metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 71| Part 2| February 2015| Pages m44-m45

Crystal structure of bis­­[μ-meth­­oxy(pyridin-2-yl)methano­lato-κ3N,O:O]bis­[chlorido­copper(II)]

aDepartment of Chemistry, Faculty of Science, Naresuan University, Mueang, Phitsanulok 65000, Thailand, and bDepartment of Physics, Faculty of Science and Technology, Thammasat University, Khlong Luang, Pathum Thani 12120, Thailand
*Correspondence e-mail: kc@tu.ac.th

Edited by A. M. Chippindale, University of Reading, England (Received 4 January 2015; accepted 21 January 2015; online 31 January 2015)

The racemic title compound, [Cu2(C7H8NO2)2Cl2], is composed of dinuclear mol­ecules in which meth­oxy(pyridin-2-yl)methano­late ligands bridge two symmetry-related CuII ions. Each CuII ion is coordinated in a square-planar geometry by one Cl atom, the N and O atoms of the bidentate ligand and the bridging O atom of the centrosymmetrically related bidentate ligand. The separation between the two CuII atoms is 3.005 (1) Å. In the crystal, non-classical C—H⋯O hydrogen bonds, weak ππ stacking [centroid–centroid distance = 4.073 (1) Å] and weak electrostatic Cu⋯Cl inter­actions [3.023 (1) Å] link the dinuclear mol­ecules into chains running parallel to the b axis. These chains are further connected by weak C—H⋯Cl hydrogen bonds directed approximately along the a axis, forming a three-dimensional supra­molecular network.

1. Related literature

For related structures and applications of transition metal compounds with the meth­oxy-2-pyridyl­methano­late ligand, see: Pijper et al. (2010[Pijper, D., Saisaha, P., de Boer, J. W., Hoen, R., Smit, C., Meetsma, A., Hage, R., van Summeren, R. P., Alsters, P. L., Feringa, B. L. & Browne, W. R. (2010). Dalton Trans. 39, 10375-10381.]); Mondal et al. (2009[Mondal, K. C., Sengupta, O. & Mukherjee, P. S. (2009). Inorg. Chem. Commun. 12, 682-685.]); Drew et al. (2008[Drew, M. G. B., Nag, S., Pal, P. K. & Datta, D. (2008). Inorg. Chim. Acta, 361, 2562-2567.]); Wang et al. (2003[Wang, W., Spingler, B. & Alberto, R. (2003). Inorg. Chim. Acta, 355, 386-393.]); Guidote et al. (2001[Guidote, A. M. Jr, Ando, K., Kurusu, Y., Nagao, H. & Masuyama, Y. (2001). Inorg. Chim. Acta, 314, 27-36.]).

[Scheme 1]

2. Experimental

2.1. Crystal data

  • [Cu2(C7H8NO2)2Cl2]

  • Mr = 474.29

  • Monoclinic, P 21 /n

  • a = 10.5568 (14) Å

  • b = 4.0728 (6) Å

  • c = 19.257 (3) Å

  • β = 95.280 (3)°

  • V = 824.5 (2) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 2.92 mm−1

  • T = 298 K

  • 0.16 × 0.10 × 0.06 mm

2.2. Data collection

  • Bruker D8 QUEST CMOS diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2014[Bruker (2014). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.645, Tmax = 0.745

  • 7703 measured reflections

  • 1485 independent reflections

  • 1030 reflections with I > 2σ(I)

  • Rint = 0.091

2.3. Refinement

  • R[F2 > 2σ(F2)] = 0.045

  • wR(F2) = 0.108

  • S = 1.04

  • 1485 reflections

  • 110 parameters

  • H-atom parameters constrained

  • Δρmax = 0.52 e Å−3

  • Δρmin = −0.42 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C2—H2⋯Cl1i 0.93 2.90 3.756 (6) 154
C3—H3⋯O2ii 0.93 2.65 3.517 (7) 156
C6—H6⋯O2iii 0.98 2.59 3.548 (8) 165
Symmetry codes: (i) -x, -y, -z+1; (ii) [-x+{\script{1\over 2}}, y+{\script{1\over 2}}, -z+{\script{3\over 2}}]; (iii) x, y+1, z.

Data collection: APEX2 (Bruker, 2014[Bruker (2014). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2014[Bruker (2014). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and DIAMOND (Brandenburg, 2006[Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]), enCIFer (Allen et al., 2004[Allen, F. H., Johnson, O., Shields, G. P., Smith, B. R. & Towler, M. (2004). J. Appl. Cryst. 37, 335-338.]) and OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]).

Supporting information


Synthesis and crystallization top

The title compound was obtained unexpectedly from the reaction of copper(I) chloride and 4-iodo-N-(2-pyridyl­methyl­ene)aniline in a mixed solvent of aceto­nitrile and di­chloro­methane. Typically, a solution of 4-iodo-N-(2-pyridyl­methyl­ene)aniline (61.6 mg, 0.2 mmol) in dry di­chloro­methane (2 ml) was placed in a test tube. A mixture of aceto­nitrile and di­chloro­methane solution (6 ml, 1:1, v/v) was carefully added on the top. A solution of CuCl (19.8 mg, 0.2 mmol) in dry aceto­nitrile (2 ml) was then carefully layered on the top of the aceto­nitrile/di­chloro­methane mixed solution. After slow diffusion at room temperature for 2 days, pale-green plate shaped crystals of the title compound were obtained.

Refinement top

All H atoms were positioned geometrically and allowed to ride on their parent atoms, with d(C—H) = 0.93 Å for aromatic CH groups, 0.96 Å for non-aromatic CH groups and 0.98 Å for CH3 groups. The Uiso were constrained to be 1.5Ueq of the carrier atom for methy H atoms and 1.2Ueq for the remaining H atoms.

Related literature top

For related structures and applications of transition metal compounds with the methoxy-2-pyridylmethanolate ligand, see: Pijper et al. (2010); Mondal et al. (2009); Drew et al. (2008); Wang et al. (2003); Guidote et al. (2001).

Computing details top

Data collection: APEX2 (Bruker, 2014); cell refinement: SAINT (Bruker, 2014); data reduction: SAINT (Bruker, 2014); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL97 (Sheldrick, 2015b); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and DIAMOND (Brandenburg, 2006); software used to prepare material for publication: publCIF (Westrip, 2010), enCIFer (Allen et al., 2004) and OLEX2 (Dolomanov et al., 2009).

Figures top
[Figure 1] Fig. 1. A view of the dinuclear molecule of the title compound, showing the atom labelling. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 2] Fig. 2. Partial packing diagram of the title compound showing a molecular one-dimensional chain running parallel to the b axis assembled from dinuclear molecules linked together through non-classical C—H···O hydrogen bonds, weak π-π stacking and weak electrostatic Cu···Cl interactions (dashed lines). Hydrogen atoms not involved in the hydrogen bonding interactions are omitted for clarity.
[Figure 3] Fig. 3. A view of the weak C—H···Cl hydrogen bonding network between adjacent dinuclear molecules in the title compound which serve to connect the chains into a three-dimensional architecture.
Bis[µ-methoxy(pyridin-2-yl)methanolato-κ3N,O:O]bis[chloridocopper(II)] top
Crystal data top
[Cu2(C7H8NO2)2Cl2]F(000) = 476
Mr = 474.29Dx = 1.910 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 10.5568 (14) ÅCell parameters from 546 reflections
b = 4.0728 (6) Åθ = 3.6–25.4°
c = 19.257 (3) ŵ = 2.92 mm1
β = 95.280 (3)°T = 298 K
V = 824.5 (2) Å3Plate, pale-green
Z = 20.16 × 0.10 × 0.06 mm
Data collection top
Bruker D8 QUEST CMOS
diffractometer
1485 independent reflections
Radiation source: fine-focus sealed tube1030 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.091
Detector resolution: 0 pixels mm-1θmax = 25.4°, θmin = 3.6°
ϕ and ω scansh = 1212
Absorption correction: multi-scan
(SADABS; Bruker, 2014)
k = 44
Tmin = 0.645, Tmax = 0.745l = 2323
7703 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.045Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.108H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0544P)2 + 0.5475P]
where P = (Fo2 + 2Fc2)/3
1485 reflections(Δ/σ)max = 0.001
110 parametersΔρmax = 0.52 e Å3
0 restraintsΔρmin = 0.42 e Å3
0 constraints
Crystal data top
[Cu2(C7H8NO2)2Cl2]V = 824.5 (2) Å3
Mr = 474.29Z = 2
Monoclinic, P21/nMo Kα radiation
a = 10.5568 (14) ŵ = 2.92 mm1
b = 4.0728 (6) ÅT = 298 K
c = 19.257 (3) Å0.16 × 0.10 × 0.06 mm
β = 95.280 (3)°
Data collection top
Bruker D8 QUEST CMOS
diffractometer
1485 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2014)
1030 reflections with I > 2σ(I)
Tmin = 0.645, Tmax = 0.745Rint = 0.091
7703 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0450 restraints
wR(F2) = 0.108H-atom parameters constrained
S = 1.04Δρmax = 0.52 e Å3
1485 reflectionsΔρmin = 0.42 e Å3
110 parameters
Special details top

Experimental. SADABS-2014/4 (Bruker,2014/4) was used for absorption correction. wR2(int) was 0.0681 before and 0.0535 after correction. The Ratio of minimum to maximum transmission is 0.8650. The λ/2 correction factor is 0.00150.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against all reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu10.36725 (5)0.3633 (2)0.49239 (3)0.0376 (3)
Cl10.25368 (12)0.0100 (4)0.42980 (7)0.0431 (4)
O10.4853 (3)0.5904 (12)0.55882 (18)0.0542 (13)
O20.4934 (3)0.5112 (11)0.6792 (2)0.0491 (11)
N10.2501 (3)0.4522 (11)0.5649 (2)0.0301 (11)
C10.1248 (4)0.3804 (15)0.5620 (3)0.0371 (14)
H10.08860.25580.52480.044*
C20.0492 (5)0.4839 (17)0.6114 (3)0.0486 (17)
H20.03680.42990.60800.058*
C30.1015 (5)0.6680 (17)0.6662 (3)0.0470 (16)
H30.05150.74280.70030.056*
C40.2300 (5)0.7412 (15)0.6700 (3)0.0399 (14)
H40.26770.86580.70670.048*
C50.3014 (4)0.6271 (14)0.6186 (2)0.0304 (12)
C60.4438 (4)0.6921 (15)0.6201 (3)0.0336 (13)
H60.46130.92670.62720.040*
C70.6176 (5)0.6071 (19)0.7070 (3)0.0587 (19)
H7A0.67920.52370.67790.088*
H7B0.63440.52000.75320.088*
H7C0.62270.84240.70860.088*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.0240 (3)0.0552 (5)0.0340 (4)0.0123 (3)0.0041 (2)0.0096 (4)
Cl10.0392 (7)0.0395 (9)0.0504 (9)0.0114 (7)0.0034 (6)0.0065 (7)
O10.0265 (18)0.099 (4)0.038 (2)0.020 (2)0.0092 (16)0.025 (2)
O20.037 (2)0.051 (3)0.057 (3)0.0029 (19)0.0100 (18)0.010 (2)
N10.026 (2)0.032 (3)0.032 (2)0.0024 (19)0.0013 (18)0.006 (2)
C10.025 (2)0.044 (4)0.041 (3)0.002 (3)0.000 (2)0.007 (3)
C20.024 (3)0.060 (4)0.063 (4)0.003 (3)0.013 (3)0.014 (4)
C30.042 (3)0.050 (4)0.052 (4)0.013 (3)0.020 (3)0.008 (4)
C40.045 (3)0.033 (4)0.043 (3)0.003 (3)0.010 (3)0.001 (3)
C50.030 (2)0.028 (3)0.033 (3)0.000 (2)0.001 (2)0.011 (3)
C60.028 (2)0.038 (4)0.034 (3)0.002 (2)0.000 (2)0.002 (3)
C70.042 (3)0.073 (5)0.058 (4)0.011 (3)0.009 (3)0.013 (4)
Geometric parameters (Å, º) top
Cu1—Cu1i3.0051 (12)C1—C21.365 (7)
Cu1—Cl12.2215 (15)C2—H20.9300
Cu1—O1i1.927 (3)C2—C31.368 (8)
Cu1—O11.937 (4)C3—H30.9300
Cu1—N11.982 (4)C3—C41.385 (7)
O1—Cu1i1.927 (3)C4—H40.9300
O1—C61.361 (6)C4—C51.378 (7)
O2—C61.415 (6)C5—C61.524 (6)
O2—C71.424 (6)C6—H60.9800
N1—C11.351 (6)C7—H7A0.9600
N1—C51.330 (6)C7—H7B0.9600
C1—H10.9300C7—H7C0.9600
Cl1—Cu1—Cu1i139.33 (5)C3—C2—H2120.4
O1—Cu1—Cu1i38.82 (10)C2—C3—H3120.6
O1i—Cu1—Cu1i39.07 (11)C2—C3—C4118.8 (5)
O1i—Cu1—Cl1102.14 (12)C4—C3—H3120.6
O1—Cu1—Cl1165.33 (16)C3—C4—H4120.4
O1i—Cu1—O177.89 (16)C5—C4—C3119.2 (5)
O1—Cu1—N181.54 (15)C5—C4—H4120.4
O1i—Cu1—N1158.20 (18)N1—C5—C4121.9 (5)
N1—Cu1—Cu1i120.03 (12)N1—C5—C6116.0 (4)
N1—Cu1—Cl199.59 (13)C4—C5—C6122.1 (5)
Cu1i—O1—Cu1102.11 (16)O1—C6—O2114.5 (5)
C6—O1—Cu1118.6 (3)O1—C6—C5109.0 (4)
C6—O1—Cu1i138.9 (3)O1—C6—H6110.2
C6—O2—C7114.8 (4)O2—C6—C5102.5 (4)
C1—N1—Cu1127.1 (4)O2—C6—H6110.2
C5—N1—Cu1114.2 (3)C5—C6—H6110.2
C5—N1—C1118.4 (4)O2—C7—H7A109.5
N1—C1—H1118.7O2—C7—H7B109.5
N1—C1—C2122.5 (5)O2—C7—H7C109.5
C2—C1—H1118.7H7A—C7—H7B109.5
C1—C2—H2120.4H7A—C7—H7C109.5
C1—C2—C3119.1 (5)H7B—C7—H7C109.5
Cu1—O1—C6—O2108.4 (4)C1—N1—C5—C6178.4 (5)
Cu1i—O1—C6—O279.8 (7)C1—C2—C3—C40.6 (9)
Cu1—O1—C6—C55.7 (6)C2—C3—C4—C50.0 (9)
Cu1i—O1—C6—C5166.1 (4)C3—C4—C5—N11.0 (8)
Cu1—N1—C1—C2172.6 (4)C3—C4—C5—C6178.8 (5)
Cu1—N1—C5—C4172.9 (4)C4—C5—C6—O1171.8 (5)
Cu1—N1—C5—C67.4 (6)C4—C5—C6—O266.5 (7)
N1—C1—C2—C30.2 (9)C5—N1—C1—C20.8 (8)
N1—C5—C6—O18.4 (7)C7—O2—C6—O181.5 (6)
N1—C5—C6—O2113.2 (5)C7—O2—C6—C5160.6 (5)
C1—N1—C5—C41.4 (8)
Symmetry code: (i) x+1, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C2—H2···Cl1ii0.932.903.756 (6)154
C3—H3···O2iii0.932.653.517 (7)156
C6—H6···O2iv0.982.593.548 (8)165
Symmetry codes: (ii) x, y, z+1; (iii) x+1/2, y+1/2, z+3/2; (iv) x, y+1, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C2—H2···Cl1i0.932.903.756 (6)154.3
C3—H3···O2ii0.932.653.517 (7)155.9
C6—H6···O2iii0.982.593.548 (8)164.7
Symmetry codes: (i) x, y, z+1; (ii) x+1/2, y+1/2, z+3/2; (iii) x, y+1, z.
 

Acknowledgements

This research was financially supported by research career development grant (No. RSA5780056) from the Thailand Research Fund.

References

First citationAllen, F. H., Johnson, O., Shields, G. P., Smith, B. R. & Towler, M. (2004). J. Appl. Cryst. 37, 335–338.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationBrandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2014). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationDrew, M. G. B., Nag, S., Pal, P. K. & Datta, D. (2008). Inorg. Chim. Acta, 361, 2562–2567.  Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGuidote, A. M. Jr, Ando, K., Kurusu, Y., Nagao, H. & Masuyama, Y. (2001). Inorg. Chim. Acta, 314, 27–36.  Google Scholar
First citationMondal, K. C., Sengupta, O. & Mukherjee, P. S. (2009). Inorg. Chem. Commun. 12, 682–685.  Google Scholar
First citationPijper, D., Saisaha, P., de Boer, J. W., Hoen, R., Smit, C., Meetsma, A., Hage, R., van Summeren, R. P., Alsters, P. L., Feringa, B. L. & Browne, W. R. (2010). Dalton Trans. 39, 10375–10381.  Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationWang, W., Spingler, B. & Alberto, R. (2003). Inorg. Chim. Acta, 355, 386–393.  Web of Science CSD CrossRef CAS Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 71| Part 2| February 2015| Pages m44-m45
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds