metal-organic compounds
μ-methoxy(pyridin-2-yl)methanolato-κ3N,O:O]bis[chloridocopper(II)]
of bis[aDepartment of Chemistry, Faculty of Science, Naresuan University, Mueang, Phitsanulok 65000, Thailand, and bDepartment of Physics, Faculty of Science and Technology, Thammasat University, Khlong Luang, Pathum Thani 12120, Thailand
*Correspondence e-mail: kc@tu.ac.th
The racemic title compound, [Cu2(C7H8NO2)2Cl2], is composed of dinuclear molecules in which methoxy(pyridin-2-yl)methanolate ligands bridge two symmetry-related CuII ions. Each CuII ion is coordinated in a square-planar geometry by one Cl atom, the N and O atoms of the bidentate ligand and the bridging O atom of the centrosymmetrically related bidentate ligand. The separation between the two CuII atoms is 3.005 (1) Å. In the crystal, non-classical C—H⋯O hydrogen bonds, weak π–π stacking [centroid–centroid distance = 4.073 (1) Å] and weak electrostatic Cu⋯Cl interactions [3.023 (1) Å] link the dinuclear molecules into chains running parallel to the b axis. These chains are further connected by weak C—H⋯Cl hydrogen bonds directed approximately along the a axis, forming a three-dimensional supramolecular network.
Keywords: crystal structure; hydrogen bonds; copper(II); Cu⋯Cl interaction; π–π stacking.
CCDC reference: 1044740
1. Related literature
For related structures and applications of transition metal compounds with the methoxy-2-pyridylmethanolate ligand, see: Pijper et al. (2010); Mondal et al. (2009); Drew et al. (2008); Wang et al. (2003); Guidote et al. (2001).
2. Experimental
2.1. Crystal data
|
2.3. Refinement
|
|
Data collection: APEX2 (Bruker, 2014); cell SAINT (Bruker, 2014); data reduction: SAINT; program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL97 (Sheldrick, 2015b); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and DIAMOND (Brandenburg, 2006); software used to prepare material for publication: publCIF (Westrip, 2010), enCIFer (Allen et al., 2004) and OLEX2 (Dolomanov et al., 2009).
Supporting information
CCDC reference: 1044740
10.1107/S2056989015001310/cq2013sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: 10.1107/S2056989015001310/cq2013Isup2.hkl
Supporting information file. DOI: 10.1107/S2056989015001310/cq2013Isup3.cdx
The title compound was obtained unexpectedly from the reaction of copper(I) chloride and 4-iodo-N-(2-pyridylmethylene)aniline in a mixed solvent of acetonitrile and dichloromethane. Typically, a solution of 4-iodo-N-(2-pyridylmethylene)aniline (61.6 mg, 0.2 mmol) in dry dichloromethane (2 ml) was placed in a test tube. A mixture of acetonitrile and dichloromethane solution (6 ml, 1:1, v/v) was carefully added on the top. A solution of CuCl (19.8 mg, 0.2 mmol) in dry acetonitrile (2 ml) was then carefully layered on the top of the acetonitrile/dichloromethane mixed solution. After slow diffusion at room temperature for 2 days, pale-green plate shaped crystals of the title compound were obtained.
All H atoms were positioned geometrically and allowed to ride on their parent atoms, with d(C—H) = 0.93 Å for aromatic CH groups, 0.96 Å for non-aromatic CH groups and 0.98 Å for CH3 groups. The Uiso were constrained to be 1.5Ueq of the
for methy H atoms and 1.2Ueq for the remaining H atoms.Data collection: APEX2 (Bruker, 2014); cell
SAINT (Bruker, 2014); data reduction: SAINT (Bruker, 2014); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL97 (Sheldrick, 2015b); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and DIAMOND (Brandenburg, 2006); software used to prepare material for publication: publCIF (Westrip, 2010), enCIFer (Allen et al., 2004) and OLEX2 (Dolomanov et al., 2009).[Cu2(C7H8NO2)2Cl2] | F(000) = 476 |
Mr = 474.29 | Dx = 1.910 Mg m−3 |
Monoclinic, P21/n | Mo Kα radiation, λ = 0.71073 Å |
a = 10.5568 (14) Å | Cell parameters from 546 reflections |
b = 4.0728 (6) Å | θ = 3.6–25.4° |
c = 19.257 (3) Å | µ = 2.92 mm−1 |
β = 95.280 (3)° | T = 298 K |
V = 824.5 (2) Å3 | Plate, pale-green |
Z = 2 | 0.16 × 0.10 × 0.06 mm |
Bruker D8 QUEST CMOS diffractometer | 1485 independent reflections |
Radiation source: fine-focus sealed tube | 1030 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.091 |
Detector resolution: 0 pixels mm-1 | θmax = 25.4°, θmin = 3.6° |
ϕ and ω scans | h = −12→12 |
Absorption correction: multi-scan (SADABS; Bruker, 2014) | k = −4→4 |
Tmin = 0.645, Tmax = 0.745 | l = −23→23 |
7703 measured reflections |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.045 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.108 | H-atom parameters constrained |
S = 1.04 | w = 1/[σ2(Fo2) + (0.0544P)2 + 0.5475P] where P = (Fo2 + 2Fc2)/3 |
1485 reflections | (Δ/σ)max = 0.001 |
110 parameters | Δρmax = 0.52 e Å−3 |
0 restraints | Δρmin = −0.42 e Å−3 |
0 constraints |
[Cu2(C7H8NO2)2Cl2] | V = 824.5 (2) Å3 |
Mr = 474.29 | Z = 2 |
Monoclinic, P21/n | Mo Kα radiation |
a = 10.5568 (14) Å | µ = 2.92 mm−1 |
b = 4.0728 (6) Å | T = 298 K |
c = 19.257 (3) Å | 0.16 × 0.10 × 0.06 mm |
β = 95.280 (3)° |
Bruker D8 QUEST CMOS diffractometer | 1485 independent reflections |
Absorption correction: multi-scan (SADABS; Bruker, 2014) | 1030 reflections with I > 2σ(I) |
Tmin = 0.645, Tmax = 0.745 | Rint = 0.091 |
7703 measured reflections |
R[F2 > 2σ(F2)] = 0.045 | 0 restraints |
wR(F2) = 0.108 | H-atom parameters constrained |
S = 1.04 | Δρmax = 0.52 e Å−3 |
1485 reflections | Δρmin = −0.42 e Å−3 |
110 parameters |
Experimental. SADABS-2014/4 (Bruker,2014/4) was used for absorption correction. wR2(int) was 0.0681 before and 0.0535 after correction. The Ratio of minimum to maximum transmission is 0.8650. The λ/2 correction factor is 0.00150. |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against all reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Cu1 | 0.36725 (5) | 0.3633 (2) | 0.49239 (3) | 0.0376 (3) | |
Cl1 | 0.25368 (12) | −0.0100 (4) | 0.42980 (7) | 0.0431 (4) | |
O1 | 0.4853 (3) | 0.5904 (12) | 0.55882 (18) | 0.0542 (13) | |
O2 | 0.4934 (3) | 0.5112 (11) | 0.6792 (2) | 0.0491 (11) | |
N1 | 0.2501 (3) | 0.4522 (11) | 0.5649 (2) | 0.0301 (11) | |
C1 | 0.1248 (4) | 0.3804 (15) | 0.5620 (3) | 0.0371 (14) | |
H1 | 0.0886 | 0.2558 | 0.5248 | 0.044* | |
C2 | 0.0492 (5) | 0.4839 (17) | 0.6114 (3) | 0.0486 (17) | |
H2 | −0.0368 | 0.4299 | 0.6080 | 0.058* | |
C3 | 0.1015 (5) | 0.6680 (17) | 0.6662 (3) | 0.0470 (16) | |
H3 | 0.0515 | 0.7428 | 0.7003 | 0.056* | |
C4 | 0.2300 (5) | 0.7412 (15) | 0.6700 (3) | 0.0399 (14) | |
H4 | 0.2677 | 0.8658 | 0.7067 | 0.048* | |
C5 | 0.3014 (4) | 0.6271 (14) | 0.6186 (2) | 0.0304 (12) | |
C6 | 0.4438 (4) | 0.6921 (15) | 0.6201 (3) | 0.0336 (13) | |
H6 | 0.4613 | 0.9267 | 0.6272 | 0.040* | |
C7 | 0.6176 (5) | 0.6071 (19) | 0.7070 (3) | 0.0587 (19) | |
H7A | 0.6792 | 0.5237 | 0.6779 | 0.088* | |
H7B | 0.6344 | 0.5200 | 0.7532 | 0.088* | |
H7C | 0.6227 | 0.8424 | 0.7086 | 0.088* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Cu1 | 0.0240 (3) | 0.0552 (5) | 0.0340 (4) | −0.0123 (3) | 0.0041 (2) | −0.0096 (4) |
Cl1 | 0.0392 (7) | 0.0395 (9) | 0.0504 (9) | −0.0114 (7) | 0.0034 (6) | −0.0065 (7) |
O1 | 0.0265 (18) | 0.099 (4) | 0.038 (2) | −0.020 (2) | 0.0092 (16) | −0.025 (2) |
O2 | 0.037 (2) | 0.051 (3) | 0.057 (3) | −0.0029 (19) | −0.0100 (18) | 0.010 (2) |
N1 | 0.026 (2) | 0.032 (3) | 0.032 (2) | −0.0024 (19) | 0.0013 (18) | 0.006 (2) |
C1 | 0.025 (2) | 0.044 (4) | 0.041 (3) | −0.002 (3) | 0.000 (2) | 0.007 (3) |
C2 | 0.024 (3) | 0.060 (4) | 0.063 (4) | −0.003 (3) | 0.013 (3) | 0.014 (4) |
C3 | 0.042 (3) | 0.050 (4) | 0.052 (4) | 0.013 (3) | 0.020 (3) | 0.008 (4) |
C4 | 0.045 (3) | 0.033 (4) | 0.043 (3) | 0.003 (3) | 0.010 (3) | −0.001 (3) |
C5 | 0.030 (2) | 0.028 (3) | 0.033 (3) | 0.000 (2) | 0.001 (2) | 0.011 (3) |
C6 | 0.028 (2) | 0.038 (4) | 0.034 (3) | −0.002 (2) | 0.000 (2) | 0.002 (3) |
C7 | 0.042 (3) | 0.073 (5) | 0.058 (4) | −0.011 (3) | −0.009 (3) | 0.013 (4) |
Cu1—Cu1i | 3.0051 (12) | C1—C2 | 1.365 (7) |
Cu1—Cl1 | 2.2215 (15) | C2—H2 | 0.9300 |
Cu1—O1i | 1.927 (3) | C2—C3 | 1.368 (8) |
Cu1—O1 | 1.937 (4) | C3—H3 | 0.9300 |
Cu1—N1 | 1.982 (4) | C3—C4 | 1.385 (7) |
O1—Cu1i | 1.927 (3) | C4—H4 | 0.9300 |
O1—C6 | 1.361 (6) | C4—C5 | 1.378 (7) |
O2—C6 | 1.415 (6) | C5—C6 | 1.524 (6) |
O2—C7 | 1.424 (6) | C6—H6 | 0.9800 |
N1—C1 | 1.351 (6) | C7—H7A | 0.9600 |
N1—C5 | 1.330 (6) | C7—H7B | 0.9600 |
C1—H1 | 0.9300 | C7—H7C | 0.9600 |
Cl1—Cu1—Cu1i | 139.33 (5) | C3—C2—H2 | 120.4 |
O1—Cu1—Cu1i | 38.82 (10) | C2—C3—H3 | 120.6 |
O1i—Cu1—Cu1i | 39.07 (11) | C2—C3—C4 | 118.8 (5) |
O1i—Cu1—Cl1 | 102.14 (12) | C4—C3—H3 | 120.6 |
O1—Cu1—Cl1 | 165.33 (16) | C3—C4—H4 | 120.4 |
O1i—Cu1—O1 | 77.89 (16) | C5—C4—C3 | 119.2 (5) |
O1—Cu1—N1 | 81.54 (15) | C5—C4—H4 | 120.4 |
O1i—Cu1—N1 | 158.20 (18) | N1—C5—C4 | 121.9 (5) |
N1—Cu1—Cu1i | 120.03 (12) | N1—C5—C6 | 116.0 (4) |
N1—Cu1—Cl1 | 99.59 (13) | C4—C5—C6 | 122.1 (5) |
Cu1i—O1—Cu1 | 102.11 (16) | O1—C6—O2 | 114.5 (5) |
C6—O1—Cu1 | 118.6 (3) | O1—C6—C5 | 109.0 (4) |
C6—O1—Cu1i | 138.9 (3) | O1—C6—H6 | 110.2 |
C6—O2—C7 | 114.8 (4) | O2—C6—C5 | 102.5 (4) |
C1—N1—Cu1 | 127.1 (4) | O2—C6—H6 | 110.2 |
C5—N1—Cu1 | 114.2 (3) | C5—C6—H6 | 110.2 |
C5—N1—C1 | 118.4 (4) | O2—C7—H7A | 109.5 |
N1—C1—H1 | 118.7 | O2—C7—H7B | 109.5 |
N1—C1—C2 | 122.5 (5) | O2—C7—H7C | 109.5 |
C2—C1—H1 | 118.7 | H7A—C7—H7B | 109.5 |
C1—C2—H2 | 120.4 | H7A—C7—H7C | 109.5 |
C1—C2—C3 | 119.1 (5) | H7B—C7—H7C | 109.5 |
Cu1—O1—C6—O2 | 108.4 (4) | C1—N1—C5—C6 | 178.4 (5) |
Cu1i—O1—C6—O2 | −79.8 (7) | C1—C2—C3—C4 | −0.6 (9) |
Cu1—O1—C6—C5 | −5.7 (6) | C2—C3—C4—C5 | 0.0 (9) |
Cu1i—O1—C6—C5 | 166.1 (4) | C3—C4—C5—N1 | 1.0 (8) |
Cu1—N1—C1—C2 | −172.6 (4) | C3—C4—C5—C6 | −178.8 (5) |
Cu1—N1—C5—C4 | 172.9 (4) | C4—C5—C6—O1 | −171.8 (5) |
Cu1—N1—C5—C6 | −7.4 (6) | C4—C5—C6—O2 | 66.5 (7) |
N1—C1—C2—C3 | 0.2 (9) | C5—N1—C1—C2 | 0.8 (8) |
N1—C5—C6—O1 | 8.4 (7) | C7—O2—C6—O1 | 81.5 (6) |
N1—C5—C6—O2 | −113.2 (5) | C7—O2—C6—C5 | −160.6 (5) |
C1—N1—C5—C4 | −1.4 (8) |
Symmetry code: (i) −x+1, −y+1, −z+1. |
D—H···A | D—H | H···A | D···A | D—H···A |
C2—H2···Cl1ii | 0.93 | 2.90 | 3.756 (6) | 154 |
C3—H3···O2iii | 0.93 | 2.65 | 3.517 (7) | 156 |
C6—H6···O2iv | 0.98 | 2.59 | 3.548 (8) | 165 |
Symmetry codes: (ii) −x, −y, −z+1; (iii) −x+1/2, y+1/2, −z+3/2; (iv) x, y+1, z. |
D—H···A | D—H | H···A | D···A | D—H···A |
C2—H2···Cl1i | 0.93 | 2.90 | 3.756 (6) | 154.3 |
C3—H3···O2ii | 0.93 | 2.65 | 3.517 (7) | 155.9 |
C6—H6···O2iii | 0.98 | 2.59 | 3.548 (8) | 164.7 |
Symmetry codes: (i) −x, −y, −z+1; (ii) −x+1/2, y+1/2, −z+3/2; (iii) x, y+1, z. |
Acknowledgements
This research was financially supported by research career development grant (No. RSA5780056) from the Thailand Research Fund.
References
Allen, F. H., Johnson, O., Shields, G. P., Smith, B. R. & Towler, M. (2004). J. Appl. Cryst. 37, 335–338. Web of Science CrossRef CAS IUCr Journals Google Scholar
Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany. Google Scholar
Bruker (2014). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341. Web of Science CrossRef CAS IUCr Journals Google Scholar
Drew, M. G. B., Nag, S., Pal, P. K. & Datta, D. (2008). Inorg. Chim. Acta, 361, 2562–2567. Google Scholar
Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854. Web of Science CrossRef CAS IUCr Journals Google Scholar
Guidote, A. M. Jr, Ando, K., Kurusu, Y., Nagao, H. & Masuyama, Y. (2001). Inorg. Chim. Acta, 314, 27–36. Google Scholar
Mondal, K. C., Sengupta, O. & Mukherjee, P. S. (2009). Inorg. Chem. Commun. 12, 682–685. Google Scholar
Pijper, D., Saisaha, P., de Boer, J. W., Hoen, R., Smit, C., Meetsma, A., Hage, R., van Summeren, R. P., Alsters, P. L., Feringa, B. L. & Browne, W. R. (2010). Dalton Trans. 39, 10375–10381. Google Scholar
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Wang, W., Spingler, B. & Alberto, R. (2003). Inorg. Chim. Acta, 355, 386–393. Web of Science CSD CrossRef CAS Google Scholar
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925. Web of Science CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.