research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 71| Part 2| February 2015| Pages 168-172

Crystal structures of crotonaldehyde semicarbazone and crotonaldehyde thiosemicarbazone from X-ray powder diffraction data

aDepartment of Chemistry, Atomic Energy Commission of Syria (AECS), PO Box 6091, Damascus, Syrian Arab Republic
*Correspondence e-mail: cscientific@aec.org.sy

Edited by V. V. Chernyshev, Moscow State University, Russia (Received 22 December 2014; accepted 13 January 2015; online 17 January 2015)

Crotonaldehyde semicarbazone {systematic name: (E)-2-[(E)-but-2-en-1-yl­idene]hydrazinecarboxamide}, C5H9N3O, (I), and crotonaldehyde thio­semi­carba­zone {systematic name: (E)-2-[(E)-but-2-en-1-yldene]hydra­zinecarbo­­thio­amide}, C5H9N3S, (II), show the same E conformation around the imine C=N bond. Compounds (I) and (II) were obtained by the condensation of crotonaldehyde with semicarbazide hydro­chloride and thio­semicarbazide, respectively. Each mol­ecule has an intra­molecular N—H⋯N hydrogen bond, which generates an S(5) ring. In (I), the crotonaldehyde fragment is twisted by 2.59 (5)° from the semicarbazide mean plane, while in (II) the corresponding angle (with the thio­semicarbazide mean plane) is 9.12 (5)°. The crystal packing is different in the two compounds: in (I) inter­molecular N—H⋯O hydrogen bonds link the mol­ecules into layers parallel to the bc plane, while weak inter­molecular N—H⋯S hydrogen bonds in (II) link the mol­ecules into chains propagating in [110].

1. Chemical context

The chemistry of semicarbazones and thio­semicarbazones is especially inter­esting due to their special role in biological applications such as anti-proliferative, anti-tumoral, anti-convulsant, anti-trypanosomal, herbicidal and biocidal activities (Beraldo et al., 2002[Beraldo, H., Sinisterra, R. D., Teixeira, L. R., Vieira, R. P. & Doretto, M. C. (2002). Biochem. Biophys. Res. Commun. 296, 241-246.]; Kasuga et al., 2003[Kasuga, N. C., Sekino, K., Ishikawa, M., Honda, A., Yokoyama, M., Nakano, S., Shimada, N., Koumo, C. & Nomiya, K. (2003). J. Inorg. Biochem. 96, 298-310.]; Teixeira et al., 2003[Teixeira, L. R., Sinisterra, R. D., Vieira, R. P., Doretto, M. C. & Beraldo, H. (2003). J. Incl. Phenom. Macrocycl. Chem. 47, 77-82.]; Beraldo & Gambino, 2004[Beraldo, H. & Gambinob, D. (2004). Mini Rev. Med. Chem. 4, 31-39.]; Mikhaleva et al., 2008[Mikhaleva, A. I., Ivanov, A. V., Vasil'tsov, A. M., Ushakov, I. A., Ma, J. S. & Yang, G. (2008). Chem. Heterocycl. Compd, 44, 1117-1122.]; de Oliveira et al., 2008[Oliveira, R. B. de, de Souza-Fagundes, E. M., Soares, R. P. P., Andrade, A. A., Krettli, A. U. & Zani, C. L. (2008). Eur. J. Med. Chem. 43, 1983-1988.]; Alomar et al., 2012[Alomar, K., Gaumet, V., Allain, M., Bouet, G. & Landreau, A. (2012). J. Inorg. Biochem. 115, 36-43.]; Gan et al., 2014[Gan, C., Cui, J., Su, S., Lin, Q., Jia, L., Fan, L. & Huang, Y. (2014). Steroids, 87, 99-107.]). They are also important inter­mediates in organic synthesis, mainly for obtaining heterocyclic rings, such as thia­zolidones, oxa­diazo­les, pyrazolidones, and thia­diazo­les (Greenbaum et al., 2004[Greenbaum, D. C., Mackey, Z., Hansell, E., Doyle, P. S., Gut, J., Caffrey, C. R., Lehrman, J., Rosenthal, P. J., McKerrow, J. H. & Chibale, K. (2004). J. Med. Chem. 47, 3212-3219.]; Küçükgüzel et al., 2006[Küçükgüzel, G., Kocatepe, A., De Clercq, E., Şahin, F. & Güllüce, M. (2006). Eur. J. Med. Chem. 41, 353-359.]). Semicarbazones and thio­semicarbazones have received considerable attention in view of their simplicity of preparation, various complexing abilities and coordination behavior that can be used in analytical applications (Garg & Jain, 1988[Garg, B. S. & Jain, V. K. (1988). Microchem. J. 38, 144-169.]; Casas et al., 2000[Casas, J. S., Garc\?ía-Tasende, M. S. & Sordo, J. (2000). Coord. Chem. Rev. 209, 197-261.]). They are of inter­est from a supra­molecular point of view since they can be functionalized to give different supra­molecular arrays.

[Scheme 1]

2. Structural commentary

Compounds (I)[link] and (II)[link] crystallize in centrosymmetric space groups P21/c and P[\overline{1}], respectively, with one mol­ecule in the asymmetric unit. Each mol­ecule has an intra­molecular N—H⋯N hydrogen bond (Tables 1[link] and 2[link]), which forms an S(5) ring. The semicarbazone and thio­semicarbazone fragments in the compounds show an E conformation around the imine C=N bond. The mol­ecules (Fig. 1[link]) are approximately planar, with a dihedral angle of 2.59 (5)° between the C1/C2/C3 crotonaldehyde plane and the mean plane of the C4/N1/N2/C5/O1/N3 semicarbazone fragment for (I)[link], and of 9.12 (5)° between the C1/C2/C3 crotonaldehyde plane and the mean plane of the C4/N1/N2/C5/S1/N3 thio­semicarbazone fragment for (II)[link]. All bond lengths and angles in (I)[link] and (II)[link] are normal and correspond well to those observed in the crystal structures of related semi- and thio­semicarbazone derivatives, viz. acetone semicarbazone and benzaldehyde­semicarbazone (Naik & Palenik, 1974[Naik, D. V. & Palenik, G. J. (1974). Acta Cryst. B30, 2396-2401.]), 3,4- methyl­ene­dioxy­benzaldehyde­semicarbazone (Wang et al., 2004[Wang, J.-L., Jia, Y.-J. & Yu, M. (2004). Acta Cryst. E60, o662-o663.]), isatin 3-semicarbazone and 1-methyl­isatin 3-semicarbazone (Pelosi et al., 2005[Pelosi, G., Pelizzi, C., Belicchi Ferrari, M., Rodríguez-Argüelles, M. C., Vieito, C. & Sanmartín, J. (2005). Acta Cryst. C61, o589-o592.]), 4- (methyl­sulfan­yl)benzaldehyde­thio­semicarbazone (Yathirajan et al., 2006[Yathirajan, H. S., Bindya, S., Narayana, B., Sarojini, B. K. & Bolte, M. (2006). Acta Cryst. E62, o5925-o5926.]), 4-(methyl­sulfan­yl)benzaldehyde­semicarbazone (Sarojini et al., 2007[Sarojini, B. K., Narayana, B., Bindya, S., Yathirajan, H. S. & Bolte, M. (2007). Acta Cryst. E63, o2946.]), 5-hy­droxy-2-nitro­benzaldehyde thio­semicarbazone (Reddy et al., 2014[Reddy, M. S., Sarala, Y., Jagadeesh, M., Das, S. K. & Ammireddy, V. R. (2014). Acta Cryst. E70, o846.]) and 1-(4-formyl­benzyl­idene) thio­semicarbazone (Carballo et al., 2014[Carballo, R., Pino-Cuevas, A. & Vázquez-López, E. M. (2014). Acta Cryst. E70, o970.]).

Table 1
Hydrogen-bond geometry (Å, °) for (I)[link]

D—H⋯A D—H H⋯A DA D—H⋯A
N3—H2N3⋯N1 0.87 2.33 2.629 (19) 100
N2—H1N2⋯O1i 0.88 2.07 2.910 (11) 158
N3—H1N3⋯O1ii 0.91 2.04 2.914 (18) 162
Symmetry codes: (i) -x+1, -y, -z+1; (ii) [-x+1, y+{\script{1\over 2}}, -z+{\script{3\over 2}}].

Table 2
Hydrogen-bond geometry (Å, °) for (II)[link]

D—H⋯A D—H H⋯A DA D—H⋯A
N3—H2N3⋯N1 0.89 2.17 2.641 (14) 112
N2—H1N2⋯S1i 0.86 2.83 3.473 (11) 133
N3—H1N3⋯S1ii 0.87 2.77 3.398 (11) 130
Symmetry codes: (i) -x+2, -y+1, -z+2; (ii) -x+1, -y, -z+2.
[Figure 1]
Figure 1
The mol­ecular structures of (a) (I)[link] and (b) (II)[link], showing the atom-labelling schemes. Displacement spheres (and the ellipsoid for S1) are drawn at the 50% probability level.

3. Supra­molecular features

As a result of the presence of potential hydrogen-donor sites in mol­ecules (I)[link] and (II)[link], supra­molecular hydrogen-bonding inter­actions are observed in both compounds (Tables 1[link] and 2[link]). In the crystal of (I)[link], mol­ecules are linked by pairs of N—H⋯O hydrogen bonds, forming inversion dimers with R22(8) ring motifs (Fig. 2[link]a). The resulting dimers are connected through N—H⋯O hydrogen bonds, forming layers parallel to bc plane. In the crystal of (II)[link], mol­ecules are linked by weak N—H⋯S hydrogen bonds, forming chains propagating in [110] (Fig. 2[link]b).

[Figure 2]
Figure 2
(a) A portion of the crystal packing of (I)[link] viewed down the b axis (parallel to the hydrogen-bonded layer). (b) A portion of the crystal packing of (II)[link], showing the hydrogen-bonded chain of the mol­ecules. Thin dotted lines denote inter­molecular hydrogen bonds.

4. Synthesis and crystallization

All reactions and manipulations were carried out in air with reagent grade solvents. The IR spectra were recorded on a Jasco FT–IR 300E instrument. 1H and 13C{1H} NMR spectra were recorded on a Bruker Bio spin 400 spectrometer. Microanalysis was performed using EURO EA. Powder X-ray diffraction data were collected with Stoe Transmission diffractometer (Stadi P).

For the synthesis of (I)[link], a mixture of semicarbazide hydro­chloride (CH5N3O·HCl; 0.5 g, 4.5 mmol) and sodium acetate (CH3COONa; 0.75 g, 9.1 mmol) in 10 ml water was agitated well and crotonaldehyde (0.5 g, 7.1 mmol) was added slowly with stirring. On completion of the addition, the reaction mixture was agitated for 24 h at room temperature. The solid product which formed was separated by filtration and washed with water and finally recrystallized from absolute ethanol to produce the product (I)[link] (white powder; m.p. 481–482 K) in 55.5% yield.

IR (KBr, ν, cm−1): 3456, 3281, 3192 (NH2), (1668–1638) (C=O); 1H NMR (400 MHz, CD3OD) δ p.p.m. 1.76 (d, J = 4.42 Hz, 3H, –CH3), 6.43–5.46 (m, 2H, –HC=CH–), 7.39 (d, J = 7.19 Hz, 1H, HC=N–).13C NMR (100 MHz, CD3OD) δ p.p.m. 18.52 (CH3), 130.01 (–HC=CH–), 137.62 (–HC=CH–), 145.64 (N=C), 160.19 (C=O). Analysis calculated for (I)[link]: C, 47.23; H, 7.13; N, 33.05, 12.58 O%. Found: C, 46.43; H, 6.08; N, 34.69%

For the synthesis of (II)[link], crotonaldehyde (0.5 g, 7.1 mmol) was added to thio­semicarbazide (CH5N3S; 0.65 g, 7.1 mmol) in 5 ml water and the mixture was stirred at room temperature for 24 h. The product was separated by filtration and recrystallized from absolute ethanol to produce the product (II)[link] (white powder; m.p. 435–436 K) in 72.5% yield.

IR (KBr, ν, cm−1): 3323, 3244, 3164 (NH2), 1650(C=S). 1H NMR (400 MHz, CDCl3) δ p.p.m. 1.90 (d, J = 5.86 Hz, 3H, –CH3), 6.07–6.27 (m, 2H, –HC=CH–), 6.49 (sb, 1H), 7.10 (sb, 1H) 7.60 (d, J = 8.57 Hz, 1H, HC=N–), 10.10 (sb, 2H). 13C NMR (100.6 MHz, CDCl3) 18.73 (CH3), 127.70 (–HC=CH–), 140.58 (–HC=CH–), 146.21 (N=C), 177.95 (C=S). Analysis calculated for (II)[link]: C, 41.93; H, 6.33; N, 29.34.05, 22.39 S%. Found: C, 41.89; H, 6.25; N, 31.88%.

5. Refinement details

Crystal data, data collection and structure refinement details are summarized in Table 3[link]. Compounds (I)[link] and (II)[link] crystallized in the form of a very fine white powder. Since no single crystals of sufficient size and quality could be obtained, the crystal structures of both compounds were determined from X-ray powder diffraction patterns. The powder samples of (I)[link] and (II)[link] were lightly ground in a mortar, loaded into two Mylar foils and fixed onto the sample holder with a mask of suitable inter­nal diameter (8.0 mm). The powder X-ray diffraction data were collected at room temperature with a STOE transmission STADI-P diffractometer using monochromatic Cu Ka1 radiation (λ= 1.54060 Å) selected with an incident beam curved-crystal germanium Ge(111) monochromator with a linear position-sensitive detector (PSD). The patterns were scanned over the angular range 5.0–80.0° (2θ). For pattern indexing, the extraction of the peak positions was carried out with the program WinPLOTR (Roisnel & Rodríguez-Carvajal, 2000[Roisnel, T. & Rodríguez-Carvajal, J. (2000). Mater. Sci. Forum, 378-381, 118-123.]). Pattern indexing was performed with the program DICVOL4.0 (Boultif & Louër, 2004[Boultif, A. & Louër, D. (2004). J. Appl. Cryst. 37, 724-731.]). The first 20 lines of the powder pattern were indexed completely on the basis of a monoclinic cell for (I)[link] and a triclinic cell for (II)[link]. The figures of merit (de Wolff et al., 1968[Wolff, P. M. de (1968). J. Appl. Cryst. 1, 108-113.]; Smith & Snyder, 1979[Smith, G. S. & Snyder, R. L. (1979). J. Appl. Cryst. 12, 60-65.]) are sufficiently acceptable to support the obtained indexing results [M(20) = 50.5, F(20) = 71.9 (0.0034, 83)] for (I)[link] and [M(20) = 61.8, F(20) = 96.0 (0.0051, 41)] for (II)[link]. The best estimated space groups were P21/c in the monoclinic system for (I)[link] and P[\overline{1}] in the triclinic system for (II)[link].

Table 3
Experimental details

  (I) (II)
Crystal data
Chemical formula C5H9N3O C5H9N3S
Mr 127.15 143.21
Crystal system, space group Monoclinic, P21/c Triclinic, P[\overline{1}]
Temperature (K) 298 298
a, b, c (Å) 11.1646 (3), 5.13891 (9), 13.0301 (2) 5.86650 (17), 8.0313 (2), 9.0795 (4)
α, β, γ (°) 90, 112.3496 (11), 90 104.1407 (18), 101.0403 (19), 106.3511 (17)
V3) 691.43 (3) 382.15 (2)
Z 4 2
Radiation type Cu Kα1, λ = 1.5406 Å Cu Kα1, λ = 1.5406 Å
μ (mm−1) 0.74 3.11
Specimen shape, size (mm) Flat sheet, 8 × 8 Flat sheet, 8 × 8
 
Data collection
Diffractometer Stoe transmission Stadi-P Stoe transmission Stadi-P
Specimen mounting Powder loaded into two Mylar foils Powder loaded into two Mylar foils
Data collection mode Transmission Transmission
Scan method Step Step
2θ values (°) 2θmin = 5 2θmax = 80 2θstep = 0.02 2θmin = 4.980 2θmax = 79.960 2θstep = 0.02
 
Refinement
R factors and goodness of fit Rp = 0.027, Rwp = 0.036, Rexp = 0.029, R(F2) = 0.02795, χ2 = 1.613 Rp = 0.033, Rwp = 0.043, Rexp = 0.034, R(F2) = 0.02670, χ2 = 1.664
No. of data points 3750 3750
No. of parameters 121 114
No. of restraints 0 1
H-atom treatment H-atom parameters not refined H-atom parameters not refined
Computer programs: WinXPOW (Stoe & Cie, 1999[Stoe & Cie (1999). WinXPOW. Stoe & Cie, Darmstadt, Germany.]), EXPO2014 (Altomare et al., 2013[Altomare, A., Cuocci, C., Giacovazzo, C., Moliterni, A., Rizzi, R., Corriero, N. & Falcicchio, A. (2013). J. Appl. Cryst. 46, 1231-1235.]), GSAS (Larson & Von Dreele, 2004[Larson, A. C. & Von Dreele, R. B. (2004). GSAS. Report LAUR 86-748. Los Alamos National Laboratory, New Mexico, USA.]), ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]), Mercury (Macrae et al., 2006[Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453-457.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

The whole powder diffraction patterns from 5 to 80° (2θ) for the two compounds (I)[link] and (II)[link] were subsequently refined with cell and resolution constraints (Le Bail et al., 1988[Le Bail, A., Duroy, H. & Fourquet, J. L. (1988). Mater. Res. Bull. 23, 447-452.]) using the profile-matching option of the program FULLPROF (Rodríguez-Carvajal, 2001[Rodríguez-Carvajal, J. (2001). Commission on Powder Diffraction (IUCr) Newsletter, 26, 12-19.]). The number of mol­ecules per unit cell was estimated to be Z = 4 for (I)[link] and Z = 2 for (II)[link]. The initial crystal structures for (I)[link] and (II)[link] were determined by direct methods using the program EXPO2014 (Altomare et al., 2013[Altomare, A., Cuocci, C., Giacovazzo, C., Moliterni, A., Rizzi, R., Corriero, N. & Falcicchio, A. (2013). J. Appl. Cryst. 46, 1231-1235.]). The models found by this program were introduced into the program GSAS (Larson & Von Dreele, 2004[Larson, A. C. & Von Dreele, R. B. (2004). GSAS. Report LAUR 86-748. Los Alamos National Laboratory, New Mexico, USA.]) implemented in EXPGUI (Toby, 2001[Toby, B. H. (2001). J. Appl. Cryst. 34, 210-213.]) for Rietveld refinement. During the Rietveld refinements, the background was refined using a shifted Chebyshev polynomial with 20 coefficients. The effect of asymmetry of low-order peaks was corrected using a pseudo-Voigt description of the peak shape (Thompson et al., 1987[Thompson, P., Cox, D. E. & Hastings, J. B. (1987). J. Appl. Cryst. 20, 79-83.]), which allows for angle-dependent asymmetry with axial divergence (Finger et al., 1994[Finger, L. W., Cox, D. E. & Jephcoat, A. P. (1994). J. Appl. Cryst. 27, 892-900.]) and microstrain broadening, as described by Stephens (1999[Stephens, P. W. (1999). J. Appl. Cryst. 32, 281-289.]). The two asymmetry parameters of this function, S/L and D/L, were both fixed at 0.022 during this refinement. Intensities were corrected from absorption effects with a function for a plate sample in transmission geometry with a μ·d value of 0.15 for (I)[link] and 0.72 for (II)[link] (μ is the absorption coefficient and d is the sample thickness). These μ·d values were determined experimentally.

Before the final refinement, all H atoms were introduced in geometrically calculated positions. The coordinates of these H atoms were refined with strict restraints on bond lengths and angles until a suitable geometry was obtained, after that they were fixed in the final stage of the refinement. No soft restraints were imposed for (I)[link], while for (II)[link] the CH3—CH bond was clearly stretched (close to 1.6 Å), therefore a single soft restraint was carried out to obtain a normal value (1.49 Å). The final refinement cycles were performed using isotropic atomic displacement parameters for the C, N and O atoms, an anisotropic atomic displacement parameter for S atom in (II)[link] and a fixed global isotropic atomic displacement parameter for the H atoms. The preferred orientation was modelled with 12 coefficients using a spherical harmonics correction (Von Dreele, 1997[Von Dreele, R. B. (1997). J. Appl. Cryst. 30, 517-525.]) of intensities in the final refinement. The use of the preferred orientation correction leads to a better mol­ecular geometry with better agreement factors. The final Rietveld plots of the X-ray diffraction patterns for both (I)[link] and (II)[link] are given in Fig. 3[link].

[Figure 3]
Figure 3
The final Rietveld plots for (a) (I)[link] and (b) (II)[link]. Experimental intensities are indicated by dots and the best-fit profile (upper trace) and difference pattern (lower trace) are shown as solid lines. The vertical bars indicate the calculated positions of the Bragg peaks.

Supporting information


Chemical context top

The chemistry of semicarbazones and thio­semicarbazones is especially inter­esting due to their special role in biological applications such as anti-proliferative, anti-tumoral, anti-convulsant, anti-trypanosomal, herbicidal and biocidal activities (Beraldo et al., 2002; Kasuga et al., 2003; Teixeira et al., 2003; Beraldo & Gambino, 2004; Mikhaleva et al., 2008; de Oliveira et al., 2008; Alomar et al., 2012; Gan et al., 2014). They are also important inter­mediates in organic synthesis, mainly for obtaining heterocyclic rings, such as thia­zolidones, oxa­diazo­les, pyrazolidones, and thia­diazo­les (Greenbaum et al., 2004; Küçükgüzel et al., 2006). Semicarbazones and thio­semicarbazones have received considerable attention in view of their simplicity of preparation, various complexing abilities and coordination behavior that can be used in analytical applications (Garg & Jain, 1988; Casas et al., 2000). They are of inter­est from a supra­molecular point of view since they can be functionalized to give different supra­molecular arrays.

Structural commentary top

Compounds (I) and (II) crystallize in centrosymmetric space groups P21/c and P1, respectively, with one molecule in the asymmetric unit. Each molecule has an intra­molecular N—H···N hydrogen bond (Tables 1 and 2), which forms an S(5) ring. The semicarbazone and thio­semicarbazone fragments in the compounds show an E conformation around the imine C=N bond. The molecules (Fig. 1) are approximately planar, with a dihedral angle of 2.59 (5)° between the C1/C2/C3 crotonaldehyde plane and the mean plane of the C4/N1/N2/C5/O1/N3 semicarbazone fragment for (I), and of 9.12 (5)° between the C1/C2/C3 crotonaldehyde plane and the mean plane of the C4/N1/N2/C5/S1/N3 thio­semicarbazone fragment for (II). All bond lengths and angles in (I) and (II) are normal and correspond well to those observed in the crystal structures of related semi- and thio­semicarbazone derivatives, viz. acetone semicarbazone and benzaldehyde­semicarbazone (Naik & Palenik, 1974), 3,4- methyl­ene­dioxy­benzaldehyde­semicarbazone (Wang et al., 2004), isatin 3-semicarbazone and 1-methyl­isatin 3-semicarbazone (Pelosi et al., 2005), 4- (methyl­sulfanyl)benzaldehyde­thio­semicarbazone (Yathirajan et al., 2006), 4-(methyl­sulfanyl)benzaldehyde­semicarbazone (Sarojini et al., 2007), 5-hy­droxy-2-nitro­benzaldehyde thio­semicarbazone (Reddy et al., 2014) and 1-(4-formyl­benzyl­idene) thio­semicarbazone (Carballo et al., 2014).

Supra­molecular features top

As a result of the presence of potential hydrogen-donor sites in molecules (I) and (II), supra­molecular hydrogen-bonding inter­actions are observed in both compounds (Tables 1 and 2). In the crystal of (I), molecules are linked by pairs of N—H···O hydrogen bonds, forming inversion dimers with R22(8) ring motifs (Fig. 2a). The resulting dimers are connected through N—H···O hydrogen bonds, forming layers parallel to bc plane. In the crystal of (II), molecules are linked by weak N—H···S hydrogen bonds, forming chains propagating in [110] (Fig. 2b).

Synthesis and crystallization top

All reactions and manipulations were carried out in air with reagent grade solvents. The IR spectra were recorded on a Jasco FT–IR 300E instrument. 1H and 13C{1H} NMR spectra were recorded on a Bruker Bio spin 400 spectrometer. Microanalysis was performed using EURO EA. Powder X-ray diffraction data were collected with Stoe Transmission diffractometer (Stadi P).

For the synthesis of (I), a mixture of semicarbazide hydro­chloride (CH5N3O·HCl; 0.5 g, 4.5 mmol) and sodium acetate (CH3COONa; 0.75 g, 9.1 mmol) in 10 ml water was agitated well and crotonaldehyde (0.5 g, 7.1 mmol) was added slowly with stirring. On completion of the addition, the reaction mixture was agitated for 24 h at room temperature. The solid product which formed was separated by filtration and washed with water and finally recrystallized from absolute ethanol to produce the product (I) (white powder; m.p. 481–482 K) in 55.5 % yield.

IR (KBr, ν, cm-1): 3456, 3281, 3192 (NH2), (1668–1638) (CO); 1H NMR (400 MHz, CD3OD) δ p.p.m. 1.76 (d, J = 4.42 Hz, 3H, –CH3), 6.43–5.46 (m, 2H, –HCCH–), 7.39 (d, J = 7.19 Hz, 1H, HCN–).13C NMR (100 MHz, CD3OD) δ p.p.m. 18.52 (CH3), 130.01 (–HCCH–), 137.62 (–HCCH–), 145.64 (NC) , 160.19 (CO). Analysis calculated for (I): C, 47.23; H, 7.13; N, 33.05, 12.58 O%. Found: C, 46.43; H, 6.08; N, 34.69%

For the synthesis of (II), crotonaldehyde (0.5 g, 7.1 mmol) was added to thio­semicarbazide (CH5N3S; 0.65 g, 7.1 mmol) in 5 ml water and the mixture was stirred at room temperature for 24 h. The product was separated by filtration and recrystallized from absolute ethanol to produce the product (II) (white powder; m.p. 435–436 K) in 72.5% yield.

IR (KBr, ν, cm-1): 3323, 3244, 3164 (NH2), 1650(CS). 1H NMR (400 MHz, CDCl3) δ p.p.m. 1.90 (d, J = 5.86 Hz, 3H, –CH3), 6.07–6.27 (m, 2H, –HCCH–), 6.49 (sb, 1H), 7.10 (sb, 1H) 7.60 (d, J = 8.57 Hz, 1H, HCN–), 10.10 (sb, 2H). 13C NMR (100.6 MHz, CDCl3) 18.73 (CH3), 127.70 (–HCCH–), 140.58 (–HCCH–), 146.21 (NC), 177.95 (CS). Analysis calculated for (II): C, 41.93; H, 6.33; N, 29.34.05, 22.39 S%. Found: C, 41.89; H, 6.25; N, 31.88%.

Refinement details top

Crystal data, data collection and structure refinement details are summarized in Table 2. Compounds (I) and (II) crystallized in the form of a very fine white powder. Since no single crystals of sufficient size and quality could be obtained, the crystal structures of both compounds were determined from X-ray powder diffraction patterns. The powder samples of (I) and (II) were lightly ground in a mortar, loaded into two Mylar foils and fixed onto the sample holder with a mask of suitable inter­nal diameter (8.0 mm). The powder X-ray diffraction data were collected at room temperature with a STOE transmission STADI-P diffractometer using monochromatic Cu Ka1 radiation (λ= 1.54060 Å) selected with an incident beam curved-crystal germanium Ge(111) monochromator with a linear position-sensitive detector (PSD). The patterns were scanned over the angular range 5.0–80.0° (2θ). For pattern indexing, the extraction of the peak positions was carried out with the program WinPLOTR (Roisnel & Rodríguez-Carvajal, 2000). Pattern indexing was performed with the program DICVOL4.0 (Boultif & Louër, 2004). The first 20 lines of the powder pattern were indexed completely on the basis of a monoclinic cell for (I) and a triclinic cell for (II). The figures of merit (de Wolff et al., 1968; Smith & Snyder, 1979) are sufficiently acceptable to support the obtained indexing results [M(20) = 50.5, F(20) = 71.9 (0.0034, 83)] for (I) and [M(20) = 61.8, F(20) = 96.0 (0.0051, 41)] for (II). The best estimated space groups were P21/c in the monoclinic system for (I) and P1 in the triclinic system for (II).

The whole powder diffraction patterns from 5 to 80° (2θ) for the two compounds (I) and (II) were subsequently refined with cell and resolution constraints (Le Bail et al., 1988) using the profile-matching option of the program FULLPROF (Rodríguez-Carvajal, 2001). The number of molecules per unit cell was estimated to be Z = 4 for (I) and Z = 2 for (II). The initial crystal structures for (I) and (II) were determined by direct methods using the program EXPO2014 (Altomare et al., 2013). The models found by this program were introduced into the program GSAS (Larson & Von Dreele, 2004) implemented in EXPGUI (Toby, 2001) for Rietveld refinement. During the Rietveld refinements, the background was refined using a shifted Chebyshev polynomial with 20 coefficients. The effect of asymmetry of low-order peaks was corrected using a pseudo-Voigt description of the peak shape (Thompson et al., 1987), which allows for angle-dependent asymmetry with axial divergence (Finger et al., 1994) and microstrain broadening, as described by Stephens (1999). The two asymmetry parameters of this function, S/L and D/L, were both fixed at 0.022 during this refinement. Intensities were corrected from absorption effects with a function for a plate sample in transmission geometry with a µ·d value of 0.15 for (I) and 0.72 for (II) (µ is the absorption coefficient and d is the sample thickness). These µ·d values were determined experimentally.

Before the final refinement, all H atoms were introduced in geometrically calculated positions. The coordinates of these H atoms were refined with strict restraints on bond lengths and angles until a suitable geometry was obtained, after that they were fixed in the final stage of the refinement. No soft restraints were imposed for (I), while for (II) the bond CH3—CH was a clearly stretched (close to1.6 Å), therefore a single soft restraint was carried out to obtain a normal value (1.49 Å). The final refinement cycles were performed using isotropic atomic displacement parameters for the C, N and O atoms, an anisotropic atomic displacement parameter for S atom in (II) and a fixed global isotropic atomic displacement parameter for the H atoms. The preferred orientation was modelled with 12 coefficients using a spherical harmonics correction (Von Dreele, 1997) of intensities in the final refinement. The use of the preferred orientation correction leads to a better molecular geometry with better agreement factors. The final Rietveld plots of the X-ray diffraction patterns for both (I) and (II) are given in Fig. 3.

Related literature top

For related literature, see: Allen et al. (1987); Alomar et al. (2012); Altomare et al. (2013); Beraldo & Gambino (2004); Beraldo et al. (2002); Boultif & Louër (2004); Carballo et al. (2014); Casas et al. (2000); Gan et al. (2014); Greenbaum et al. (2004); Finger et al. (1994); Garg & Jain (1988); Kasuga et al. (2003); Küçükgüzel et al. (2006); Larson & Von Dreele (2004); Le Bail, Duroy & Fourquet (1988); Macrae et al. (2006); Mikhaleva et al. (2008); Naik & Palenik (1974); Oliveira et al. (2008); Pelosi et al. (2005); Reddy et al. (2014); Roisnel, T. & Rodríguez-Carvajal (2001); Roisnel & Roisnel, T. & Rodríguez-Carvajal (2001); Sarojini et al. (2007); Smith & Snyder (1979); Stephens (1999); Teixeira et al. (2003); Thompson et al. (1987); Toby (2001); Von Dreele (1997); Wang et al. (2004); Yathirajan et al. (2006); de Wolff et al. (1968).

Computing details top

For both compounds, data collection: WinXPOW (Stoe & Cie, 1999). Data reduction: WinXPOW (Stoe & Cie, 1999) for (I). For both compounds, program(s) used to solve structure: EXPO2014 (Altomare et al., 2013); program(s) used to refine structure: GSAS (Larson & Von Dreele, 2004); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012), Mercury (Macrae et al., 2006); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. The molecular structures of (a) (I) and (b) (II), showing the atom-labelling schemes. Displacement spheres (and the ellipsoid for S1) are drawn at the 50% probability level.
[Figure 2] Fig. 2. (a) A portion of the crystal packing of (I) viewed down the b axis (parallel to the hydrogen-bonded layer). (b) A portion of the crystal packing of (II), showing the hydrogen-bonded chain of the molecules. Thin dotted lines denote intermolecular hydrogen bonds.
[Figure 3] Fig. 3. The final Rietveld plots for (a) (I) and (b) (II). Experimental intensities are indicated by dots and the best-fit profile (upper trace) and difference pattern (lower trace) are shown as solid lines. The vertical bars indicate the calculated positions of the Bragg peaks.
(I) (E)-2-[(E)-But-2-en-1-ylidene]hydrazinecarboxamide top
Crystal data top
C5H9N3OZ = 4
Mr = 127.15F(000) = 272
Monoclinic, P21/cDx = 1.222 Mg m3
Hall symbol: -P 2ybcCu Kα1 radiation, λ = 1.5406 Å
a = 11.1646 (3) ŵ = 0.74 mm1
b = 5.13891 (9) ÅT = 298 K
c = 13.0301 (2) ÅParticle morphology: fine powder
β = 112.3496 (11)°white
V = 691.43 (3) Å3flat sheet, 8 × 8 mm
Data collection top
Stoe transmission Stadi-P
diffractometer
Data collection mode: transmission
Radiation source: sealed X-ray tubeScan method: step
Ge 111 monochromator2θmin = 5°, 2θmax = 80°, 2θstep = 0.02°
Specimen mounting: Powder loaded into two Mylar foils
Refinement top
Least-squares matrix: fullProfile function: CW Profile function number 4 with 21 terms Pseudovoigt profile coefficients as parameterized in (Thompson et al., 1987) Asymmetry correction of Finger et al., 1994. Microstrain broadening by P.W. Stephens, (1999. #1(GU) = 0.000 #2(GV) = 0.000 #3(GW) = 10.054 #4(GP) = 0.000 #5(LX) = 2.972 #6(ptec) = 0.00 #7(trns) = 0.00 #8(shft) = 0.0000 #9(sfec) = 0.00 #10(S/L) = 0.0220 #11(H/L) = 0.0220 #12(eta) = 0.6000 #13(S400 ) = 2.1E-01 #14(S040 ) = 3.3E-01 #15(S004 ) = 4.2E-02 #16(S220 ) = 2.1E-02 #17(S202 ) = 4.8E-03 #18(S022 ) = 8.7E-02 #19(S301 ) = -3.5E-03 #20(S103 ) = 5.2E-02 #21(S121 ) = 5.4E-02 Peak tails are ignored where the intensity is below 0.0010 times the peak Aniso. broadening axis 0.0 0.0 1.0
Rp = 0.027121 parameters
Rwp = 0.0360 restraints
Rexp = 0.029H-atom parameters not refined
R(F2) = 0.02795Weighting scheme based on measured s.u.'s
χ2 = 1.613(Δ/σ)max = 0.03
3750 data pointsBackground function: GSAS Background function number 1 with 20 terms. Shifted Chebyshev function of 1st kind 1: 983.478 2: -916.772 3: 421.914 4: -92.3775 5: -9.18321 6: 30.2365 7: -2.25826 8: -10.7421 9: -19.9256 10: 25.6982 11: -24.5216 12: 4.20376 13: 6.93721 14: -3.88406 15: -7.36711 16: 7.71847 17: -1.82508 18: -0.259371 19: -0.220296 20: 0.765767
Crystal data top
C5H9N3OV = 691.43 (3) Å3
Mr = 127.15Z = 4
Monoclinic, P21/cCu Kα1 radiation, λ = 1.5406 Å
a = 11.1646 (3) ŵ = 0.74 mm1
b = 5.13891 (9) ÅT = 298 K
c = 13.0301 (2) Åflat sheet, 8 × 8 mm
β = 112.3496 (11)°
Data collection top
Stoe transmission Stadi-P
diffractometer
Scan method: step
Specimen mounting: Powder loaded into two Mylar foils2θmin = 5°, 2θmax = 80°, 2θstep = 0.02°
Data collection mode: transmission
Refinement top
Rp = 0.0273750 data points
Rwp = 0.036121 parameters
Rexp = 0.0290 restraints
R(F2) = 0.02795H-atom parameters not refined
χ2 = 1.613
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.935 (2)0.8319 (18)0.3282 (11)0.057 (5)*
H1a0.884320.923720.259640.075*
H1b0.967010.957140.388190.075*
H1c1.008440.749480.318210.075*
C20.855 (2)0.6310 (16)0.3552 (13)0.052 (4)*
H20.82970.484750.306270.075*
C30.8056 (15)0.6448 (14)0.4352 (9)0.033 (4)*
H30.802110.80920.464920.05*
C40.7367 (18)0.4405 (17)0.4558 (11)0.032 (4)*
H40.739870.277460.426220.075*
N10.7027 (14)0.4632 (13)0.5417 (7)0.025 (3)*
N20.6313 (12)0.2520 (15)0.5530 (7)0.031 (3)*
H1n20.609280.128850.501910.05*
C50.5708 (15)0.252 (2)0.6285 (11)0.029 (4)*
O10.5060 (12)0.0728 (12)0.6388 (6)0.029 (3)*
N30.6041 (15)0.4651 (13)0.6956 (9)0.024 (3)*
H1n30.554770.513210.734250.05*
H2n30.675320.551820.706480.05*
Geometric parameters (Å, º) top
C1—C21.493 (17)C4—H40.928
C1—H1a0.978N1—N21.387 (11)
C1—H1b0.970N2—H1n20.883
C1—H1c0.975N2—C51.390 (10)
C2—C31.353 (11)C5—O11.210 (11)
C2—H20.956C5—N31.361 (11)
C3—C41.387 (13)N3—H1n30.911
C3—H30.936N3—H2n30.875
C4—N11.317 (11)
H1a—C1—H1b108.9C3—C4—N1117.2 (12)
H1a—C1—H1c108.1H4—C4—N1120.1
H1a—C1—C2111.0C4—N1—N2112.5 (9)
H1b—C1—H1c109.0N1—N2—H1n2119.2
H1b—C1—C2109.9N1—N2—C5121.9 (9)
H1c—C1—C2109.9H1n2—N2—C5117.6
C1—C2—H2115.9N2—C5—O1123.3 (11)
C1—C2—C3126.9 (9)N2—C5—N3111.6 (11)
H2—C2—C3116.9O1—C5—N3124.8 (11)
C2—C3—H3117.3C5—N3—H1n3119.9
C2—C3—C4121.8 (10)C5—N3—H2n3121.6
H3—C3—C4119.4H1n3—N3—H2n3118.4
C3—C4—H4119.5
C4—N1—N2—C5171.0 (13)N1—N2—C5—N37.4 (18)
N2—N1—C4—C3178.3 (13)C1—C2—C3—C4177.3 (16)
N1—N2—C5—O1178.6 (13)C2—C3—C4—N1174.0 (15)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H2N3···N10.872.332.629 (19)100
N2—H1N2···O1i0.882.072.910 (11)158
N3—H1N3···O1ii0.912.042.914 (18)162
Symmetry codes: (i) x+1, y, z+1; (ii) x+1, y+1/2, z+3/2.
(II) (E)-2-[(E)-But-2-en-1-yldene]hydrazinecarbothioamide top
Crystal data top
C5H9N3SV = 382.15 (2) Å3
Mr = 143.21Z = 2
Triclinic, P1F(000) = 152
Hall symbol: -P 1Dx = 1.245 Mg m3
a = 5.86650 (17) ÅCu Kα1 radiation, λ = 1.5406 Å
b = 8.0313 (2) ŵ = 3.11 mm1
c = 9.0795 (4) ÅT = 298 K
α = 104.1407 (18)°Particle morphology: fine powder
β = 101.0403 (19)°white
γ = 106.3511 (17)°flat sheet, 8 × 8 mm
Data collection top
Stoe transmission Stadi-P
diffractometer
Data collection mode: transmission
Radiation source: sealed X-ray tubeScan method: step
Ge 111 monochromator2θmin = 4.980°, 2θmax = 79.960°, 2θstep = 0.02°
Specimen mounting: Powder loaded into two Mylar foils
Refinement top
Least-squares matrix: fullProfile function: CW Profile function number 4 with 21 terms Pseudovoigt profile coefficients as parameterized in (Thompson et al., 1987) Asymmetry correction of Finger et al., 1994. #1(GU) = 0.000 #2(GV) = 0.000 #3(GW) = 2.793 #4(GP) = 0.000 #5(LX) = 5.477 #6(ptec) = 2.45 #7(trns) = 0.00 #8(shft) = 0.0000 #9(sfec) = 0.00 #10(S/L) = 0.0220 #11(H/L) = 0.0220 #12(eta) = 0.6000 Peak tails are ignored where the intensity is below 0.0010 times the peak Aniso. broadening axis 0.0 0.0 1.0
Rp = 0.033114 parameters
Rwp = 0.0431 restraint
Rexp = 0.034H-atom parameters not refined
R(F2) = 0.02670(Δ/σ)max = 0.03
χ2 = 1.664Background function: GSAS Background function number 1 with 20 terms. Shifted Chebyshev function of 1st kind 1: 590.360 2: -469.557 3: 198.126 4: -45.2586 5: -2.75624 6: 13.8508 7: 4.35563 8: -5.95029 9: -12.8815 10: 35.6051 11: -12.9276 12: -11.1488 13: 8.85293 14: -2.01034 15: -0.496121 16: 8.39616 17: -2.33367 18: -5.14527 19: 10.5079 20: -3.85249
3750 data points
Crystal data top
C5H9N3Sγ = 106.3511 (17)°
Mr = 143.21V = 382.15 (2) Å3
Triclinic, P1Z = 2
a = 5.86650 (17) ÅCu Kα1 radiation, λ = 1.5406 Å
b = 8.0313 (2) ŵ = 3.11 mm1
c = 9.0795 (4) ÅT = 298 K
α = 104.1407 (18)°flat sheet, 8 × 8 mm
β = 101.0403 (19)°
Data collection top
Stoe transmission Stadi-P
diffractometer
Scan method: step
Specimen mounting: Powder loaded into two Mylar foils2θmin = 4.980°, 2θmax = 79.960°, 2θstep = 0.02°
Data collection mode: transmission
Refinement top
Rp = 0.0333750 data points
Rwp = 0.043114 parameters
Rexp = 0.0341 restraint
R(F2) = 0.02670H-atom parameters not refined
χ2 = 1.664
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.184 (2)0.841 (2)0.515 (2)0.103 (6)*
H1A0.153420.799340.397480.12*
H1B0.23230.970160.551420.12*
H1C0.025740.785250.534910.12*
C20.370 (2)0.7688 (17)0.5865 (18)0.054 (5)*
H20.539630.833350.594550.055*
C30.325 (2)0.6393 (16)0.6524 (15)0.034 (5)*
H30.145820.562550.630490.055*
C40.487 (3)0.5747 (19)0.7264 (19)0.039 (5)*
H40.666320.656710.748160.055*
N10.4514 (17)0.4461 (12)0.7878 (15)0.035 (4)*
N20.6486 (16)0.4005 (12)0.8462 (13)0.021 (4)*
H1n20.792180.458380.8410.05*
C50.611 (3)0.2572 (16)0.907 (2)0.034 (4)*
N30.3681 (15)0.1560 (12)0.8849 (13)0.017 (4)*
H1n30.347250.132460.971160.05*
H2n30.264010.207730.846450.05*
S10.8446 (6)0.1980 (5)0.9772 (6)0.04081
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.032 (4)0.039 (5)0.082 (8)0.026 (4)0.043 (5)0.035 (5)
Geometric parameters (Å, º) top
C1—H1A0.999C4—N11.274 (12)
C1—H1B0.946N1—N21.361 (10)
C1—H1C0.983N2—H1n20.856
C1—C21.49 (2)N2—C51.377 (13)
C2—H20.963C5—N31.376 (13)
C2—C31.311 (13)C5—S11.638 (13)
C3—H31.008N3—C51.376 (13)
C3—C41.352 (14)N3—H1n30.872
C4—H41.024N3—H2n30.894
H1A—C1—H1B109.0C3—C4—N1130.8 (16)
H1A—C1—H1C106.2H4—C4—N1116.8
H1A—C1—C2108.5C4—N1—N2118.6 (11)
H1B—C1—H1C110.2N1—N2—H1n2119.6
H1B—C1—C2113.8N1—N2—C5119.2 (10)
H1C—C1—C2108.8H1n2—N2—C5121.2
C1—C2—H2115.8N2—C5—N3115.6 (12)
C1—C2—C3125.6 (13)N2—C5—S1120.4 (11)
H2—C2—C3118.2N3—C5—S1123.5 (9)
C2—C3—H3116.8C5—N3—H1n3110.5
C2—C3—C4128.4 (15)C5—N3—H2n3112.2
H3—C3—C4113.9H1n3—N3—H2n3113.2
C3—C4—H4111.8
C4—N1—N2—C5177.4 (14)N1—N2—C5—N38.0 (19)
N2—N1—C4—C3175.6 (15)C1—C2—C3—C4176.2 (15)
N1—N2—C5—S1179.6 (11)C2—C3—C4—N1177.6 (16)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H2N3···N10.892.172.641 (14)112
N2—H1N2···S1i0.862.833.473 (11)133
N3—H1N3···S1ii0.872.773.398 (11)130
Symmetry codes: (i) x+2, y+1, z+2; (ii) x+1, y, z+2.
Hydrogen-bond geometry (Å, º) for (I) top
D—H···AD—HH···AD···AD—H···A
N3—H2N3···N10.872.332.629 (19)100
N2—H1N2···O1i0.882.072.910 (11)158
N3—H1N3···O1ii0.912.042.914 (18)162
Symmetry codes: (i) x+1, y, z+1; (ii) x+1, y+1/2, z+3/2.
Hydrogen-bond geometry (Å, º) for (II) top
D—H···AD—HH···AD···AD—H···A
N3—H2N3···N10.892.172.641 (14)112
N2—H1N2···S1i0.862.833.473 (11)133
N3—H1N3···S1ii0.872.773.398 (11)130
Symmetry codes: (i) x+2, y+1, z+2; (ii) x+1, y, z+2.

Experimental details

(I)(II)
Crystal data
Chemical formulaC5H9N3OC5H9N3S
Mr127.15143.21
Crystal system, space groupMonoclinic, P21/cTriclinic, P1
Temperature (K)298298
a, b, c (Å)11.1646 (3), 5.13891 (9), 13.0301 (2)5.86650 (17), 8.0313 (2), 9.0795 (4)
α, β, γ (°)90, 112.3496 (11), 90104.1407 (18), 101.0403 (19), 106.3511 (17)
V3)691.43 (3)382.15 (2)
Z42
Radiation typeCu Kα1, λ = 1.5406 ÅCu Kα1, λ = 1.5406 Å
µ (mm1)0.743.11
Specimen shape, size (mm)Flat sheet, 8 × 8Flat sheet, 8 × 8
Data collection
DiffractometerStoe transmission Stadi-P
diffractometer
Stoe transmission Stadi-P
diffractometer
Specimen mountingPowder loaded into two Mylar foilsPowder loaded into two Mylar foils
Data collection modeTransmissionTransmission
Scan methodStepStep
2θ values (°)2θmin = 5 2θmax = 80 2θstep = 0.022θmin = 4.980 2θmax = 79.960 2θstep = 0.02
Refinement
R factors and goodness of fitRp = 0.027, Rwp = 0.036, Rexp = 0.029, R(F2) = 0.02795, χ2 = 1.613Rp = 0.033, Rwp = 0.043, Rexp = 0.034, R(F2) = 0.02670, χ2 = 1.664
No. of data points37503750
No. of parameters121114
No. of restraints01
H-atom treatmentH-atom parameters not refinedH-atom parameters not refined

Computer programs: WinXPOW (Stoe & Cie, 1999), EXPO2014 (Altomare et al., 2013), GSAS (Larson & Von Dreele, 2004), ORTEP-3 for Windows (Farrugia, 2012), Mercury (Macrae et al., 2006), publCIF (Westrip, 2010).

 

Acknowledgements

The authors thank Professor I. Othman, Director General, and Professor Z. Ajji, Head of the Chemistry Department, for their support and encouragement during this work. We also thank Miss D. Naima for her kind assistance.

References

First citationAlomar, K., Gaumet, V., Allain, M., Bouet, G. & Landreau, A. (2012). J. Inorg. Biochem. 115, 36–43.  Google Scholar
First citationAltomare, A., Cuocci, C., Giacovazzo, C., Moliterni, A., Rizzi, R., Corriero, N. & Falcicchio, A. (2013). J. Appl. Cryst. 46, 1231–1235.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationBeraldo, H. & Gambinob, D. (2004). Mini Rev. Med. Chem. 4, 31–39.  PubMed CAS Google Scholar
First citationBeraldo, H., Sinisterra, R. D., Teixeira, L. R., Vieira, R. P. & Doretto, M. C. (2002). Biochem. Biophys. Res. Commun. 296, 241–246.  Web of Science CrossRef PubMed CAS Google Scholar
First citationBoultif, A. & Louër, D. (2004). J. Appl. Cryst. 37, 724–731.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationCarballo, R., Pino-Cuevas, A. & Vázquez-López, E. M. (2014). Acta Cryst. E70, o970.  Google Scholar
First citationCasas, J. S., Garc\?ía-Tasende, M. S. & Sordo, J. (2000). Coord. Chem. Rev. 209, 197–261.  Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFinger, L. W., Cox, D. E. & Jephcoat, A. P. (1994). J. Appl. Cryst. 27, 892–900.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationGan, C., Cui, J., Su, S., Lin, Q., Jia, L., Fan, L. & Huang, Y. (2014). Steroids, 87, 99–107.  Google Scholar
First citationGarg, B. S. & Jain, V. K. (1988). Microchem. J. 38, 144–169.  CrossRef CAS Google Scholar
First citationGreenbaum, D. C., Mackey, Z., Hansell, E., Doyle, P. S., Gut, J., Caffrey, C. R., Lehrman, J., Rosenthal, P. J., McKerrow, J. H. & Chibale, K. (2004). J. Med. Chem. 47, 3212–3219.  Google Scholar
First citationKasuga, N. C., Sekino, K., Ishikawa, M., Honda, A., Yokoyama, M., Nakano, S., Shimada, N., Koumo, C. & Nomiya, K. (2003). J. Inorg. Biochem. 96, 298–310.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationKüçükgüzel, G., Kocatepe, A., De Clercq, E., Şahin, F. & Güllüce, M. (2006). Eur. J. Med. Chem. 41, 353–359.  Google Scholar
First citationLarson, A. C. & Von Dreele, R. B. (2004). GSAS. Report LAUR 86-748. Los Alamos National Laboratory, New Mexico, USA.  Google Scholar
First citationLe Bail, A., Duroy, H. & Fourquet, J. L. (1988). Mater. Res. Bull. 23, 447–452.  CrossRef CAS Web of Science Google Scholar
First citationMacrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationMikhaleva, A. I., Ivanov, A. V., Vasil'tsov, A. M., Ushakov, I. A., Ma, J. S. & Yang, G. (2008). Chem. Heterocycl. Compd, 44, 1117–1122.  Google Scholar
First citationNaik, D. V. & Palenik, G. J. (1974). Acta Cryst. B30, 2396–2401.  CSD CrossRef IUCr Journals Web of Science Google Scholar
First citationOliveira, R. B. de, de Souza-Fagundes, E. M., Soares, R. P. P., Andrade, A. A., Krettli, A. U. & Zani, C. L. (2008). Eur. J. Med. Chem. 43, 1983–1988.  Google Scholar
First citationPelosi, G., Pelizzi, C., Belicchi Ferrari, M., Rodríguez-Argüelles, M. C., Vieito, C. & Sanmartín, J. (2005). Acta Cryst. C61, o589–o592.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationReddy, M. S., Sarala, Y., Jagadeesh, M., Das, S. K. & Ammireddy, V. R. (2014). Acta Cryst. E70, o846.  Google Scholar
First citationRodríguez-Carvajal, J. (2001). Commission on Powder Diffraction (IUCr) Newsletter, 26, 12–19.  Google Scholar
First citationRoisnel, T. & Rodríguez-Carvajal, J. (2000). Mater. Sci. Forum, 378–381, 118–123.  Google Scholar
First citationSarojini, B. K., Narayana, B., Bindya, S., Yathirajan, H. S. & Bolte, M. (2007). Acta Cryst. E63, o2946.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSmith, G. S. & Snyder, R. L. (1979). J. Appl. Cryst. 12, 60–65.  CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationStephens, P. W. (1999). J. Appl. Cryst. 32, 281–289.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStoe & Cie (1999). WinXPOW. Stoe & Cie, Darmstadt, Germany.  Google Scholar
First citationTeixeira, L. R., Sinisterra, R. D., Vieira, R. P., Doretto, M. C. & Beraldo, H. (2003). J. Incl. Phenom. Macrocycl. Chem. 47, 77–82.  Google Scholar
First citationThompson, P., Cox, D. E. & Hastings, J. B. (1987). J. Appl. Cryst. 20, 79–83.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationToby, B. H. (2001). J. Appl. Cryst. 34, 210–213.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationVon Dreele, R. B. (1997). J. Appl. Cryst. 30, 517–525.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationWang, J.-L., Jia, Y.-J. & Yu, M. (2004). Acta Cryst. E60, o662–o663.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWolff, P. M. de (1968). J. Appl. Cryst. 1, 108–113.  CrossRef IUCr Journals Web of Science Google Scholar
First citationYathirajan, H. S., Bindya, S., Narayana, B., Sarojini, B. K. & Bolte, M. (2006). Acta Cryst. E62, o5925–o5926.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 71| Part 2| February 2015| Pages 168-172
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds