of the polyanion is [CrIII(μ3-OH)6{μ2-O(0.5H)}2Mo6O17]2−.

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1C—H1⋯O22Ti 0.70 (6) 2.11 (6) 2.789 (4) 164 (6)
O2C—H2⋯O27W 0.76 (6) 2.01 (6) 2.753 (4) 166 (6)
O3C—H3⋯O31Wii 0.82 (6) 1.79 (6) 2.604 (4) 176 (6)
O5B—H5⋯O16Biii 1.23 (1) 1.23 (1) 2.461 (3) 175 (5)
O13C—H13⋯O12Tiii 0.70 (5) 2.05 (5) 2.734 (4) 167 (5)
O14C—H14⋯O32W 0.81 (5) 2.01 (5) 2.776 (4) 158 (5)
O15C—H15⋯O28Wiv 0.76 (6) 1.87 (6) 2.619 (4) 170 (6)
O25W—H25A⋯O21T 0.92 (3) 1.96 (3) 2.838 (4) 157 (5)
O25W—H25B⋯O20T 0.93 (3) 1.92 (3) 2.819 (4) 162 (5)
O26W—H26A⋯O4Bv 0.91 (3) 1.89 (3) 2.748 (4) 158 (5)
O26W—H26B⋯O24Tiii 0.91 (3) 1.91 (3) 2.798 (4) 164 (5)
O27W—H27A⋯O18B 0.90 (3) 1.95 (4) 2.775 (4) 151 (5)
O27W—H27B⋯O32W 0.91 (3) 1.92 (3) 2.825 (5) 171 (5)
O28W—H28A⋯O12Tvi 0.91 (3) 2.00 (4) 2.785 (4) 144 (5)
O28W—H28B⋯O31Wiv 0.90 (3) 1.82 (3) 2.706 (4) 170 (5)
O29W—H29A⋯O11Tv 0.95 (3) 2.11 (4) 2.949 (5) 146 (6)
O29W—H29B⋯O8Tvii 0.96 (3) 2.18 (3) 3.126 (5) 169 (6)
O31W—H31A⋯O26Wiv 0.90 (3) 1.77 (3) 2.665 (4) 170 (5)
O31W—H31B⋯O27Wiv 0.92 (3) 2.18 (4) 2.952 (4) 141 (4)
O32W—H32A⋯O30W 0.89 (3) 2.06 (3) 2.947 (6) 171 (5)
O32W—H32B⋯O6Bv 0.89 (3) 2.39 (5) 3.000 (4) 126 (5)
Symmetry codes: (i) x, y, z+1; (ii) x, y-1, z+1; (iii) -x+1, -y, -z+1; (iv) -x+1, -y+1, -z+1; (v) -x+1, -y, -z+2; (vi) x, y+1, z; (vii) -x+1, -y+1, -z+2.

The calculated BVS for the O5B and O16B atoms are 1.59 and 1.57 v.u., respectively, if the valence of the O—H bond is not included. Since the BVS value around the μ2-O atom should be 2.0 v.u., the missing valences of O5B and O16B are 0.41 and 0.43 v.u., respectively, corresponding to the valence of the O—H bonds. The obtained graphical correlation valence of H5 from its distance, 1.232 (7) Å, is 0.41 v.u., which is sufficient to satisfy the sums around the O5B and O16B atoms. As a result, the valence sums around O5B and O16B are 2.00 and 1.98 v.u., respectively. The BVS around the unprotonated μ2-O atoms, viz. O4B, O6B, O17B and O18B are 1.98, 1.96, 2.13 and 2.02 v.u., respectively.

The positional disordered model in the previous report (Lee, 2007[Lee, U. (2007). Acta Cryst. E63, i5-i7.]) showed unreasonable BVS values. The calculated BVS for the O5B and O16B atoms are 1.62 and 1.57 v.u., respectively, if the valence of the O—H bond is not included. The obtained graphical correlation valences of H5 and H16 from its distances [O5B—H5 = 0.71 (8), H5⋯O16B = 1.79 (8) Å and O16B—H16 = 0.83 (8), H16⋯O5B = 1.65 (8) Å] are 0.24 and 0.26 v.u. Therefore, the total BVS values of O5B and O16B are 1.86 and 1.83 v.u., respectively.

As a result, we consider that the present model of the title compound is more reasonable, and the one extra H atom is located at the mid-point between the O5B and O16B atoms, and shared equally by two discrete polyanions. All H atoms and hydrogen bonds are well-defined in the title compound (Table 1[link]).

3. Supra­molecular features

Two discrete polyanions A and B are linked into chains along [011] by two normal, and one strong and pseudosymmetric hydrogen bonds (Table 1[link] and Fig. 3[link]). The K+ ions are variously coordinated by O atoms as [K1(OT)4(OW)4]+ and [K2(OT)4(OB)(OW)3]+ in the distance range 2.722 (3)–3.075 (3) Å. Furthermore, the polyanions are three dimensionally linked via K⋯OT inter­actions. All water mol­ecules form hydrogen bonds with polyanions except for the O30W and O31W water mol­ecules.

[Figure 3]
Figure 3
Polyhedral view of the heteropolyanion in (I), with O⋯O contacts of the inter-polyanion hydrogen bonds shown as dashed lines. [Symmetry codes; (i) −x + 1, −y, −z + 1; (ii) x, y, z − 1; (iii) −x + 1, −y + 1, −z + 1; (iv) x, y + 1, z; (v) −x + 1, −y + 1, −z + 2.]

4. Synthesis and crystallization

The crude potassium salt of title compound was obtained from the reaction of an Na3[H6CrMo6O24]·8H2O (Perloff, 1970[Perloff, A. (1970). Inorg. Chem. 9, 2228-2239.]) solution and excess KCl solution. The title compound was obtained by recrystallization of crude K3[H6CrMo6O24]·8H2O at pH 1.80.

5. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. All the H atoms in the polyanions and all water H atoms were positioned using difference Fourier maps. All H atoms in the polyanion were refined freely, but the H5 atoms were refined with a distance restraint of O5B—H5 and O16Biii—H5 (Table 1[link]) using the SADI command in SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); σ = 0.01, the distances between the first and second named bonds were restrained to be equal with an effective standard deviation sigma in order to locate the H5 atom on the pseudocentre between the O5B and O16B atoms. The H atoms of all water mol­ecules (OW) were refined with a distance restraint of O—H = 0.95 (3) Å using the DFIX command, and were included in the refinement with Uiso(H) = 1.5Ueq(O). The highest peak in the difference map is 1.62 Å from O9T.

Table 2
Experimental details

Crystal data
Chemical formula K2[H7CrMo6O24]·8H2O
Mr 1241.02
Crystal system, space group Triclinic, P[\overline{1}]
Temperature (K) 446
a, b, c (Å) 10.4588 (2), 10.8553 (2), 12.6287 (3)
α, β, γ (°) 99.296 (1), 94.469 (1), 99.283 (1)
V3) 1388.44 (5)
Z 2
Radiation type Mo Kα
μ (mm−1) 3.42
Crystal size (mm) 0.18 × 0.11 × 0.09
 
Data collection
Diffractometer Bruker SMART APEXII CCD
Absorption correction Multi-scan (SADABS; Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.])
Tmin, Tmax 0.645, 0.746
No. of measured, independent and observed [I > 2σ(I)] reflections 23489, 6028, 5893
Rint 0.025
(sin θ/λ)max−1) 0.639
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.024, 0.064, 1.11
No. of reflections 6028
No. of parameters 450
No. of restraints 17
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 1.58, −0.67
Computer programs: APEX2 and SAINT (Bruker, 2009[Bruker (2009). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXS97 and SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]), PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]) and DIAMOND (Brandenburg, 1998[Brandenburg, K. (1998). DIAMOND. Crystal Impact GbR. Bonn, Germany.]).

Supporting information


Chemical context top

This redetermined structure of a typical Anderson-type heteropolyoxometalate (Anderson, 1937), K2[H7CrIIIMo6O24]·8H2O reveals the position of the extra or seventh H atom in the [HCrIII(OH)6Mo6O18]2- polyanion. This has not only an extra H atom but this atom also forms a very short hydrogen bond [2.461 (3) Å]; however, the H atom that contributes to the short hydrogen bond does not lie on a crystallographic centre of symmetry.

An example of a relatively short hydrogen bond in which the H atom does lie on a crystallographic centre of symmetry in an Anderson-type polyanion was reported in the polyoxometalate, viz. K7[H4.5α-PtMo6O24]2·11H2O (Lee et al., 2010). In this compound, the two polyanions form a dimer, viz. [(H4.5PtMo6O24)2]7- via seven hydrogen bonds, viz. four µ3-O—H···µ1–O (terminal MoO atom), two µ2-O—H···µ2-O and one central/symmetric µ3-O···H···µ3-O. The H atom of the central hydrogen bond in the compound lies on a crystallographic centre of symmetry (space group P1 : 1/2, 0, 1/2) with a µ3-O···H···µ3-O (1) distance of 2.553 (3) Å. In this way, the hydrogen bond is symmetric, O···H···O, and the donor and acceptor cannot be distinguished. The dimerization of the polyanion by these hydrogen bonds is possible because the µ3-O atoms in the polyanion are only partially protonated. The location of the H atom in the central µ3-O···H···µ3-O unit was determined from a centrosymmetric electron density map around the H-atom position. This centrosymmetric inter­pretation of the hydrogen bond is strongly supported by the bond-valence sums (BVS; Brown & Altermatt, 1985; Brese & O'Keeffe, 1991). The sum around the strongly bonded µ3-O atom is 1.92 valence units (v.u.) in the [(H4.5PtMo6O24)2]7- polyanion. The reasonable BVS values of very short or very long O—H bond distances can be obtained from the graphical correlation (Brown, 2001).

However, the title compound belongs to the B-series Anderson-type polyanions (Tsigdinos, 1978) viz. [Xn+(OH)6MoO18](12-n)- (X = heteroatom), in which such dimerization is impossible, because all six µ3-O atoms are fully protonated. The polyanion structure in the title compound is shown in Fig. 1.

Structural commentary top

This study was carried out to identify the position of the seventh or extra H atom in the [HCrIII(OH)6Mo6O18]2- polyanion. After considering the electron density maps and BVS values of the protonated OB (O-bridged µ2-O atom) atoms in the previously reported structure (Lee, 2007), we considered that the positional disorder model of the H atom was wrong. The electron density (Fig. 2) is not symmetric in the title compound, but we expect the H atoms to lie in the middle of the bond because of the short O···O distance of 2.461 (3) Å, which corresponds to a pseudosymmetric hydrogen bond. The description of the rest of the structure and the composition of the atoms in the polyanion are the same as in the previous report of the compound, viz. K2[H7CrIIIMo6O24]·8H2O (Lee, 2007). The O atoms of the polyoxometalate are designated as OT (terminal MoO atom), OB, and OC (centre of two Mo and one Cr atom, µ3-O atom), respectively.

In the present case, the O5B···H5 and O16Bi···H5 distances are both 1.23 Å (Table 1). This hydrogen bond is considered to be a symmetric hydrogen bond because the O5B···O16Bi distance, 2.461 (3) Å, is very short. However, since the H atom does not lie on a crystallographic centre of symmetry, the present structure is considered to be particularly significant. As a result, the H5 atom is co-shared as O5B···H5···O16Bi, and the average equation of the polyanion is [CrIII3-OH)62-O(0.5H)}2Mo6O17]2-.

The calculated BVS for the O5B and O16B atoms are 1.59 and 1.57 v.u., respectively, if the valence of the O—H bond is not included. Since the BVS value around the µ2-O atom should be 2.0 v.u., the missing valences of O5B and O16B are 0.41 and 0.43 v.u., respectively, corresponding to the valence of the O—H bonds. The obtained graphical correlation valence of H5 from its distance, 1.232 (7) Å, is 0.41 v.u., which is sufficient to satisfy the sums around the O5B and O16B atoms. As a result, the valence sums around O5B and O16B are 2.00 and 1.98 v.u., respectively. The BVS around the unprotonated µ2-O atoms, viz. O4B, O6B, O17B and O18B are 1.98, 1.96, 2.13 and 2.02 v.u., respectively.

The positional disordered model in the previous report (Lee, 2007) showed unreasonable BVS values. The calculated BVS for the O5B and O16B atoms are 1.62 and 1.57 v.u., respectively, if the valence of the O—H bond is not included. The obtained graphical correlation valences of H5 and H16 from its distances [O5B—H5 = 0.71 (8), H5···O16B = 1.79 (8) Å and O16B—H16 = 0.83 (8), H16···O5B = 1.65 (8) Å] are 0.24 and 0.26 v.u. Therefore, the total BVS values of O5B and O16B are 1.86 and 1.83 v.u., respectively.

As a result, we consider that the present model of the title compound is reasonable, and the one extra H atom is located at the mid-point between the O5B and O16B atoms, and shared equally by two discrete polyanions. All H atoms and hydrogen bonds were well-defined in the title compound (Table 1).

Supra­molecular features top

Two discrete polyanions A and B are linked into chains along [011] by two normal, and one strong and pseudosymmetric hydrogen bonds (Table 1 and Fig.3). The K+ ions are variously coordinated by O atoms as [K1(OT)4(OW)4]+ and [K2(OT)4(OB)(OW)3]+ in the distance range 2.722 (3)–3.075 (3) Å. Furthermore, the polyanions are three dimensionally linked via clusters of K···OT, OB and OW inter­actions. All water molecules form hydrogen bonds with polyanions except for the O30W and O31W water molecules.

Synthesis and crystallization top

The crude potassium salt of title compound was obtained from the reaction of Na3[H6CrMo6O24].8H2O (Perloff, 1970) solution and excess KCl solution. The title compound was obtained by recrystallization of crude K3[H6CrMo6O24].8H2O at pH 1.80.

Refinement top

All the H atoms in the polyanions and all water H atoms were positioned using difference Fourier maps. All H atoms in the polyanion were refined freely, but the H5 atoms were refined with a distance restraint of O5B—H5 and O16Biii—H5 (Table 1) using the SADI command in SHELXL97 (Sheldrick, 2008); σ = 0.01, the distances between the first and second named bonds were restrained to be equal with an effective standard deviation sigma in order to locate the H5 atom on the pseudocentre between the O5B and O16B atoms. The H atoms of all water molecules (OW) were refined with a distance restraint of O—H = 0.95 (3) Å using the DFIX command, and were included in the refinement with Uiso(H) = 1.5Ueq(O). The highest peak in the difference map is 1.62 Å from O9T.

Related literature top

For related literature, see: Brese & O'Keeffe (1991); Brown & Altermatt (1985); Lee (2007); Lee & Joo (2004); Perloff (1970); Sheldrick (2008); Tsigdinos (1978).

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012), PLATON (Spek, 2009) and DIAMOND (Brandenburg, 1998); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The polyanion structure in the title compound. Displacement ellipsoids are drawn at the 50% probability level for non-H atoms. H atoms are shown as small spheres of arbitrary radius. [Symmetry codes: (i) -x + 1, -y, -z + 2; (ii) -x + 1, -y + 1, -z + 1.]
[Figure 2] Fig. 2. Difference Fourier map around atom H5 where atom H5 is absent.
[Figure 3] Fig. 3. Polyhedral view of the heteropolyanion in (I), with O···O contacts of the inter-polyanion hydrogen bonds shown as dashed lines. [Symmetry codes; (i) -x + 1, -y, -z + 1; (ii) x , y, z - 1; (iii) -x + 1, -y + 1, -z + 1; (iv) x, y + 1, z; (v) -x + 1, -y + 1, -z + 2.]
Dipotassium heptahydrogen hexamolybdochromate(III) octahydrate top
Crystal data top
K2[H7CrMo6O24]·8H2OZ = 2
Mr = 1241.02F(000) = 1186
Triclinic, P1Dx = 2.968 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 10.4588 (2) ÅCell parameters from 9896 reflections
b = 10.8553 (2) Åθ = 2.5–33.5°
c = 12.6287 (3) ŵ = 3.42 mm1
α = 99.296 (1)°T = 446 K
β = 94.469 (1)°Block, purple
γ = 99.283 (1)°0.18 × 0.11 × 0.09 mm
V = 1388.44 (5) Å3
Data collection top
Bruker SMART APEXII CCD
diffractometer
6028 independent reflections
Radiation source: Rotating Anode5893 reflections with I > 2σ(I)
Graphite multilayer monochromatorRint = 0.025
Detector resolution: 10.0 pixels mm-1θmax = 27.0°, θmin = 1.6°
ϕ and ω scansh = 1313
Absorption correction: multi-scan
(SADABS; Sheldrick, 2008)
k = 1313
Tmin = 0.645, Tmax = 0.746l = 1616
23489 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.024H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.064 w = 1/[σ2(Fo2) + (0.0255P)2 + 6.3059P]
where P = (Fo2 + 2Fc2)/3
S = 1.11(Δ/σ)max = 0.001
6028 reflectionsΔρmax = 1.58 e Å3
450 parametersΔρmin = 0.67 e Å3
17 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.00391 (16)
Crystal data top
K2[H7CrMo6O24]·8H2Oγ = 99.283 (1)°
Mr = 1241.02V = 1388.44 (5) Å3
Triclinic, P1Z = 2
a = 10.4588 (2) ÅMo Kα radiation
b = 10.8553 (2) ŵ = 3.42 mm1
c = 12.6287 (3) ÅT = 446 K
α = 99.296 (1)°0.18 × 0.11 × 0.09 mm
β = 94.469 (1)°
Data collection top
Bruker SMART APEXII CCD
diffractometer
6028 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2008)
5893 reflections with I > 2σ(I)
Tmin = 0.645, Tmax = 0.746Rint = 0.025
23489 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.02417 restraints
wR(F2) = 0.064H atoms treated by a mixture of independent and constrained refinement
S = 1.11Δρmax = 1.58 e Å3
6028 reflectionsΔρmin = 0.67 e Å3
450 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cr10.50000.00001.00000.00813 (15)
Cr20.50000.50000.50000.00762 (15)
Mo10.23267 (3)0.13627 (3)0.99546 (2)0.01127 (8)
Mo20.20792 (3)0.17249 (3)0.90598 (2)0.01086 (8)
Mo30.47636 (3)0.31129 (3)0.92212 (2)0.01051 (8)
Mo40.79232 (3)0.42389 (3)0.46268 (2)0.00994 (8)
Mo50.52144 (3)0.19391 (3)0.43518 (2)0.00938 (8)
Mo60.23147 (3)0.27465 (3)0.46825 (2)0.00952 (8)
K10.06894 (8)0.02275 (9)0.66878 (7)0.02014 (17)
K20.92835 (8)0.58495 (9)0.77823 (7)0.02212 (18)
O1C0.4157 (2)0.1138 (2)1.0986 (2)0.0113 (5)
H10.414 (6)0.100 (5)1.151 (5)0.033 (16)*
O2C0.3526 (2)0.0070 (2)0.8952 (2)0.0099 (5)
H20.362 (5)0.029 (5)0.842 (4)0.028 (14)*
O3C0.3916 (2)0.1598 (2)1.0194 (2)0.0109 (5)
H30.386 (5)0.166 (5)1.083 (5)0.034 (15)*
O4B0.1720 (2)0.0378 (2)1.0107 (2)0.0137 (5)
O5B0.3370 (2)0.2592 (2)0.83029 (19)0.0121 (5)
H50.334 (9)0.271 (9)0.7314 (10)0.12 (3)*
O6B0.6225 (2)0.2660 (2)1.0259 (2)0.0131 (5)
O7T0.1329 (3)0.1463 (3)0.8855 (2)0.0196 (6)
O8T0.1748 (3)0.2124 (3)1.1047 (2)0.0201 (6)
O9T0.1160 (3)0.1627 (3)0.7911 (2)0.0171 (5)
O10T0.1270 (3)0.2975 (3)0.9535 (2)0.0192 (6)
O11T0.3862 (3)0.4281 (3)0.9735 (2)0.0184 (5)
O12T0.5387 (3)0.3860 (2)0.8119 (2)0.0158 (5)
O13C0.4147 (2)0.3516 (2)0.3922 (2)0.0099 (5)
H130.415 (5)0.359 (5)0.338 (4)0.015 (12)*
O14C0.3526 (2)0.4487 (2)0.5815 (2)0.0100 (5)
H140.357 (5)0.437 (5)0.643 (4)0.019 (12)*
O15C0.3920 (2)0.6197 (2)0.4556 (2)0.0096 (5)
H150.376 (5)0.616 (5)0.395 (5)0.034 (15)*
O16B0.6638 (2)0.2882 (2)0.36714 (19)0.0110 (5)
O17B0.8278 (2)0.5773 (2)0.56733 (19)0.0113 (5)
O18B0.3755 (2)0.1934 (2)0.5151 (2)0.0116 (5)
O19T0.8822 (3)0.4581 (3)0.3615 (2)0.0179 (5)
O20T0.8741 (3)0.3335 (3)0.5323 (2)0.0187 (6)
O21T0.6089 (2)0.1094 (3)0.5064 (2)0.0165 (5)
O22T0.4583 (3)0.0957 (2)0.3159 (2)0.0157 (5)
O23T0.1361 (2)0.2368 (3)0.5654 (2)0.0155 (5)
O24T0.1681 (3)0.1718 (3)0.3527 (2)0.0176 (5)
O25W0.8716 (3)0.0732 (3)0.5305 (2)0.0206 (6)
H25A0.783 (3)0.069 (5)0.535 (4)0.031*
H25B0.891 (5)0.159 (3)0.530 (4)0.031*
O26W0.8483 (3)0.0653 (3)0.7784 (2)0.0235 (6)
H26A0.863 (5)0.051 (5)0.847 (3)0.035*
H26B0.827 (5)0.012 (3)0.735 (4)0.035*
O27W0.3568 (3)0.1168 (3)0.7134 (2)0.0261 (7)
H27A0.367 (6)0.113 (5)0.643 (2)0.039*
H27B0.337 (6)0.194 (3)0.739 (4)0.039*
O28W0.6802 (3)0.4221 (3)0.7521 (2)0.0208 (6)
H28A0.629 (4)0.464 (5)0.794 (4)0.031*
H28B0.669 (5)0.345 (3)0.770 (4)0.031*
O29W0.8747 (4)0.5437 (4)0.9821 (3)0.0390 (8)
H29A0.810 (5)0.479 (5)0.998 (5)0.059*
H29B0.851 (6)0.611 (5)0.948 (5)0.059*
O30W0.0221 (5)0.3490 (4)0.7849 (5)0.0640 (14)
H30A0.019 (9)0.333 (9)0.716 (4)0.096*
H30B0.022 (8)0.268 (4)0.786 (7)0.096*
O31W0.3602 (3)0.8223 (3)0.2192 (2)0.0206 (6)
H31A0.295 (4)0.868 (5)0.226 (4)0.031*
H31B0.432 (4)0.870 (4)0.261 (4)0.031*
O32W0.3044 (3)0.3645 (3)0.7732 (2)0.0245 (6)
H32A0.219 (3)0.366 (5)0.772 (4)0.037*
H32B0.346 (5)0.392 (5)0.839 (3)0.037*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cr10.0082 (3)0.0076 (4)0.0084 (3)0.0010 (3)0.0006 (3)0.0013 (3)
Cr20.0070 (3)0.0074 (4)0.0086 (3)0.0013 (3)0.0009 (3)0.0015 (3)
Mo10.01095 (14)0.01186 (15)0.01156 (14)0.00390 (11)0.00131 (11)0.00177 (11)
Mo20.00957 (14)0.01067 (15)0.01165 (14)0.00013 (11)0.00034 (10)0.00198 (11)
Mo30.01252 (14)0.00810 (15)0.01083 (14)0.00194 (11)0.00182 (11)0.00109 (11)
Mo40.00749 (13)0.00962 (15)0.01315 (14)0.00208 (10)0.00177 (10)0.00245 (11)
Mo50.00942 (14)0.00756 (14)0.01113 (14)0.00169 (10)0.00103 (10)0.00138 (10)
Mo60.00820 (14)0.00838 (15)0.01158 (14)0.00012 (10)0.00090 (10)0.00201 (11)
K10.0189 (4)0.0248 (4)0.0182 (4)0.0039 (3)0.0019 (3)0.0081 (3)
K20.0173 (4)0.0303 (5)0.0177 (4)0.0012 (3)0.0017 (3)0.0040 (3)
O1C0.0135 (12)0.0115 (12)0.0089 (12)0.0027 (9)0.0016 (9)0.0011 (10)
O2C0.0108 (11)0.0116 (12)0.0081 (11)0.0022 (9)0.0019 (9)0.0036 (9)
O3C0.0135 (12)0.0103 (12)0.0093 (11)0.0018 (9)0.0017 (9)0.0024 (9)
O4B0.0130 (12)0.0148 (13)0.0135 (12)0.0022 (10)0.0041 (9)0.0022 (10)
O5B0.0127 (12)0.0128 (12)0.0106 (11)0.0036 (9)0.0005 (9)0.0004 (9)
O6B0.0144 (12)0.0117 (12)0.0129 (12)0.0024 (10)0.0009 (9)0.0026 (9)
O7T0.0159 (13)0.0214 (15)0.0212 (14)0.0031 (11)0.0022 (10)0.0058 (11)
O8T0.0206 (14)0.0200 (14)0.0203 (13)0.0046 (11)0.0066 (11)0.0019 (11)
O9T0.0168 (13)0.0182 (14)0.0157 (13)0.0024 (11)0.0004 (10)0.0028 (10)
O10T0.0184 (13)0.0168 (14)0.0230 (14)0.0013 (11)0.0040 (11)0.0062 (11)
O11T0.0199 (13)0.0145 (13)0.0219 (13)0.0023 (11)0.0037 (11)0.0063 (11)
O12T0.0198 (13)0.0140 (13)0.0136 (12)0.0047 (10)0.0029 (10)0.0002 (10)
O13C0.0118 (12)0.0104 (12)0.0073 (12)0.0014 (9)0.0006 (9)0.0019 (9)
O14C0.0086 (11)0.0130 (12)0.0088 (11)0.0014 (9)0.0007 (9)0.0039 (9)
O15C0.0110 (11)0.0096 (12)0.0082 (11)0.0019 (9)0.0002 (9)0.0021 (9)
O16B0.0122 (11)0.0120 (12)0.0083 (11)0.0014 (9)0.0033 (9)0.0003 (9)
O17B0.0103 (11)0.0106 (12)0.0124 (11)0.0013 (9)0.0005 (9)0.0022 (9)
O18B0.0112 (11)0.0106 (12)0.0140 (12)0.0022 (9)0.0029 (9)0.0045 (9)
O19T0.0144 (12)0.0169 (14)0.0225 (14)0.0003 (10)0.0089 (10)0.0031 (11)
O20T0.0147 (13)0.0159 (14)0.0263 (14)0.0055 (10)0.0019 (11)0.0055 (11)
O21T0.0127 (12)0.0150 (13)0.0240 (14)0.0046 (10)0.0028 (10)0.0075 (11)
O22T0.0162 (12)0.0136 (13)0.0156 (12)0.0005 (10)0.0014 (10)0.0001 (10)
O23T0.0139 (12)0.0150 (13)0.0187 (13)0.0008 (10)0.0049 (10)0.0065 (10)
O24T0.0165 (13)0.0187 (14)0.0168 (13)0.0050 (11)0.0018 (10)0.0005 (10)
O25W0.0178 (13)0.0182 (14)0.0278 (15)0.0071 (11)0.0016 (11)0.0062 (12)
O26W0.0302 (16)0.0238 (16)0.0165 (13)0.0047 (13)0.0058 (12)0.0023 (12)
O27W0.0351 (17)0.0310 (17)0.0174 (14)0.0118 (14)0.0055 (12)0.0121 (13)
O28W0.0271 (15)0.0180 (14)0.0195 (14)0.0085 (12)0.0042 (11)0.0050 (11)
O29W0.040 (2)0.040 (2)0.043 (2)0.0083 (16)0.0114 (16)0.0201 (17)
O30W0.046 (3)0.038 (2)0.117 (4)0.015 (2)0.013 (3)0.030 (3)
O31W0.0258 (15)0.0192 (15)0.0157 (13)0.0010 (12)0.0010 (11)0.0034 (11)
O32W0.0257 (15)0.0305 (17)0.0152 (13)0.0007 (13)0.0019 (12)0.0036 (12)
Geometric parameters (Å, º) top
Cr1—O1Ci1.970 (2)Mo6—O18B1.964 (2)
Cr1—O1C1.970 (3)Mo6—O14C2.301 (2)
Cr1—O2C1.971 (2)Mo6—O13C2.307 (3)
Cr1—O2Ci1.971 (2)K1—O25Wiii2.722 (3)
Cr1—O3Ci1.975 (2)K1—O25Wiv2.778 (3)
Cr1—O3C1.975 (2)K1—O9T2.809 (3)
Cr2—O13Cii1.970 (2)K1—O7T2.825 (3)
Cr2—O13C1.970 (2)K1—O26Wiv2.844 (3)
Cr2—O15C1.972 (2)K1—O23T2.862 (3)
Cr2—O15Cii1.972 (2)K1—O24Tv2.950 (3)
Cr2—O14Cii1.976 (2)K1—O27W2.997 (3)
Cr2—O14C1.976 (2)K2—O29W2.767 (4)
Mo1—O8T1.696 (3)K2—O17B2.769 (3)
Mo1—O7T1.699 (3)K2—O19Tvi2.799 (3)
Mo1—O4B1.939 (3)K2—O8Tvii2.855 (3)
Mo1—O6Bi1.962 (3)K2—O28W2.858 (3)
Mo1—O1C2.299 (3)K2—O10Tviii2.891 (3)
Mo1—O2C2.321 (2)K2—O30Wix2.897 (4)
Mo2—O10T1.701 (3)K2—O9Tviii3.074 (3)
Mo2—O9T1.705 (3)O1C—H10.70 (6)
Mo2—O4B1.913 (3)O2C—H20.76 (6)
Mo2—O5B1.986 (2)O3C—H30.82 (6)
Mo2—O3C2.276 (2)O5B—O16Biii2.461 (3)
Mo2—O2C2.296 (3)O5B—H51.232 (7)
Mo3—O11T1.701 (3)O13C—H130.70 (5)
Mo3—O12T1.722 (3)O14C—H140.81 (5)
Mo3—O6B1.879 (2)O15C—H150.76 (6)
Mo3—O5B2.001 (2)O16B—H5iii1.231 (7)
Mo3—O3C2.233 (2)O25W—H25A0.92 (3)
Mo3—O1Ci2.321 (3)O25W—H25B0.93 (3)
Mo4—O19T1.698 (3)O26W—H26A0.91 (3)
Mo4—O20T1.702 (3)O26W—H26B0.91 (3)
Mo4—O17B1.916 (2)O27W—H27A0.90 (3)
Mo4—O16B1.992 (2)O27W—H27B0.91 (3)
Mo4—O15Cii2.275 (2)O28W—H28A0.91 (3)
Mo4—O14Cii2.306 (2)O28W—H28B0.90 (3)
Mo5—O21T1.703 (3)O29W—H29A0.95 (3)
Mo5—O22T1.715 (3)O29W—H29B0.96 (3)
Mo5—O18B1.894 (2)O30W—H30A0.92 (3)
Mo5—O16B1.998 (2)O30W—H30B0.93 (3)
Mo5—O15Cii2.264 (2)O31W—H31A0.90 (3)
Mo5—O13C2.301 (2)O31W—H31B0.92 (3)
Mo6—O23T1.700 (3)O32W—H32A0.89 (3)
Mo6—O24T1.703 (3)O32W—H32B0.89 (3)
Mo6—O17Bii1.919 (2)
O1Ci—Cr1—O1C180.00 (13)O23T—Mo6—O24T106.46 (13)
O1Ci—Cr1—O2C96.36 (11)O23T—Mo6—O17Bii102.39 (12)
O1C—Cr1—O2C83.64 (10)O24T—Mo6—O17Bii98.17 (12)
O1Ci—Cr1—O2Ci83.64 (10)O23T—Mo6—O18B95.85 (11)
O1C—Cr1—O2Ci96.36 (11)O24T—Mo6—O18B100.31 (12)
O2C—Cr1—O2Ci180.000 (1)O17Bii—Mo6—O18B149.10 (10)
O1Ci—Cr1—O3Ci96.40 (11)O23T—Mo6—O14C92.72 (11)
O1C—Cr1—O3Ci83.60 (11)O24T—Mo6—O14C160.17 (11)
O2C—Cr1—O3Ci96.11 (10)O17Bii—Mo6—O14C72.22 (9)
O2Ci—Cr1—O3Ci83.89 (10)O18B—Mo6—O14C82.29 (10)
O1Ci—Cr1—O3C83.60 (11)O23T—Mo6—O13C158.88 (11)
O1C—Cr1—O3C96.40 (11)O24T—Mo6—O13C92.55 (11)
O2C—Cr1—O3C83.89 (10)O17Bii—Mo6—O13C83.47 (10)
O2Ci—Cr1—O3C96.11 (10)O18B—Mo6—O13C71.21 (9)
O3Ci—Cr1—O3C180.0O14C—Mo6—O13C69.50 (9)
O13Cii—Cr2—O13C180.00 (11)O25Wiii—K1—O25Wiv76.62 (9)
O13Cii—Cr2—O15C83.38 (10)O25Wiii—K1—O9T103.15 (9)
O13C—Cr2—O15C96.62 (10)O25Wiv—K1—O9T139.32 (9)
O13Cii—Cr2—O15Cii96.62 (10)O25Wiii—K1—O7T153.61 (9)
O13C—Cr2—O15Cii83.38 (10)O25Wiv—K1—O7T123.85 (9)
O15C—Cr2—O15Cii180.00 (14)O9T—K1—O7T72.86 (8)
O13Cii—Cr2—O14Cii83.45 (11)O25Wiii—K1—O26Wiv140.01 (9)
O13C—Cr2—O14Cii96.55 (10)O25Wiv—K1—O26Wiv68.70 (9)
O15C—Cr2—O14Cii96.19 (10)O9T—K1—O26Wiv91.09 (9)
O15Cii—Cr2—O14Cii83.81 (10)O7T—K1—O26Wiv66.28 (8)
O13Cii—Cr2—O14C96.55 (10)O25Wiii—K1—O23T74.25 (8)
O13C—Cr2—O14C83.45 (11)O25Wiv—K1—O23T64.14 (8)
O15C—Cr2—O14C83.81 (10)O9T—K1—O23T156.00 (8)
O15Cii—Cr2—O14C96.19 (10)O7T—K1—O23T98.65 (8)
O14Cii—Cr2—O14C180.000 (1)O26Wiv—K1—O23T106.24 (9)
O8T—Mo1—O7T106.84 (14)O25Wiii—K1—O24Tv91.73 (9)
O8T—Mo1—O4B99.43 (12)O25Wiv—K1—O24Tv68.54 (8)
O7T—Mo1—O4B100.45 (12)O9T—K1—O24Tv70.82 (8)
O8T—Mo1—O6Bi101.16 (12)O7T—K1—O24Tv110.61 (8)
O7T—Mo1—O6Bi96.54 (12)O26Wiv—K1—O24Tv57.72 (8)
O4B—Mo1—O6Bi148.14 (11)O23T—K1—O24Tv132.52 (8)
O8T—Mo1—O1C91.58 (12)O25Wiii—K1—O27W83.91 (9)
O7T—Mo1—O1C160.03 (12)O25Wiv—K1—O27W134.40 (9)
O4B—Mo1—O1C83.63 (10)O9T—K1—O27W84.97 (8)
O6Bi—Mo1—O1C71.79 (10)O7T—K1—O27W69.83 (8)
O8T—Mo1—O2C159.33 (12)O26Wiv—K1—O27W135.05 (9)
O7T—Mo1—O2C93.25 (12)O23T—K1—O27W71.05 (8)
O4B—Mo1—O2C71.53 (10)O24Tv—K1—O27W153.77 (8)
O6Bi—Mo1—O2C80.83 (10)O29W—K2—O17B146.30 (10)
O1C—Mo1—O2C69.32 (9)O29W—K2—O19Tvi137.95 (10)
O10T—Mo2—O9T105.54 (13)O17B—K2—O19Tvi70.05 (8)
O10T—Mo2—O4B98.88 (12)O29W—K2—O8Tvii67.52 (10)
O9T—Mo2—O4B104.05 (12)O17B—K2—O8Tvii102.90 (8)
O10T—Mo2—O5B98.79 (12)O19Tvi—K2—O8Tvii140.83 (9)
O9T—Mo2—O5B95.15 (11)O29W—K2—O28W73.32 (10)
O4B—Mo2—O5B149.26 (11)O17B—K2—O28W74.70 (8)
O10T—Mo2—O3C93.09 (11)O19Tvi—K2—O28W121.69 (9)
O9T—Mo2—O3C157.67 (11)O8Tvii—K2—O28W91.06 (9)
O4B—Mo2—O3C84.69 (10)O29W—K2—O10Tviii63.77 (10)
O5B—Mo2—O3C69.42 (9)O17B—K2—O10Tviii147.47 (8)
O10T—Mo2—O2C161.78 (11)O19Tvi—K2—O10Tviii91.15 (8)
O9T—Mo2—O2C92.28 (11)O8Tvii—K2—O10Tviii74.69 (8)
O4B—Mo2—O2C72.55 (10)O28W—K2—O10Tviii137.05 (8)
O5B—Mo2—O2C83.06 (10)O29W—K2—O30Wix79.00 (15)
O3C—Mo2—O2C70.46 (9)O17B—K2—O30Wix107.05 (14)
O11T—Mo3—O12T106.13 (13)O19Tvi—K2—O30Wix66.13 (12)
O11T—Mo3—O6B100.61 (12)O8Tvii—K2—O30Wix146.33 (14)
O12T—Mo3—O6B102.43 (12)O28W—K2—O30Wix82.43 (11)
O11T—Mo3—O5B100.44 (12)O10Tviii—K2—O30Wix87.75 (13)
O12T—Mo3—O5B92.82 (11)O29W—K2—O9Tviii110.89 (10)
O6B—Mo3—O5B149.33 (11)O17B—K2—O9Tviii94.26 (7)
O11T—Mo3—O3C92.56 (11)O19Tvi—K2—O9Tviii72.19 (8)
O12T—Mo3—O3C156.92 (11)O8Tvii—K2—O9Tviii69.98 (8)
O6B—Mo3—O3C86.90 (10)O28W—K2—O9Tviii155.67 (8)
O5B—Mo3—O3C70.11 (9)O10Tviii—K2—O9Tviii53.95 (7)
O11T—Mo3—O1Ci161.82 (11)O30Wix—K2—O9Tviii121.81 (11)
O12T—Mo3—O1Ci91.92 (11)Cr1—O1C—Mo1103.93 (11)
O6B—Mo3—O1Ci72.66 (10)Cr1—O1C—Mo3i101.37 (11)
O5B—Mo3—O1Ci80.47 (10)Mo1—O1C—Mo3i91.53 (9)
O3C—Mo3—O1Ci70.51 (9)Cr1—O2C—Mo2102.54 (11)
O19T—Mo4—O20T106.50 (14)Cr1—O2C—Mo1103.10 (10)
O19T—Mo4—O17B104.09 (12)Mo2—O2C—Mo192.00 (9)
O20T—Mo4—O17B98.21 (12)Cr1—O3C—Mo3104.32 (11)
O19T—Mo4—O16B94.09 (12)Cr1—O3C—Mo2103.08 (11)
O20T—Mo4—O16B99.92 (12)Mo3—O3C—Mo297.93 (10)
O17B—Mo4—O16B149.41 (10)Mo2—O4B—Mo1119.12 (13)
O19T—Mo4—O15Cii156.61 (11)Mo2—O5B—Mo3117.13 (12)
O20T—Mo4—O15Cii93.29 (11)Mo2—O5B—O16Biii121.72 (12)
O17B—Mo4—O15Cii84.78 (10)Mo3—O5B—O16Biii121.01 (12)
O16B—Mo4—O15Cii69.81 (9)Mo3—O6B—Mo1i118.98 (13)
O19T—Mo4—O14Cii91.56 (11)Cr2—O13C—Mo5102.58 (10)
O20T—Mo4—O14Cii161.32 (12)Cr2—O13C—Mo6103.49 (11)
O17B—Mo4—O14Cii72.15 (9)Mo5—O13C—Mo692.48 (9)
O16B—Mo4—O14Cii83.13 (9)Cr2—O14C—Mo6103.53 (11)
O15Cii—Mo4—O14Cii70.30 (9)Cr2—O14C—Mo4ii102.33 (10)
O21T—Mo5—O22T106.65 (13)Mo6—O14C—Mo4ii91.61 (8)
O21T—Mo5—O18B99.32 (12)Cr2—O15C—Mo5ii103.82 (10)
O22T—Mo5—O18B102.90 (12)Cr2—O15C—Mo4ii103.53 (10)
O21T—Mo5—O16B100.17 (11)Mo5ii—O15C—Mo4ii97.60 (9)
O22T—Mo5—O16B93.06 (11)Mo4—O16B—Mo5117.72 (11)
O18B—Mo5—O16B150.02 (10)Mo4—O17B—Mo6ii118.91 (12)
O21T—Mo5—O15Cii93.02 (11)Mo5—O18B—Mo6119.24 (12)
O22T—Mo5—O15Cii156.22 (11)H25A—O25W—H25B96 (5)
O18B—Mo5—O15Cii86.51 (10)H26A—O26W—H26B107 (5)
O16B—Mo5—O15Cii69.93 (9)H27A—O27W—H27B108 (5)
O21T—Mo5—O13C161.33 (11)H28A—O28W—H28B104 (5)
O22T—Mo5—O13C91.69 (11)H29A—O29W—H29B121 (6)
O18B—Mo5—O13C72.50 (10)H30A—O30W—H30B83 (7)
O16B—Mo5—O13C81.93 (10)H31A—O31W—H31B107 (5)
O15Cii—Mo5—O13C70.11 (9)H32A—O32W—H32B112 (5)
Symmetry codes: (i) x+1, y, z+2; (ii) x+1, y+1, z+1; (iii) x+1, y, z+1; (iv) x1, y, z; (v) x, y, z+1; (vi) x+2, y+1, z+1; (vii) x+1, y+1, z+2; (viii) x+1, y+1, z; (ix) x+1, y, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1C—H1···O22Tx0.70 (6)2.11 (6)2.789 (4)164 (6)
O2C—H2···O27W0.76 (6)2.01 (6)2.753 (4)166 (6)
O3C—H3···O31Wxi0.82 (6)1.79 (6)2.604 (4)176 (6)
O5B—H5···O16Biii1.23 (1)1.23 (1)2.461 (3)175 (5)
O13C—H13···O12Tiii0.70 (5)2.05 (5)2.734 (4)167 (5)
O14C—H14···O32W0.81 (5)2.01 (5)2.776 (4)158 (5)
O15C—H15···O28Wii0.76 (6)1.87 (6)2.619 (4)170 (6)
O25W—H25A···O21T0.92 (3)1.96 (3)2.838 (4)157 (5)
O25W—H25B···O20T0.93 (3)1.92 (3)2.819 (4)162 (5)
O26W—H26A···O4Bi0.91 (3)1.89 (3)2.748 (4)158 (5)
O26W—H26B···O24Tiii0.91 (3)1.91 (3)2.798 (4)164 (5)
O27W—H27A···O18B0.90 (3)1.95 (4)2.775 (4)151 (5)
O27W—H27B···O32W0.91 (3)1.92 (3)2.825 (5)171 (5)
O28W—H28A···O12Txii0.91 (3)2.00 (4)2.785 (4)144 (5)
O28W—H28B···O31Wii0.90 (3)1.82 (3)2.706 (4)170 (5)
O29W—H29A···O11Ti0.95 (3)2.11 (4)2.949 (5)146 (6)
O29W—H29B···O8Tvii0.96 (3)2.18 (3)3.126 (5)169 (6)
O31W—H31A···O26Wii0.90 (3)1.77 (3)2.665 (4)170 (5)
O31W—H31B···O27Wii0.92 (3)2.18 (4)2.952 (4)141 (4)
O32W—H32A···O30W0.89 (3)2.06 (3)2.947 (6)171 (5)
O32W—H32B···O6Bi0.89 (3)2.39 (5)3.000 (4)126 (5)
Symmetry codes: (i) x+1, y, z+2; (ii) x+1, y+1, z+1; (iii) x+1, y, z+1; (vii) x+1, y+1, z+2; (x) x, y, z+1; (xi) x, y1, z+1; (xii) x, y+1, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1C—H1···O22Ti0.70 (6)2.11 (6)2.789 (4)164 (6)
O2C—H2···O27W0.76 (6)2.01 (6)2.753 (4)166 (6)
O3C—H3···O31Wii0.82 (6)1.79 (6)2.604 (4)176 (6)
O5B—H5···O16Biii1.232 (7)1.232 (7)2.461 (3)175 (5)
O13C—H13···O12Tiii0.70 (5)2.05 (5)2.734 (4)167 (5)
O14C—H14···O32W0.81 (5)2.01 (5)2.776 (4)158 (5)
O15C—H15···O28Wiv0.76 (6)1.87 (6)2.619 (4)170 (6)
O25W—H25A···O21T0.92 (3)1.96 (3)2.838 (4)157 (5)
O25W—H25B···O20T0.93 (3)1.92 (3)2.819 (4)162 (5)
O26W—H26A···O4Bv0.91 (3)1.89 (3)2.748 (4)158 (5)
O26W—H26B···O24Tiii0.91 (3)1.91 (3)2.798 (4)164 (5)
O27W—H27A···O18B0.90 (3)1.95 (4)2.775 (4)151 (5)
O27W—H27B···O32W0.91 (3)1.92 (3)2.825 (5)171 (5)
O28W—H28A···O12Tvi0.91 (3)2.00 (4)2.785 (4)144 (5)
O28W—H28B···O31Wiv0.90 (3)1.82 (3)2.706 (4)170 (5)
O29W—H29A···O11Tv0.95 (3)2.11 (4)2.949 (5)146 (6)
O29W—H29B···O8Tvii0.96 (3)2.18 (3)3.126 (5)169 (6)
O31W—H31A···O26Wiv0.90 (3)1.77 (3)2.665 (4)170 (5)
O31W—H31B···O27Wiv0.92 (3)2.18 (4)2.952 (4)141 (4)
O32W—H32A···O30W0.89 (3)2.06 (3)2.947 (6)171 (5)
O32W—H32B···O6Bv0.89 (3)2.39 (5)3.000 (4)126 (5)
Symmetry codes: (i) x, y, z+1; (ii) x, y1, z+1; (iii) x+1, y, z+1; (iv) x+1, y+1, z+1; (v) x+1, y, z+2; (vi) x, y+1, z; (vii) x+1, y+1, z+2.

Experimental details

Crystal data
Chemical formulaK2[H7CrMo6O24]·8H2O
Mr1241.02
Crystal system, space groupTriclinic, P1
Temperature (K)446
a, b, c (Å)10.4588 (2), 10.8553 (2), 12.6287 (3)
α, β, γ (°)99.296 (1), 94.469 (1), 99.283 (1)
V3)1388.44 (5)
Z2
Radiation typeMo Kα
µ (mm1)3.42
Crystal size (mm)0.18 × 0.11 × 0.09
Data collection
DiffractometerBruker SMART APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2008)
Tmin, Tmax0.645, 0.746
No. of measured, independent and
observed [I > 2σ(I)] reflections
23489, 6028, 5893
Rint0.025
(sin θ/λ)max1)0.639
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.024, 0.064, 1.11
No. of reflections6028
No. of parameters450
No. of restraints17
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)1.58, 0.67

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 2012), PLATON (Spek, 2009) and DIAMOND (Brandenburg, 1998).

 

Acknowledgements

This is part of work supported by the Pukyong National University Research Fund in 2011 (C-D-2011-0829). The X-ray centre of the Gyeongsang National University is acknowledged for providing access to the single-crystal diffractometer.

References

First citationAnderson, J. S. (1937). Nature (London), 140, 850.  CrossRef Google Scholar
First citationBrandenburg, K. (1998). DIAMOND. Crystal Impact GbR. Bonn, Germany.  Google Scholar
First citationBrese, N. E. & O'Keeffe, M. (1991). Acta Cryst. B47, 192–197.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationBrown, I. D. (2001). In The Chemical Bond in Inorganic Chemistry. Oxford Science Publications.  Google Scholar
First citationBrown, I. D. & Altermatt, D. (1985). Acta Cryst. B41, 244–247.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationBruker (2009). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationLee, U. (2007). Acta Cryst. E63, i5–i7.  Google Scholar
First citationLee, U., Joo, H.-C. & Park, K.-M. (2010). Acta Cryst. E66, i25.  Web of Science CrossRef IUCr Journals Google Scholar
First citationPerloff, A. (1970). Inorg. Chem. 9, 2228–2239.  CrossRef CAS Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTsigdinos, G. A. (1978). Top. Curr. Chem. 76, 36–40.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 71| Part 2| February 2015| Pages 157-160
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds