research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 71| Part 2| February 2015| Pages 165-167

Crystal structure of chlorido­(5,10,15,20-tetra­phenyl­porphyrinato-κ4N)manganese(III) 2-amino­pyridine disolvate

aLaboratoire de Physico-chimie des Matériaux, Faculté des Sciences de Monastir, Avenue de l'Environnement, 5019 Monastir, University of Monastir, Tunisia, bFaculdade de Medicina, Veterinària, Universidade Tecnica de Lisboa, Avenida da Universidade Tecnica, 1300-477 Lisboa, Portugal, and cREQUIMTE/CQFB Departamento de Quimica, Faculdade de Ciencias e Tecnologia, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal
*Correspondence e-mail: hnasri1@gmail.com

Edited by V. V. Chernyshev, Moscow State University, Russia (Received 25 November 2014; accepted 10 January 2015; online 17 January 2015)

In the title compound, [Mn(C44H28N4)Cl]·2C5H6N2, the MnIII centre is coordinated by four pyrrole N atoms [averaged Mn—N = 2.012 (4) Å] of the tetra­phenyl­porphyrin mol­ecule and one chloride axial ligand [Mn—Cl = 2.4315 (7) Å] in a square-pyramidal geometry. The porphyrin macrocycle exhibits a non-planar conformation with major ruffling and saddling distortions. In the crystal, two independent solvent mol­ecules form dimers through N—H⋯N hydrogen bonding. In these dimers, one amino N atom has a short Mn⋯N contact of 2.642 (1) Å thus completing the Mn environment in the form of a distorted octa­hedron, and another amino atom generates weak N—H⋯Cl hydrogen bonds, which link further all mol­ecules into chains along the a axis.

1. Chemical context

In a continuation of our studies of metalloporphyrins, which are usually used as models of hemoproteins and have various applications in many fields such as catalysis (Amiri et al., 2014[Amiri, N., Le Maux, P., Srour, H., Nasri, H. & Simonneaux, G. (2014). Tetrahedron, 70, 8836-8842.]), photodynamic therapy (Kolarova et al., 2005[Kolarova, H., Macecek, J., Nevrelova, P., Huf, M., Tomecka, M., Bajgar, R., Mosinger, J. & Strnad, M. (2005). Toxicology in Vitro, 19, 971-974.]), conception of sensors (Garg et al., 2013[Garg, K., Singh, A., Majumder, C., Nayak, S. K., Aswal, D. K., Gupta, S. K. & Chattopadhyay, S. (2013). Org. Electron. 14, 1189-1196.]) or the design of photoluminescent species (Harry et al., 2003[Harry, P. D. (2003). Advanced Inorganic Chemistry, edited by K. M. Kadish, K. M. Smith & R. Guilard, Vol. 18, pp. 63-243. New York: Academic Press.]), we report herein the synthesis and crystal structure of the title compound, [Mn(C44H28N4)Cl]·2C5H6N2, (I)[link].

[Scheme 1]

2. Structural commentary

In (I)[link], the central MnIII atom has a square-pyramidal coordination geometry (Fig. 1[link]). The equatorial plane is formed by four nitro­gen atoms of the porphyrin whereas the apical position is occupied by the chlorido ligand. The asymmetric unit of (I)[link] consists of the [MnIII(TPP)Cl] complex (TPP is the 5,10,15,20-tetra­phenyl­porphyrinato ligand) and two 2-amino­pyridine solvent mol­ecules. The average equatorial mangan­ese–N(pyrrole) distance (Mn—Np) is 2.012 (4) Å, while the Mn—Cl bond length is 2.4315 (7) Å. The manganese atom is displaced by 0.1616 (5) Å from the 24-atom porphyrin mean plane. The porphyrin core presents a major ruffling deformation, as seen in the positions of the meso carbons alternatively above and below the mean plane of the 24-atom porphyrin macrocycle, and a saddle distortion involving the displacement of the pyrrole rings alternately above and below the porphyrin macrocycle mean plane (Scheidt & Lee, 1987[Scheidt, W. R. & Lee, Y. (1987). Struct. Bonding, 64, 1-7.]). This is confirmed by normal structural decomposition (NSD) calculations (Jentzen et al., 1998[Jentzen, W., Ma, J.-G. & Shelnutt, J. A. (1998). Biophys. J. 74, 753-763.]), with ruffling and saddle percentages of 40% and 36%, respectively.

[Figure 1]
Figure 1
The contents of the asymmetric unit of (I)[link], showing the atomic numbering. Displacement ellipsoids are drawn at the 50% probability level. H atoms are omitted for clarity.

3. Supra­molecular features

In the crystal structure, two 2-amino­pyridine solvent mol­ecules are paired into dimers via N—H⋯N hydrogen bonds involving the amino groups of these two mol­ecules (Table 1[link]). In these dimers, one amino atom has a short Mn⋯N contact of 2.642 (1) Å and another amino atom generates weak N—H⋯Cl hydrogen bonds, which further link the components into chains along the a-axis direction (Fig. 2[link]).

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N5—H5A⋯N8 0.86 2.29 2.993 (3) 139
N7—H7A⋯N6 0.86 2.19 3.045 (3) 173
N7—H7B⋯Cli 0.86 2.51 3.358 (2) 169
Symmetry code: (i) x+1, y, z.
[Figure 2]
Figure 2
A portion of the crystal packing showing the N—H⋯Cl hydrogen bonds (dotted blue lines) and short Mn⋯N contacts (dashed pink lines).

4. Database survey

The majority of the known manganese–porphyrin species with halides are penta-coordinated, e.g. [MnIII(TPP)Cl] (Stute et al., 2013[Stute, S., Götzke, L., Meyer, D., Merroun, M. L., Rapta, P., Kataeva, O., Seichter, W., Gloe, K., Dunsch, L. & Gloe, K. (2013). Inorg. Chem. 52, 1515-1524.]), [MnIII(TPP)Br] and [MnIII(TPP)I] (Turner et al., 1998[Turner, P., Gunter, M. J., Skelton, B. W. & White, A. H. (1998). Aust. J. Chem. 51, 853-864.]). Nevertheless, the six-coordinated di­fluoro-mangan­ese(IV) porphyrin species is also known: [MnIV(TMP)F2] (TMP is the 5,10,15,20-tetra­mesitylporphyrinato ligand) (Liu et al., 2012[Liu, W., Huang, X., Cheng, M., Nielsen, R., Goddard, W. & Groves, J. (2012). Science, 337, 1322-1325.]). In the Cambridge Structural Database (CSD, Version 5.35; Groom & Allen, 2014[Groom, C. R. & Allen, F. H. (2014). Angew. Chem. Int. Ed. 53, 662-671.]), there are fourteen chlorido porphyrin structures with a penta-coordinate MnIII atom, five of them with the 5,10,15,20-tetra­phenyl­porphyrin (TPP) ligand. For the known [MnIII(Porph)Cl] complexes (Porph = porphyrinato ligand) [CSD refcodes HIFMIS (Cheng & Scheidt, 1996[Cheng, B. & Scheidt, W. R. (1996). Acta Cryst. C52, 361-363.]) and SENMUU (Paulat et al., 2006[Paulat, F., Praneeth, V. K. K., Näther, C. & Lehnert, N. (2006). Inorg. Chem. 45, 2835-2856.])], the equatorial manganese—N(pyrrole) distances (Mn—Np) are in the range 2.002 (3)–2.019 (1) Å. This is also the case for (I)[link], where the Mn—Np bond length is 2.012 (4) Å. The Mn—Cl distance of 2.4315 (7) Å in (I)[link] is in agreement with those reported for related compounds [CSD refcodes HIFMIS (Cheng & Scheidt, 1996[Cheng, B. & Scheidt, W. R. (1996). Acta Cryst. C52, 361-363.]) and YEFYAL (Ishikawa et al., 2012[Ishikawa, R., Katoh, K., Breedlove, B. K. & Yamashita, M. (2012). Inorg. Chem. 51, 9123-9131.])], with Mn—Cl bond lengths covering the range 2.30–2.66 Å.

5. Synthesis and crystallization

To a solution of [MnIII(TPP)Cl] (100 mg, 0.142 mmol) (Cheng & Scheidt, 1996[Cheng, B. & Scheidt, W. R. (1996). Acta Cryst. C52, 361-363.]) in chloro­benzene (10 ml) was added an excess of 2-amino­pyridine (50 mg, 0.531 mmol). The reaction mixture was stirred at room temperature for 12 h. Crystals of the title complex were obtained by diffusion of hexa­nes through the chloro­benzene solution.

6. Refinement details

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. All H atoms were fixed geometrically and treated as riding, with C—H = 0.93, N—H = 0.86 Å and with Uiso(H) = 1.2Ueq(C, N).

Table 2
Experimental details

Crystal data
Chemical formula [Mn(C44H28N4)Cl]·2C5H6N2
Mr 891.33
Crystal system, space group Triclinic, P[\overline{1}]
Temperature (K) 180
a, b, c (Å) 9.9617 (4), 12.1247 (6), 18.9100 (9)
α, β, γ (°) 92.441 (3), 94.699 (2), 108.186 (2)
V3) 2157.01 (17)
Z 2
Radiation type Mo Kα
μ (mm−1) 0.42
Crystal size (mm) 0.48 × 0.38 × 0.16
 
Data collection
Diffractometer Bruker APEXII CCD
Absorption correction Multi-scan (SADABS; Bruker, 2006[Bruker (2006). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.701, 0.746
No. of measured, independent and observed [I > 2σ(I)] reflections 35821, 8499, 6523
Rint 0.041
(sin θ/λ)max−1) 0.617
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.041, 0.107, 1.05
No. of reflections 8487
No. of parameters 577
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.49, −0.37
Computer programs: APEX2 and SAINT (Bruker, 2006[Bruker (2006). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SIR2004 (Burla et al., 2005[Burla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G. & Spagna, R. (2005). J. Appl. Cryst. 38, 381-388.]), SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.], 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), ORTEPIII (Burnett & Johnson, 1996[Burnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.]), ORTEP-3 for Windows and WinGX (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]).

Supporting information


Chemical context top

In a continuation of our studies of metalloporphyrins, which are usually used as models of hemoproteins and have various applications in many fields such as catalysis (Amiri et al., 2014), photodynamic therapy (Kolarova et al., 2005), conception of sensors (Garg et al., 2013) or the design of photoluminescent species (Harry et al., 2003), we report herein the synthesis and crystal structure of the title compound, (I).

Structural commentary top

In (I), the central MnIII atom has a square-pyramidal coordination geometry (Fig. 1). The equatorial plane is formed by four nitro­gen atoms of the porphyrin whereas, the apical position is occupied by the chlorido ligand. The asymmetric unit of (I) consists of the [MnIII(TPP)Cl] complex (TPP is the 5,10,15,20-tetra­phenyl­porphyrinato ligand) and two 2-amino­pyridine solvent molecules. The average equatorial manganese– N(pyrrole) atom distance (Mn—Np) is 2.0117 (17) Å, while the Mn—Cl bond length is 2.4315 (7) Å. The manganese atom is displaced by 0.1616 (5) Å from the 24-atom porphyrin mean plane. The porphyrin core presents a major ruffling deformation, as seen in the positions of the meso carbons alternatively above and below the mean plane of the 24-atom porphyrin macrocycle, and a saddle distortion involving the displacement of the pyrrole rings alternately above and below the porphyrin macrocycle mean plane (Scheidt & Lee, 1987). This is confirmed by normal structural decomposition (NSD) calculations (Jentzen et al., 1998), with ruffling and saddle percentages of ~40% and ~36%, respectively.

Supra­molecular features top

In the crystal structure, two 2-amino­pyridine solvent molecules are paired into dimers via the N—H···N hydrogen bonds involving the amino groups of these two molecules (Table 1). In these dimers, one amino atom has a short Mn···N contact of 2.642 (1) Å and another amino atom generates weak N—H···Cl hydrogen bonds, which further link the components into chains along the a-axis direction (Fig. 2).

Database survey top

The majority of the known manganese–porphyrin species with halides are penta-coordinated, e.g. [MnIII(TPP)Cl] (Stute et al., 2013), [MnIII(TPP)Br] and [MnIII(TPP)I] (Turner et al., 1998). Nevertheless, the six-coordinated di­fluoro-manganese(IV) porphyrin species is also known: [MnIV(TMP)F2] (TMP is the 5,10,15,20-tetra­mesitylporphyrinato ligand) (Liu et al., 2012). In the Cambridge Structural Database (CSD, Version 5.35; Groom & Allen, 2014), there are fourteen penta-coordinated manganese(III) chlorido porphyrin structures, five of them with the 5,10,15,20-tetra­phenyl­porphyrin (TPP) ligand. For the known [MnIII(Porph)Cl] complexes (Porph = porphyrinato ligand) [CSD refcodes HIFMIS (Cheng & Scheidt, 1996) and SENMUU (Paulat et al., 2006)], the equatorial manganese—N(pyrrole) distances (Mn—Np) are in the range 2.002–2.0185 (1) Å. This is also the case for (I), where the Mn—Np bond length is 2.0117 (17) Å. The manganese–chlorido distance of 2.4315 (7) Å in (I) is in agreement with those reported for related compounds [CSD refcodes HIFMIS (Cheng & Scheidt, 1996) and YEFYAL (Ishikawa et al., 2012)], with Mn—Cl bond lengths covering the range 2.30–2.66 Å.

Synthesis and crystallization top

To a solution of [MnIII(TPP)Cl] (100 mg, 0.142 mmol) (Cheng & Scheidt, 1996) in chloro­benzene (10 ml) was added an excess of 2-amino­pyridine (50 mg, 0.531 mmol). The reaction mixture was stirred at room temperature for 12 hours. Crystals of the title complex were obtained by diffusion of hexanes through the chloro­benzene solution.

Refinement details top

All H atoms were fixed geometrically and treated as riding, with C—H = 0.93, N—H = 0.86 Å and with Uiso(H) = 1.2Ueq(C, N).

Related literature top

For the synthesis, see: Cheng & Scheidt (1996). For related structures see: Amiri et al. (2014); Cheng & Scheidt (1996); Paulat et al. (2006); Ishikawa et al. (2012); Scheidt & Lee (1987); Jentzen et al. (1998). For a description of the Cambridge Structural Database, see: Groom & Allen (2014). For related literature, see: Macrae et al. (2008); Garg et al. (2013); Harry (2003); Kolarova et al. (2005); Liu et al. (2012); Stute et al. (2013); Turner et al. (1998).

Computing details top

Data collection: APEX2 (Bruker, 2006); cell refinement: SAINT (Bruker, 2006); data reduction: SAINT (Bruker, 2006); program(s) used to solve structure: SIR2004 (Burla et al., 2005); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008, 2015); molecular graphics: ORTEPIII (Burnett & Johnson, 1996), ORTEP-3 for Windows (Farrugia, 2012) and Mercury (Macrae et al., 2008); software used to prepare material for publication: WinGX (Farrugia, 2012).

Figures top
[Figure 1] Fig. 1. The contents of the asymmetric unit of (I), showing the atomic numbering. Displacement ellipsoids are drawn at the 50% probability level. H atoms are omitted for clarity.
[Figure 2] Fig. 2. A portion of the crystal packing showing the N—H···Cl hydrogen bonds (dotted blue lines) and short Mn···N contacts (dashed pink lines).
Chlorido(5,10,15,20-tetraphenylporphyrinato-κ4N)manganese(III) 2-aminopyridine disolvate top
Crystal data top
[Mn(C44H28N4)Cl]·2C5H6N2Z = 2
Mr = 891.33F(000) = 924
Triclinic, P1Dx = 1.372 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 9.9617 (4) ÅCell parameters from 8818 reflections
b = 12.1247 (6) Åθ = 2.2–27.8°
c = 18.9100 (9) ŵ = 0.42 mm1
α = 92.441 (3)°T = 180 K
β = 94.699 (2)°Block, brown
γ = 108.186 (2)°0.48 × 0.38 × 0.16 mm
V = 2157.01 (17) Å3
Data collection top
Bruker APEXII CCD
diffractometer
8499 independent reflections
Radiation source: fine-focus sealed tube6523 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.041
ϕ and ω scansθmax = 26.0°, θmin = 1.8°
Absorption correction: multi-scan
(SADABS; Bruker, 2006)
h = 1212
Tmin = 0.701, Tmax = 0.746k = 1414
35821 measured reflectionsl = 2023
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.041Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.107H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.0438P)2 + 1.0654P]
where P = (Fo2 + 2Fc2)/3
8487 reflections(Δ/σ)max = 0.001
577 parametersΔρmax = 0.49 e Å3
0 restraintsΔρmin = 0.37 e Å3
Crystal data top
[Mn(C44H28N4)Cl]·2C5H6N2γ = 108.186 (2)°
Mr = 891.33V = 2157.01 (17) Å3
Triclinic, P1Z = 2
a = 9.9617 (4) ÅMo Kα radiation
b = 12.1247 (6) ŵ = 0.42 mm1
c = 18.9100 (9) ÅT = 180 K
α = 92.441 (3)°0.48 × 0.38 × 0.16 mm
β = 94.699 (2)°
Data collection top
Bruker APEXII CCD
diffractometer
8499 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2006)
6523 reflections with I > 2σ(I)
Tmin = 0.701, Tmax = 0.746Rint = 0.041
35821 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0410 restraints
wR(F2) = 0.107H-atom parameters constrained
S = 1.05Δρmax = 0.49 e Å3
8487 reflectionsΔρmin = 0.37 e Å3
577 parameters
Special details top

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Mn0.71850 (3)0.20739 (3)0.748853 (16)0.02309 (10)
Cl0.47678 (6)0.07348 (5)0.73057 (3)0.03758 (15)
N10.77802 (17)0.14667 (15)0.66018 (9)0.0234 (4)
N20.80369 (18)0.10608 (15)0.80656 (9)0.0250 (4)
N30.68922 (18)0.28550 (15)0.83972 (9)0.0244 (4)
N40.66655 (18)0.32903 (15)0.69325 (9)0.0234 (4)
N50.9736 (2)0.36456 (17)0.76389 (10)0.0359 (5)
H5A0.97840.31970.72830.043*
H5B0.92190.40930.75920.043*
N61.1266 (2)0.29239 (19)0.83104 (11)0.0427 (5)
N71.2610 (2)0.2348 (2)0.70136 (14)0.0552 (6)
H7A1.23010.25400.73960.066*
H7B1.32170.19750.70350.066*
N81.1197 (2)0.32107 (18)0.63848 (11)0.0410 (5)
C10.7439 (2)0.17043 (18)0.59150 (11)0.0233 (4)
C20.7927 (2)0.10102 (18)0.54253 (11)0.0272 (5)
H20.78370.10130.49320.033*
C30.8539 (2)0.03566 (19)0.58099 (11)0.0275 (5)
H30.89530.01730.56320.033*
C40.8439 (2)0.06235 (18)0.65415 (11)0.0239 (4)
C50.8866 (2)0.00644 (18)0.71051 (11)0.0249 (5)
C60.8707 (2)0.03070 (18)0.78147 (11)0.0257 (5)
C70.9224 (2)0.0208 (2)0.84009 (12)0.0322 (5)
H70.97230.07390.83740.039*
C80.8855 (2)0.0216 (2)0.89976 (12)0.0322 (5)
H80.90560.00350.94590.039*
C90.8098 (2)0.09952 (19)0.87930 (11)0.0260 (5)
C100.7539 (2)0.16021 (19)0.92676 (11)0.0270 (5)
C110.6954 (2)0.24586 (19)0.90708 (11)0.0261 (5)
C120.6382 (2)0.3106 (2)0.95446 (12)0.0311 (5)
H120.62780.29921.00230.037*
C130.6022 (2)0.39102 (19)0.91726 (11)0.0301 (5)
H130.56390.44620.93480.036*
C140.6336 (2)0.37604 (19)0.84551 (11)0.0261 (5)
C150.6088 (2)0.44238 (18)0.79069 (11)0.0252 (5)
C160.6228 (2)0.41858 (18)0.71991 (11)0.0245 (5)
C170.5830 (2)0.47860 (19)0.66212 (11)0.0291 (5)
H170.55320.54390.66600.035*
C180.5967 (2)0.42307 (19)0.60135 (12)0.0283 (5)
H180.57550.44160.55540.034*
C190.6499 (2)0.33038 (18)0.62017 (11)0.0241 (4)
C200.6799 (2)0.25316 (18)0.57174 (11)0.0239 (4)
C210.9456 (2)0.09079 (19)0.69477 (11)0.0255 (5)
C221.0792 (2)0.0706 (2)0.67155 (12)0.0310 (5)
H221.13310.00460.66320.037*
C231.1328 (2)0.1620 (2)0.66072 (12)0.0348 (5)
H231.22280.14770.64560.042*
C241.0536 (3)0.2736 (2)0.67222 (12)0.0358 (6)
H241.09020.33470.66540.043*
C250.9196 (3)0.2945 (2)0.69389 (13)0.0364 (6)
H250.86520.37010.70100.044*
C260.8656 (2)0.2043 (2)0.70511 (12)0.0319 (5)
H260.77510.21950.71970.038*
C270.7585 (2)0.1328 (2)1.00308 (11)0.0297 (5)
C280.6758 (3)0.0259 (2)1.02330 (13)0.0359 (6)
H280.62160.03100.98880.043*
C290.6734 (3)0.0032 (2)1.09463 (14)0.0430 (6)
H290.61610.06791.10770.052*
C300.7548 (3)0.0850 (3)1.14558 (14)0.0469 (7)
H300.75200.06981.19330.056*
C310.8410 (3)0.1896 (3)1.12667 (13)0.0432 (7)
H310.89850.24411.16160.052*
C320.8427 (3)0.2145 (2)1.05562 (12)0.0358 (5)
H320.90030.28601.04320.043*
C330.5585 (2)0.54284 (19)0.81056 (11)0.0271 (5)
C340.6532 (3)0.6437 (2)0.84414 (13)0.0379 (6)
H340.74870.65010.85260.045*
C350.6072 (3)0.7357 (2)0.86545 (14)0.0448 (6)
H350.67190.80330.88800.054*
C360.4665 (3)0.7271 (2)0.85329 (13)0.0417 (6)
H360.43570.78870.86760.050*
C370.3715 (3)0.6272 (2)0.81989 (14)0.0418 (6)
H370.27600.62110.81180.050*
C380.4171 (2)0.5354 (2)0.79812 (13)0.0347 (5)
H380.35210.46840.77500.042*
C390.6393 (2)0.25768 (18)0.49454 (11)0.0243 (4)
C400.7006 (2)0.35470 (19)0.45743 (11)0.0289 (5)
H400.77090.41850.48070.035*
C410.6578 (2)0.3570 (2)0.38642 (12)0.0322 (5)
H410.69830.42270.36240.039*
C420.5555 (2)0.2625 (2)0.35099 (12)0.0348 (5)
H420.52750.26430.30300.042*
C430.4945 (2)0.1651 (2)0.38668 (12)0.0343 (5)
H430.42620.10080.36270.041*
C440.5351 (2)0.16335 (19)0.45802 (11)0.0290 (5)
H440.49220.09820.48210.035*
C451.0496 (2)0.3647 (2)0.82897 (13)0.0367 (6)
C461.1971 (3)0.2868 (3)0.89372 (17)0.0570 (8)
H461.25030.23600.89600.068*
C471.1952 (3)0.3518 (3)0.95452 (16)0.0635 (9)
H471.24540.34540.99700.076*
C481.1166 (3)0.4267 (3)0.95052 (16)0.0600 (8)
H481.11450.47320.99050.072*
C491.0412 (3)0.4330 (2)0.88792 (14)0.0474 (7)
H490.98570.48200.88500.057*
C501.0728 (3)0.3510 (2)0.57616 (15)0.0513 (7)
H501.00700.39100.57620.062*
C511.1165 (4)0.3258 (3)0.51199 (16)0.0669 (10)
H511.08160.34840.46980.080*
C521.2135 (4)0.2663 (3)0.51215 (19)0.0770 (12)
H521.24540.24830.46960.092*
C531.2625 (3)0.2338 (3)0.57395 (19)0.0633 (9)
H531.32720.19270.57430.076*
C541.2141 (3)0.2631 (2)0.63784 (15)0.0436 (6)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Mn0.02838 (18)0.02739 (19)0.01763 (17)0.01494 (14)0.00212 (13)0.00061 (13)
Cl0.0315 (3)0.0396 (3)0.0404 (4)0.0096 (2)0.0044 (2)0.0016 (3)
N10.0267 (9)0.0253 (9)0.0205 (9)0.0118 (7)0.0020 (7)0.0010 (7)
N20.0288 (9)0.0303 (10)0.0199 (9)0.0154 (8)0.0026 (7)0.0002 (8)
N30.0285 (9)0.0295 (10)0.0189 (9)0.0147 (8)0.0014 (7)0.0009 (7)
N40.0273 (9)0.0267 (10)0.0186 (9)0.0124 (7)0.0021 (7)0.0004 (7)
N50.0387 (11)0.0423 (12)0.0300 (11)0.0197 (9)0.0001 (9)0.0066 (9)
N60.0391 (12)0.0477 (13)0.0399 (13)0.0146 (10)0.0048 (10)0.0007 (10)
N70.0464 (13)0.0565 (15)0.0671 (18)0.0259 (12)0.0012 (12)0.0122 (13)
N80.0362 (11)0.0405 (12)0.0412 (13)0.0052 (9)0.0054 (10)0.0041 (10)
C10.0255 (10)0.0250 (11)0.0191 (11)0.0075 (9)0.0025 (8)0.0010 (9)
C20.0345 (12)0.0296 (12)0.0192 (11)0.0128 (10)0.0039 (9)0.0003 (9)
C30.0326 (11)0.0284 (12)0.0251 (12)0.0141 (9)0.0072 (9)0.0008 (9)
C40.0268 (11)0.0246 (11)0.0219 (11)0.0106 (9)0.0033 (9)0.0001 (9)
C50.0242 (10)0.0267 (12)0.0251 (12)0.0103 (9)0.0020 (9)0.0012 (9)
C60.0271 (11)0.0291 (12)0.0243 (12)0.0147 (9)0.0004 (9)0.0004 (9)
C70.0367 (12)0.0390 (14)0.0286 (13)0.0236 (11)0.0005 (10)0.0031 (10)
C80.0391 (13)0.0416 (14)0.0220 (12)0.0223 (11)0.0003 (10)0.0041 (10)
C90.0292 (11)0.0319 (12)0.0196 (11)0.0141 (9)0.0002 (9)0.0020 (9)
C100.0290 (11)0.0347 (13)0.0196 (11)0.0139 (10)0.0008 (9)0.0016 (9)
C110.0290 (11)0.0331 (12)0.0186 (11)0.0138 (9)0.0011 (9)0.0004 (9)
C120.0394 (13)0.0406 (14)0.0186 (11)0.0202 (11)0.0042 (9)0.0008 (10)
C130.0379 (12)0.0336 (13)0.0237 (12)0.0191 (10)0.0038 (10)0.0026 (10)
C140.0284 (11)0.0292 (12)0.0237 (11)0.0140 (9)0.0018 (9)0.0014 (9)
C150.0260 (11)0.0263 (11)0.0252 (11)0.0113 (9)0.0027 (9)0.0002 (9)
C160.0254 (10)0.0253 (11)0.0247 (12)0.0106 (9)0.0032 (9)0.0024 (9)
C170.0366 (12)0.0290 (12)0.0273 (12)0.0183 (10)0.0033 (10)0.0035 (10)
C180.0349 (12)0.0323 (12)0.0224 (12)0.0175 (10)0.0006 (9)0.0042 (9)
C190.0254 (10)0.0270 (11)0.0212 (11)0.0102 (9)0.0018 (8)0.0018 (9)
C200.0253 (10)0.0256 (11)0.0198 (11)0.0070 (9)0.0017 (8)0.0020 (9)
C210.0302 (11)0.0321 (12)0.0185 (11)0.0170 (10)0.0003 (9)0.0003 (9)
C220.0341 (12)0.0315 (13)0.0307 (13)0.0145 (10)0.0063 (10)0.0020 (10)
C230.0337 (12)0.0458 (15)0.0326 (13)0.0224 (11)0.0097 (10)0.0015 (11)
C240.0459 (14)0.0394 (14)0.0302 (13)0.0261 (12)0.0021 (11)0.0037 (11)
C250.0400 (13)0.0284 (13)0.0417 (15)0.0131 (11)0.0010 (11)0.0008 (11)
C260.0287 (11)0.0351 (13)0.0342 (13)0.0133 (10)0.0041 (10)0.0022 (10)
C270.0370 (12)0.0413 (14)0.0201 (11)0.0252 (11)0.0042 (9)0.0031 (10)
C280.0417 (13)0.0431 (15)0.0294 (13)0.0216 (11)0.0052 (10)0.0065 (11)
C290.0489 (15)0.0558 (17)0.0366 (15)0.0303 (13)0.0126 (12)0.0187 (13)
C300.0550 (16)0.077 (2)0.0263 (14)0.0421 (16)0.0109 (12)0.0179 (14)
C310.0506 (15)0.0693 (19)0.0228 (13)0.0410 (15)0.0052 (11)0.0058 (12)
C320.0411 (13)0.0448 (15)0.0267 (13)0.0223 (11)0.0002 (10)0.0002 (11)
C330.0373 (12)0.0295 (12)0.0202 (11)0.0173 (10)0.0078 (9)0.0036 (9)
C340.0382 (13)0.0354 (14)0.0416 (15)0.0149 (11)0.0042 (11)0.0057 (11)
C350.0573 (17)0.0303 (14)0.0462 (16)0.0141 (12)0.0080 (13)0.0096 (11)
C360.0632 (17)0.0386 (15)0.0366 (15)0.0320 (13)0.0175 (13)0.0041 (12)
C370.0437 (14)0.0479 (16)0.0450 (16)0.0278 (13)0.0136 (12)0.0066 (13)
C380.0353 (12)0.0339 (13)0.0377 (14)0.0145 (10)0.0059 (10)0.0014 (11)
C390.0282 (11)0.0279 (12)0.0206 (11)0.0143 (9)0.0023 (9)0.0009 (9)
C400.0327 (12)0.0291 (12)0.0259 (12)0.0113 (10)0.0026 (9)0.0004 (9)
C410.0390 (13)0.0362 (13)0.0274 (13)0.0185 (11)0.0083 (10)0.0092 (10)
C420.0403 (13)0.0513 (16)0.0199 (12)0.0248 (12)0.0012 (10)0.0044 (11)
C430.0339 (12)0.0397 (14)0.0282 (13)0.0132 (11)0.0038 (10)0.0074 (10)
C440.0327 (12)0.0296 (12)0.0252 (12)0.0107 (10)0.0028 (9)0.0026 (9)
C450.0294 (12)0.0419 (14)0.0351 (14)0.0068 (11)0.0026 (10)0.0006 (11)
C460.0472 (16)0.062 (2)0.060 (2)0.0181 (14)0.0072 (14)0.0082 (16)
C470.0538 (18)0.088 (2)0.0372 (17)0.0111 (17)0.0118 (14)0.0014 (16)
C480.0478 (17)0.078 (2)0.0399 (17)0.0036 (16)0.0007 (13)0.0175 (15)
C490.0413 (15)0.0527 (17)0.0417 (16)0.0079 (13)0.0027 (12)0.0129 (13)
C500.0511 (16)0.0459 (17)0.0456 (17)0.0001 (13)0.0015 (13)0.0027 (13)
C510.081 (2)0.055 (2)0.0391 (18)0.0149 (18)0.0059 (16)0.0031 (14)
C520.085 (3)0.062 (2)0.057 (2)0.0197 (19)0.037 (2)0.0230 (18)
C530.0516 (17)0.0527 (19)0.076 (2)0.0002 (14)0.0282 (17)0.0235 (17)
C540.0337 (13)0.0394 (15)0.0496 (17)0.0016 (11)0.0061 (12)0.0129 (12)
Geometric parameters (Å, º) top
Mn—N22.0083 (17)C22—H220.9300
Mn—N12.0089 (16)C23—C241.374 (3)
Mn—N32.0127 (17)C23—H230.9300
Mn—N42.0169 (16)C24—C251.379 (3)
Mn—Cl2.4351 (7)C24—H240.9300
N1—C11.381 (3)C25—C261.376 (3)
N1—C41.382 (2)C25—H250.9300
N2—C91.378 (3)C26—H260.9300
N2—C61.379 (3)C27—C321.390 (3)
N3—C141.380 (3)C27—C281.391 (3)
N3—C111.384 (3)C28—C291.389 (3)
N4—C191.380 (3)C28—H280.9300
N4—C161.381 (3)C29—C301.363 (4)
N5—C451.391 (3)C29—H290.9300
N5—H5A0.8600C30—C311.372 (4)
N5—H5B0.8600C30—H300.9300
N6—C451.333 (3)C31—C321.390 (3)
N6—C461.343 (3)C31—H310.9300
N7—C541.350 (3)C32—H320.9300
N7—H7A0.8600C33—C341.380 (3)
N7—H7B0.8600C33—C381.383 (3)
N8—C541.338 (3)C34—C351.388 (3)
N8—C501.338 (3)C34—H340.9300
C1—C201.394 (3)C35—C361.372 (4)
C1—C21.438 (3)C35—H350.9300
C2—C31.344 (3)C36—C371.372 (4)
C2—H20.9300C36—H360.9300
C3—C41.426 (3)C37—C381.386 (3)
C3—H30.9300C37—H370.9300
C4—C51.394 (3)C38—H380.9300
C5—C61.394 (3)C39—C441.392 (3)
C5—C211.502 (3)C39—C401.393 (3)
C6—C71.432 (3)C40—C411.379 (3)
C7—C81.345 (3)C40—H400.9300
C7—H70.9300C41—C421.376 (3)
C8—C91.428 (3)C41—H410.9300
C8—H80.9300C42—C431.381 (3)
C9—C101.392 (3)C42—H420.9300
C10—C111.390 (3)C43—C441.379 (3)
C10—C271.495 (3)C43—H430.9300
C11—C121.431 (3)C44—H440.9300
C12—C131.345 (3)C45—C491.384 (3)
C12—H120.9300C46—C471.371 (4)
C13—C141.434 (3)C46—H460.9300
C13—H130.9300C47—C481.372 (4)
C14—C151.391 (3)C47—H470.9300
C15—C161.385 (3)C48—C491.367 (4)
C15—C331.500 (3)C48—H480.9300
C16—C171.435 (3)C49—H490.9300
C17—C181.345 (3)C50—C511.376 (4)
C17—H170.9300C50—H500.9300
C18—C191.430 (3)C51—C521.374 (5)
C18—H180.9300C51—H510.9300
C19—C201.397 (3)C52—C531.351 (5)
C20—C391.490 (3)C52—H520.9300
C21—C221.387 (3)C53—C541.409 (4)
C21—C261.390 (3)C53—H530.9300
C22—C231.386 (3)
N2—Mn—N189.86 (7)C24—C23—C22120.4 (2)
N2—Mn—N389.23 (7)C24—C23—H23119.8
N1—Mn—N3171.24 (7)C22—C23—H23119.8
N2—Mn—N4170.21 (7)C23—C24—C25119.5 (2)
N1—Mn—N489.56 (7)C23—C24—H24120.2
N3—Mn—N489.85 (7)C25—C24—H24120.2
N2—Mn—Cl97.32 (5)C26—C25—C24120.6 (2)
N1—Mn—Cl94.06 (5)C26—C25—H25119.7
N3—Mn—Cl94.70 (5)C24—C25—H25119.7
N4—Mn—Cl92.47 (5)C25—C26—C21120.4 (2)
C1—N1—C4106.00 (16)C25—C26—H26119.8
C1—N1—Mn125.95 (13)C21—C26—H26119.8
C4—N1—Mn127.55 (13)C32—C27—C28118.5 (2)
C9—N2—C6106.07 (16)C32—C27—C10120.9 (2)
C9—N2—Mn127.08 (13)C28—C27—C10120.6 (2)
C6—N2—Mn126.83 (14)C29—C28—C27120.6 (2)
C14—N3—C11106.01 (16)C29—C28—H28119.7
C14—N3—Mn126.43 (14)C27—C28—H28119.7
C11—N3—Mn126.57 (14)C30—C29—C28120.2 (3)
C19—N4—C16106.07 (16)C30—C29—H29119.9
C19—N4—Mn126.53 (13)C28—C29—H29119.9
C16—N4—Mn126.92 (13)C29—C30—C31120.2 (2)
C45—N5—H5A120.0C29—C30—H30119.9
C45—N5—H5B120.0C31—C30—H30119.9
H5A—N5—H5B120.0C30—C31—C32120.3 (3)
C45—N6—C46117.3 (2)C30—C31—H31119.8
C54—N7—H7A120.0C32—C31—H31119.8
C54—N7—H7B120.0C31—C32—C27120.2 (2)
H7A—N7—H7B120.0C31—C32—H32119.9
C54—N8—C50117.7 (2)C27—C32—H32119.9
N1—C1—C20126.20 (18)C34—C33—C38118.8 (2)
N1—C1—C2109.18 (17)C34—C33—C15119.9 (2)
C20—C1—C2124.51 (19)C38—C33—C15121.3 (2)
C3—C2—C1107.55 (19)C33—C34—C35120.6 (2)
C3—C2—H2126.2C33—C34—H34119.7
C1—C2—H2126.2C35—C34—H34119.7
C2—C3—C4107.50 (18)C36—C35—C34120.2 (3)
C2—C3—H3126.3C36—C35—H35119.9
C4—C3—H3126.3C34—C35—H35119.9
N1—C4—C5125.35 (18)C37—C36—C35119.7 (2)
N1—C4—C3109.74 (17)C37—C36—H36120.1
C5—C4—C3124.80 (19)C35—C36—H36120.1
C6—C5—C4123.90 (19)C36—C37—C38120.3 (2)
C6—C5—C21116.96 (18)C36—C37—H37119.8
C4—C5—C21119.04 (18)C38—C37—H37119.8
N2—C6—C5126.34 (19)C33—C38—C37120.4 (2)
N2—C6—C7109.38 (18)C33—C38—H38119.8
C5—C6—C7124.28 (19)C37—C38—H38119.8
C8—C7—C6107.47 (19)C44—C39—C40118.3 (2)
C8—C7—H7126.3C44—C39—C20119.52 (18)
C6—C7—H7126.3C40—C39—C20122.15 (19)
C7—C8—C9107.47 (19)C41—C40—C39120.6 (2)
C7—C8—H8126.3C41—C40—H40119.7
C9—C8—H8126.3C39—C40—H40119.7
N2—C9—C10126.17 (19)C42—C41—C40120.3 (2)
N2—C9—C8109.58 (18)C42—C41—H41119.8
C10—C9—C8124.24 (19)C40—C41—H41119.8
C11—C10—C9123.46 (19)C41—C42—C43120.0 (2)
C11—C10—C27118.20 (18)C41—C42—H42120.0
C9—C10—C27118.34 (18)C43—C42—H42120.0
N3—C11—C10125.52 (19)C44—C43—C42119.8 (2)
N3—C11—C12109.44 (18)C44—C43—H43120.1
C10—C11—C12124.97 (19)C42—C43—H43120.1
C13—C12—C11107.56 (19)C43—C44—C39120.9 (2)
C13—C12—H12126.2C43—C44—H44119.5
C11—C12—H12126.2C39—C44—H44119.5
C12—C13—C14107.46 (19)N6—C45—C49122.7 (2)
C12—C13—H13126.3N6—C45—N5115.6 (2)
C14—C13—H13126.3C49—C45—N5121.7 (2)
N3—C14—C15126.07 (18)N6—C46—C47123.7 (3)
N3—C14—C13109.49 (18)N6—C46—H46118.1
C15—C14—C13124.43 (19)C47—C46—H46118.1
C16—C15—C14124.14 (19)C46—C47—C48117.7 (3)
C16—C15—C33119.05 (18)C46—C47—H47121.2
C14—C15—C33116.77 (18)C48—C47—H47121.2
N4—C16—C15125.90 (18)C49—C48—C47120.2 (3)
N4—C16—C17109.38 (18)C49—C48—H48119.9
C15—C16—C17124.55 (19)C47—C48—H48119.9
C18—C17—C16107.37 (19)C48—C49—C45118.4 (3)
C18—C17—H17126.3C48—C49—H49120.8
C16—C17—H17126.3C45—C49—H49120.8
C17—C18—C19107.57 (19)N8—C50—C51123.7 (3)
C17—C18—H18126.2N8—C50—H50118.2
C19—C18—H18126.2C51—C50—H50118.2
N4—C19—C20125.45 (18)C52—C51—C50117.9 (3)
N4—C19—C18109.55 (18)C52—C51—H51121.0
C20—C19—C18125.00 (19)C50—C51—H51121.0
C1—C20—C19123.73 (19)C53—C52—C51120.1 (3)
C1—C20—C39117.83 (18)C53—C52—H52119.9
C19—C20—C39118.43 (18)C51—C52—H52119.9
C22—C21—C26118.8 (2)C52—C53—C54119.1 (3)
C22—C21—C5122.0 (2)C52—C53—H53120.5
C26—C21—C5119.19 (18)C54—C53—H53120.5
C23—C22—C21120.3 (2)N8—C54—N7116.7 (2)
C23—C22—H22119.8N8—C54—C53121.5 (3)
C21—C22—H22119.8N7—C54—C53121.8 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N5—H5A···N80.862.292.993 (3)139
N7—H7A···N60.862.193.045 (3)173
N7—H7B···Cli0.862.513.358 (2)169
Symmetry code: (i) x+1, y, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N5—H5A···N80.862.292.993 (3)139
N7—H7A···N60.862.193.045 (3)173
N7—H7B···Cli0.862.513.358 (2)169
Symmetry code: (i) x+1, y, z.

Experimental details

Crystal data
Chemical formula[Mn(C44H28N4)Cl]·2C5H6N2
Mr891.33
Crystal system, space groupTriclinic, P1
Temperature (K)180
a, b, c (Å)9.9617 (4), 12.1247 (6), 18.9100 (9)
α, β, γ (°)92.441 (3), 94.699 (2), 108.186 (2)
V3)2157.01 (17)
Z2
Radiation typeMo Kα
µ (mm1)0.42
Crystal size (mm)0.48 × 0.38 × 0.16
Data collection
DiffractometerBruker APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2006)
Tmin, Tmax0.701, 0.746
No. of measured, independent and
observed [I > 2σ(I)] reflections
35821, 8499, 6523
Rint0.041
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.041, 0.107, 1.05
No. of reflections8487
No. of parameters577
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.49, 0.37

Computer programs: APEX2 (Bruker, 2006), SAINT (Bruker, 2006), SIR2004 (Burla et al., 2005), SHELXL97 (Sheldrick, 2008, 2015), ORTEPIII (Burnett & Johnson, 1996), ORTEP-3 for Windows (Farrugia, 2012) and Mercury (Macrae et al., 2008), WinGX (Farrugia, 2012).

 

Acknowledgements

The authors gratefully acknowledge financial support from the Ministry of Higher Education and Scientific Research of Tunisia.

References

First citationAmiri, N., Le Maux, P., Srour, H., Nasri, H. & Simonneaux, G. (2014). Tetrahedron, 70, 8836–8842.  Google Scholar
First citationBruker (2006). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBurla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G. & Spagna, R. (2005). J. Appl. Cryst. 38, 381–388.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationBurnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.  Google Scholar
First citationCheng, B. & Scheidt, W. R. (1996). Acta Cryst. C52, 361–363.  Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGarg, K., Singh, A., Majumder, C., Nayak, S. K., Aswal, D. K., Gupta, S. K. & Chattopadhyay, S. (2013). Org. Electron. 14, 1189–1196.  Google Scholar
First citationGroom, C. R. & Allen, F. H. (2014). Angew. Chem. Int. Ed. 53, 662–671.  Web of Science CrossRef CAS Google Scholar
First citationHarry, P. D. (2003). Advanced Inorganic Chemistry, edited by K. M. Kadish, K. M. Smith & R. Guilard, Vol. 18, pp. 63–243. New York: Academic Press.  Google Scholar
First citationIshikawa, R., Katoh, K., Breedlove, B. K. & Yamashita, M. (2012). Inorg. Chem. 51, 9123–9131.  Google Scholar
First citationJentzen, W., Ma, J.-G. & Shelnutt, J. A. (1998). Biophys. J. 74, 753–763.  CrossRef CAS PubMed Google Scholar
First citationKolarova, H., Macecek, J., Nevrelova, P., Huf, M., Tomecka, M., Bajgar, R., Mosinger, J. & Strnad, M. (2005). Toxicology in Vitro, 19, 971–974.  Google Scholar
First citationLiu, W., Huang, X., Cheng, M., Nielsen, R., Goddard, W. & Groves, J. (2012). Science, 337, 1322–1325.  Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationPaulat, F., Praneeth, V. K. K., Näther, C. & Lehnert, N. (2006). Inorg. Chem. 45, 2835–2856.  Google Scholar
First citationScheidt, W. R. & Lee, Y. (1987). Struct. Bonding, 64, 1–7.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationStute, S., Götzke, L., Meyer, D., Merroun, M. L., Rapta, P., Kataeva, O., Seichter, W., Gloe, K., Dunsch, L. & Gloe, K. (2013). Inorg. Chem. 52, 1515–1524.  Google Scholar
First citationTurner, P., Gunter, M. J., Skelton, B. W. & White, A. H. (1998). Aust. J. Chem. 51, 853–864.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 71| Part 2| February 2015| Pages 165-167
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds