research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 71| Part 2| February 2015| Pages 217-219

Crystal structure of catena-poly[[cadmium(II)-di-μ2-bromido-μ2-L-proline-κ2O:O′] monohydrate]

aCrystal Growth Laboratory, PG & Research Department of Physics, Periyar EVR College (Autonomous), Tiruchirappalli 620 023, India, bCrystal Growth and Thin Film Laboratory, Department of Physics and Nanotechnology, SRM University, Kattankulathur 603 203, India, and cDepartment of Bioinformatics, School of Chemical and Biotechnology, SASTRA University, Thanjavur 613 401, India
*Correspondence e-mail: balacrystalgrowth@gmail.com

Edited by V. V. Chernyshev, Moscow State University, Russia (Received 29 December 2014; accepted 20 January 2015; online 24 January 2015)

In the title coordination polymer, {[CdBr2(C5H9NO2)]·H2O}n, the CdII ion is coordinated by four bromido ligands and two carboxyl­ate oxygen atoms of two symmetry-related proline ligands, which exist in a zwitterionic form, in a distorted octa­hedral geometry. There is an intra­molecular N—H⋯O hydrogen bond between the amino group and the carboxyl­ate fragment. Each coordinating ligand bridges two CdII atoms, thus forming polymeric chains running along the c-axis direction. The water mol­ecules of crystallization serve as donors for the weak inter­molecular O—H⋯O and O—H⋯Br hydrogen bonds that link adjacent polymeric chains, thus forming a three-dimensional structure. N—H⋯O and N—H⋯Br hydrogen bonds also occur.

1. Chemical context

The characterization of second-order non-linear optical (NLO) materials is important because of their potential applications such as frequency shifting, optical modulation, optical switching, telecommunication and signal processing. It is known that the chiral amino acids and their complexes are potential materials for NLO applications (Eimerl et al., 1989[Eimerl, D., Velsko, S., Davis, L., Wang, F., Loiacono, G. & Kennedy, G. (1989). IEEE J. Quantum Electron. 25, 179-193.]; Pal et al., 2004[Pal, T., Kar, T., Bocelli, G. & Rigi, L. (2004). Cryst. Growth Des. 4, 743-747.]; Srinivasan et al., 2006[Srinivasan, P., Kanagasekaran, T., Gopalakrishnan, R., Bhagavannarayana, G. & Ramasamy, P. (2006). Cryst. Growth Des. 6, 1663-1670.]). This study is a part of an ongoing investigation of the crystal and mol­ecular structures of a series of amino acid–metal complexes (Sathiskumar et al., 2015[Sathiskumar, S., Balakrishnan, T., Ramamurthi, K. & Thamotharan, S. (2015). Spectrochim. Acta Part A, 138, 187-194.]; Balakrishnan et al., 2013[Balakrishnan, T., Ramamurthi, K., Jeyakanthan, J. & Thamotharan, S. (2013). Acta Cryst. E69, m60-m61.]).

[Scheme 1]

2. Structural commentary

The asymmetric unit of the title complex (I)[link] (Fig. 1[link]) contains one CdII ion, one proline and two bromido ligands, and one water mol­ecule of crystallization. The title complex has a very similar structure to that of the chloride analogue (Yukawa et al., 1983[Yukawa, Y., Inomata, Y. & Takeuchi, T. (1983). Bull. Chem. Soc. Jpn, 56, 2125-2128.]) and L-proline manganese dichloride monohydrate (Rzączyńska et al., 1997[Rzączyńska, Z., Mrozek, R. & Glowiak, T. (1997). J. Chem. Crystallogr. 27, 417-422.]; Lamberts & Englert, 2012[Lamberts, K. & Englert, U. (2012). Acta Cryst. B68, 610-618.]). In (I)[link], proline exists in a zwitterionic form, as evident from the bond lengths involving the carboxyl­ate atoms and the protonation of the ring N atom of the pyrrolidine fragment. The CdII ion is coordinated by four bromido ligands [Cd—Br = 2.7236 (13)–2.7737 (12) Å] and two carboxyl­ate oxygen atoms [Cd—O = 2.312 (8) and 2.318 (8) Å] of two proline ligands in a slightly distorted octa­hedral geometry. The title complex is extended as a polymeric chain which runs parallel to the c axis. Within one chain, adjacent CdII ions are separated by 3.727 (1) Å. The closest Cd⋯Cd distance between neighbouring polymeric chains is 8.579 (2) Å. The five endocyclic torsion angles of the pyrrolidine ring of the proline residue are N1—C2—C3—C4 = 31.8 (13)°, C2—C3—C4—C5 = −39.1 (15)°, C3—C4—C5—N1 = 29.9 (14)°, C2—N1—C5—C4 = −9.7 (12)° and C5—N1—C2—C3 = −13.1 (11)°. The pyrrolidine ring exhibits twisted conformation on the C3—C4 bond with a pseudo-rotation angle Δ = 249.3 (12)° and a maximum torsion angle φm = 38.5 (8)° (Rao et al., 1981[Rao, S. T., Westhof, E. & Sundaralingam, M. (1981). Acta Cryst. A37, 421-425.]).

[Figure 1]
Figure 1
A portion of the crystal structure of the title complex, showing the atomic labeling. Displacement ellipsoids are drawn at the 30% probability level. [Symmetry codes: (a) [{1\over 2}] − x, −y, z − [{1\over 2}]; (b) [{1\over 2}] − x, −y, z + [{1\over 2}].]

In (I)[link], as observed in the chloride analogue (Yukawa et al., 1983[Yukawa, Y., Inomata, Y. & Takeuchi, T. (1983). Bull. Chem. Soc. Jpn, 56, 2125-2128.]), there is an intra­molecular N1—H1A⋯O2 hydrogen bond between the amino group and the carboxyl­ate fragment.

3. Supra­molecular features

The crystal structure of (I)[link], is stabilized by inter­molecular N—H⋯O, N—H⋯Br, O—H⋯O and O—H⋯Br hydrogen bonds (Table 1[link], Figs. 2[link] and 3[link]). The water mol­ecules serve as donors for the weak O—H⋯O and O—H⋯Br hydrogen bonds (Table 1[link]) which link adjacent polymeric chains (Fig. 3[link]), thus forming a three-dimensional structure.

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1A⋯O2 0.89 2.16 2.626 (12) 112
O1W—H2W⋯O1 0.84 (17) 2.6 (2) 3.175 (19) 132
O1W—H2W⋯Br2 0.84 (17) 2.8 (3) 3.311 (19) 123
N1—H1A⋯O1Wi 0.89 2.05 2.90 (2) 159
N1—H1B⋯Br1ii 0.89 2.69 3.416 (11) 140
O1W—H1W⋯Br2iii 0.88 (16) 2.7 (3) 3.197 (19) 116
Symmetry codes: (i) x, y, z-1; (ii) [x-{\script{1\over 2}}, -y+{\script{1\over 2}}, -z]; (iii) [x-{\script{1\over 2}}, -y+{\script{1\over 2}}, -z+1].
[Figure 2]
Figure 2
The crystal packing of (I)[link] viewed along the a axis. Dashed lines denote inter­molecular hydrogen bonds. C-bound H atoms have been omitted for clarity.
[Figure 3]
Figure 3
A portion of the crystal packing viewed along the a axis and showing hydrogen bonds (dashed lines) between two neighbouring polymeric chains.

4. Database survey

A search in the Cambridge Structural Database (Version 5.35, last update May 2014; Groom & Allen, 2014[Groom, C. R. & Allen, F. H. (2014). Angew. Chem. Int. Ed. 53, 662-671.]) for the structures with metal ions coordinated by one of the carboxyl­ate oxygen atoms of the proline moiety yielded 44 hits. Of these, two structures contain a cadmium metal ion, viz. catena-[di­chlorido-(4-hy­droxy-L-proline)cadmium] (refcode BOHVID; Yukawa et al., 1982[Yukawa, Y., Inomata, Y., Takeuchi, T., Shimoi, M. & Ouchi, A. (1982). Bull. Chem. Soc. Jpn, 55, 3135-3137.]) and catena-[bis­(μ2-chlorido)(μ2-L-pro­line)cadmium monohydrate] (refcode BUXBUR; Yukawa et al., 1983[Yukawa, Y., Inomata, Y. & Takeuchi, T. (1983). Bull. Chem. Soc. Jpn, 56, 2125-2128.]). The latter structure is isotypic with the title complex. Another compound, catena-[bis­(μ2-chlorido)(μ2-L-prolinato-κ2-O,O′)manganese(II) monohydrate], has been structurally determined three times and has similar cell parameters and the same space group as the title compound (refcode ROJQEM: Rzączyńska et al., 1997[Rzączyńska, Z., Mrozek, R. & Glowiak, T. (1997). J. Chem. Crystallogr. 27, 417-422.]; refcode ROJEQM01: Tilborg et al., 2010[Tilborg, A., Michaux, C., Norberg, B. & Wouters, J. (2010). Eur. J. Med. Chem. 45, 3511-3517.]; refcode ROJQEM02: Lamberts & Englert, 2012[Lamberts, K. & Englert, U. (2012). Acta Cryst. B68, 610-618.]).

5. Synthesis and crystallization

To prepare the title compound, L-proline (Loba) and cadmium bromide tetra­hydrate (Loba) in an equimolar ratio were dissolved in double-distilled water. The obtained solution of the homogeneous mixture was evaporated at room temperature to afford the white crystalline title compound, which was then recrystallized by slow evaporation from an aqueous solution.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. As the title compound is isotypic with its chlorido analogue (Yukawa et al., 1983[Yukawa, Y., Inomata, Y. & Takeuchi, T. (1983). Bull. Chem. Soc. Jpn, 56, 2125-2128.]), the atomic coordinates of the latter were used as starting values in the initial cycles of the refinement. The positions of water hydrogen atoms were calculated by method of Nardelli (1999[Nardelli, M. (1999). J. Appl. Cryst. 32, 563-571.]). Further, the O—H and H1W⋯H2W distances of the water mol­ecules were restrained to 0.85 (2) and 1.38 (2) Å, respectively, using the DFIX option and included in the structure-factor calculations with Uiso(H1W/H2W) = 1.1Ueq(O1W). The remaining hydrogen atoms were placed in geometrically idealized positions (C—H = 0.97–0.98 Å and N—H = 0.89 Å) with Uiso(H) = 1.2Ueq(C/N) and were constrained to ride on their parent atoms. Reflections 110 and 020 were partially obscured by the beam stop and were omitted.

Table 2
Experimental details

Crystal data
Chemical formula [CdBr2(C5H9NO2)]·H2O
Mr 405.37
Crystal system, space group Orthorhombic, P212121
Temperature (K) 296
a, b, c (Å) 10.1891 (8), 13.4961 (11), 7.4491 (5)
V3) 1024.35 (13)
Z 4
Radiation type Mo Kα
μ (mm−1) 9.90
Crystal size (mm) 0.35 × 0.30 × 0.30
 
Data collection
Diffractometer Bruker SMART CCD area detector
Absorption correction Multi-scan (SADABS; Bruker, 2008[Bruker (2008). APEX2, SAINT, XPREP and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.129, 0.155
No. of measured, independent and observed [I > 2σ(I)] reflections 8264, 2481, 1964
Rint 0.068
(sin θ/λ)max−1) 0.666
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.041, 0.089, 1.06
No. of reflections 2481
No. of parameters 115
No. of restraints 3
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 1.02, −1.07
Absolute structure Flack x determined using 705 quotients [(I+)−(I)]/[(I+)+(I)] (Parsons et al., 2013[Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249-259.])
Absolute structure parameter 0.035 (15)
Computer programs: APEX2, SAINT and XPREP (Bruker, 2008[Bruker (2008). APEX2, SAINT, XPREP and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXL2014/6 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]) and Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]).

Supporting information


Chemical context top

The characterization of second-order non-linear optical (NLO) materials is important because of their potential applications such as frequency shifting, optical modulation, optical switching, telecommunication and signal processing. It is known that the chiral amino acids and their complexes are potential materials for NLO applications (Eimerl et al., 1989; Pal et al., 2004; Srinivasan et al., 2006). This study is a part of an ongoing investigation of the crystal and molecular structures of a series of amino acid–metal complexes (Sathiskumar et al., 2015; Balakrishnan et al., 2013).

Structural commentary top

The asymmetric unit of the title complex (I) (Fig. 1) contains one CdII ion, one proline and two bromido ligands, and one water molecule of crystallization. The title complex has a very similar structure to that of the chloride analogue (Yukawa et al., 1983) and L-proline manganese dichloride monohydrate (Rzączyńska et al., 1997; Lamberts & Englert, 2012). In (I), proline exists in a zwitterionic form, as evident from the bond lengths involving the carboxyl­ate atoms and the protonation of the ring N atom of the pyrrolidine fragment. The CdII ion is coordinated by four bromido ligands [Cd—Br = 2.7236 (13)–2.7737 (12) Å] and two carboxyl­ate oxygen atoms [Cd—O = 2.312 (8) and 2.318 (8) Å] of the proline ligand in a slightly distorted o­cta­hedral geometry. The title complex is extended as a polymeric chain which runs parallel to the c axis. Within one chain, adjacent CdII ions are separated by 3.727 (1) Å. The closest Cd···Cd distance between neighbouring polymeric chains is is 8.579 (2) Å. The five endocyclic torsion angles of the pyrrolidine ring of the proline residue are N1—C2—C3—C4 = 31.8 (13)°, C2—C3—C4—C5 = -39.1 (15)°, C3—C4—C5—N1 = 29.9 (14)°, C2—N1—C5—C4 = -9.7 (12)° and C5—N1—C2—C3 = -13.1 (11)°. The pyrrolidine ring exhibits twisted conformation on the C3—C4 bond with a pseudo-rotation angle Δ = 249.3 (12)° and a maximum torsion angle ϕm = 38.5 (8)° (Rao et al., 1981).

In (I), as observed in the chloride analogue (Yukawa et al., 1983), there is an intra­molecular N1—H1A···O2 hydrogen bond between the amino group and the carboxyl­ate fragment.

Supra­molecular features top

The crystal structure of (I), is stabilized by inter­molecular N—H···O, N—H···Br, O—H···O and O—H···Br hydrogen bonds (Table 1, Figs. 2 and 3). The water molecules serve as donors for the weak O—H···O and O—H···Br hydrogen bonds (Table 1) which link adjacent polymeric chains (Fig. 3), thus forming a three-dimensional structure.

Database survey top

A search in the Cambridge Structural Database (Version 5.35, last update May 2014; Groom & Allen, 2014) for the structures with metal ions coordinated by one of the carboxyl­ate oxygen atoms of the proline moiety yielded 44 hits. Of these, two structures contain a cadmium metal ion, viz. catena[di­chloro-(4-hy­droxy-L-proline)cadmium(II)] (refcode BOHVID; Yukawa et al., 1982) and catena-[bis­(µ2-chloro)(µ2-L-proline)cadmium(II) monohydrate] (refcode BUXBUR; Yukawa et al., 1983). The latter structure is isotypic with the title complex. The cell parameters and space groups of three other structures are similar to those of the title complex. They are catena-[bis­(µ2-chloro)(µ2-L-prolinato-κ2-O,O')manganese(II) monohydrate] (refcode ROJQEM; Rzączyńska et al., 1997), catena-[(µ2-L-prolinato)bis­(µ2-chloro)­manganese(II) monohydrate] (refcode ROJEQM01; Tilborg et al., 2010) and catena-[bis­(µ2-chloro)(µ2-L-prolinato)manganese(II) monohydrate] (refcode ROJQEM02; Lamberts & Englert, 2012).

Synthesis and crystallization top

To prepare the title compound, L-proline (Loba) and cadmium bromide tetra­hydrate (Loba) in an equimolar ratio were dissolved in double-distilled water. The obtained solution of the homogeneous mixture was evaporated at room temperature to afford the white crystalline title compound, which was then recrystallized by slow evaporation from an aqueous solution.

Refinement top

As the title compound is isotypic with its chlorido analogue (Yukawa et al., 1983), the atomic coordinates of the latter were used as starting values in the initial cycles of the refinement. The positions of water hydrogen atoms were calculated by method of Nardelli (1999). Further, the O—H and H1W···H2W distances of the water molecules were restrained to 0.85 (2) and 1.38 (2) Å, respectively, using the DFIX option and included in the structure-factor calculations with Uiso(H1W/H2W) = 1.1Ueq(O1W). The remaining hydrogen atoms were placed in geometrically idealized positions (C—H = 0.97–0.98 Å and N—H = 0.89 Å) with Uiso(H) = 1.2Ueq(C/N) and were constrained to ride on their parent atoms. Reflections 110 and 020 were partially obscured by the beam stop and were omitted.

Related literature top

For related literature, see: Balakrishnan et al. (2013); Eimerl et al. (1989); Groom & Allen (2014); Lamberts & Englert (2012); Nardelli (1999); Pal et al. (2004); Parsons et al. (2013); Rao et al. (1981); Rzączyńska et al. (1997); Sathiskumar et al. (2015); Srinivasan et al. (2006); Tilborg et al. (2010); Yukawa et al. (1982, 1983).

Computing details top

Data collection: APEX2 (Bruker, 2008); cell refinement: APEX2 and SAINT (Bruker, 2008); data reduction: SAINT and XPREP (Bruker, 2008); program(s) used to solve structure: atomic coordinates of chlorido analogue (Yukawa et al., 1983) used as starting values in the initial cycles of the refinement; program(s) used to refine structure: SHELXL2014/6 (Sheldrick, 2015); molecular graphics: PLATON (Spek, 2009) and Mercury (Macrae et al., 2008).

Figures top
[Figure 1] Fig. 1. A portion of the crystal structure of the title complex, showing the atomic labeling. Displacement ellipsoids are drawn at the 30% probability level. [Symmetry codes: (a) 1/2 - x, -y, z - 1/2; (b) 1/2 - x, -y, z + 1/2.]
[Figure 2] Fig. 2. The crystal packing of (I) viewed along the a axis. Dashed lines denote intermolecular hydrogen bonds. C-bound H atoms have been omitted for clarity.
[Figure 3] Fig. 3. A portion of the crystal packing viewed along the a axis and showing hydrogen bonds (dashed lines) between two neighbouring polymeric chains.
catena-Poly[[cadmium(II)-di-µ2-bromido-µ2-L-proline-κ2O:O'] monohydrate] top
Crystal data top
[CdBr2(C5H9NO2)]·H2ODx = 2.629 Mg m3
Mr = 405.37Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, P212121Cell parameters from 4066 reflections
a = 10.1891 (8) Åθ = 5.0–55.2°
b = 13.4961 (11) ŵ = 9.90 mm1
c = 7.4491 (5) ÅT = 296 K
V = 1024.35 (13) Å3Block, colourless
Z = 40.35 × 0.30 × 0.30 mm
F(000) = 760
Data collection top
Bruker SMART CCD area detector
diffractometer
1964 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.068
ω and ϕ scanθmax = 28.2°, θmin = 3.1°
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
h = 1313
Tmin = 0.129, Tmax = 0.155k = 1714
8264 measured reflectionsl = 96
2481 independent reflections
Refinement top
Refinement on F2Hydrogen site location: mixed
Least-squares matrix: fullH atoms treated by a mixture of independent and constrained refinement
R[F2 > 2σ(F2)] = 0.041 w = 1/[σ2(Fo2) + (0.0243P)2 + 1.4185P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.089(Δ/σ)max < 0.001
S = 1.06Δρmax = 1.02 e Å3
2481 reflectionsΔρmin = 1.07 e Å3
115 parametersAbsolute structure: Flack x determined using 705 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013)
3 restraintsAbsolute structure parameter: 0.035 (15)
Crystal data top
[CdBr2(C5H9NO2)]·H2OV = 1024.35 (13) Å3
Mr = 405.37Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 10.1891 (8) ŵ = 9.90 mm1
b = 13.4961 (11) ÅT = 296 K
c = 7.4491 (5) Å0.35 × 0.30 × 0.30 mm
Data collection top
Bruker SMART CCD area detector
diffractometer
2481 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
1964 reflections with I > 2σ(I)
Tmin = 0.129, Tmax = 0.155Rint = 0.068
8264 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.041H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.089Δρmax = 1.02 e Å3
S = 1.06Δρmin = 1.07 e Å3
2481 reflectionsAbsolute structure: Flack x determined using 705 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013)
115 parametersAbsolute structure parameter: 0.035 (15)
3 restraints
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cd10.24415 (7)0.00192 (7)0.31349 (9)0.0425 (2)
Br10.44442 (8)0.03071 (8)0.06673 (14)0.0450 (3)
Br20.37743 (10)0.11262 (9)0.56256 (15)0.0537 (3)
O10.1309 (8)0.1397 (6)0.2136 (9)0.057 (2)
O20.1420 (7)0.1362 (6)0.0865 (9)0.056 (2)
N10.0870 (10)0.2205 (8)0.1393 (11)0.062 (3)
H1A0.01680.21710.21000.075*
H1B0.12020.28130.14710.075*
C10.0861 (9)0.1560 (7)0.0564 (15)0.039 (2)
C20.0488 (10)0.1988 (8)0.0510 (15)0.053 (3)
H20.05240.25960.12290.064*
C30.1523 (12)0.1260 (13)0.115 (2)0.084 (5)
H3A0.11720.08260.20660.100*
H3B0.22790.16070.16270.100*
C40.1878 (13)0.0697 (13)0.047 (2)0.094 (5)
H4A0.27330.03920.03260.113*
H4B0.12360.01810.07010.113*
C50.1899 (14)0.1441 (12)0.200 (2)0.086 (5)
H5A0.27580.17430.21260.103*
H5B0.16510.11340.31270.103*
O1W0.111 (2)0.2521 (17)0.587 (2)0.183 (8)
H1W0.11 (3)0.296 (11)0.50 (2)0.201*
H2W0.13 (3)0.197 (8)0.54 (3)0.201*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cd10.0453 (4)0.0579 (4)0.0243 (3)0.0069 (4)0.0005 (2)0.0045 (3)
Br10.0347 (4)0.0679 (7)0.0323 (4)0.0033 (5)0.0007 (4)0.0001 (5)
Br20.0597 (6)0.0687 (7)0.0327 (5)0.0117 (6)0.0013 (5)0.0056 (6)
O10.074 (5)0.066 (5)0.032 (4)0.025 (4)0.011 (3)0.005 (4)
O20.059 (5)0.068 (5)0.043 (4)0.016 (4)0.005 (4)0.007 (4)
N10.063 (6)0.066 (7)0.058 (6)0.037 (6)0.015 (5)0.001 (5)
C10.040 (5)0.039 (5)0.039 (5)0.005 (4)0.002 (5)0.003 (5)
C20.053 (6)0.060 (7)0.046 (5)0.024 (6)0.009 (6)0.010 (6)
C30.043 (7)0.113 (13)0.095 (10)0.005 (8)0.018 (6)0.008 (10)
C40.042 (6)0.110 (12)0.130 (13)0.008 (8)0.006 (9)0.021 (13)
C50.075 (9)0.090 (11)0.091 (10)0.040 (9)0.024 (8)0.037 (9)
O1W0.178 (16)0.22 (2)0.153 (13)0.061 (18)0.007 (14)0.061 (17)
Geometric parameters (Å, º) top
Cd1—O12.312 (8)N1—H1B0.8900
Cd1—O2i2.318 (8)C1—C21.491 (13)
Cd1—Br2ii2.7236 (13)C2—C31.517 (19)
Cd1—Br1i2.7285 (11)C2—H20.9800
Cd1—Br22.7421 (13)C3—C41.47 (2)
Cd1—Br12.7737 (12)C3—H3A0.9700
Br1—Cd1ii2.7285 (11)C3—H3B0.9700
Br2—Cd1i2.7236 (13)C4—C51.52 (2)
O1—C11.276 (12)C4—H4A0.9700
O2—C11.237 (12)C4—H4B0.9700
O2—Cd1ii2.318 (8)C5—H5A0.9700
N1—C21.499 (13)C5—H5B0.9700
N1—C51.537 (17)O1W—H1W0.87 (3)
N1—H1A0.8900O1W—H2W0.87 (3)
O1—Cd1—O2i179.9 (3)O1—C1—C2114.9 (9)
O1—Cd1—Br2ii90.50 (19)C1—C2—N1109.9 (9)
O2i—Cd1—Br2ii89.53 (19)C1—C2—C3112.4 (10)
O1—Cd1—Br1i90.0 (2)N1—C2—C3103.9 (10)
O2i—Cd1—Br1i90.03 (19)C1—C2—H2110.1
Br2ii—Cd1—Br1i93.59 (4)N1—C2—H2110.1
O1—Cd1—Br291.52 (19)C3—C2—H2110.1
O2i—Cd1—Br288.44 (19)C4—C3—C2104.5 (11)
Br2ii—Cd1—Br2177.29 (3)C4—C3—H3A110.9
Br1i—Cd1—Br288.22 (3)C2—C3—H3A110.9
O1—Cd1—Br192.4 (2)C4—C3—H3B110.9
O2i—Cd1—Br187.56 (19)C2—C3—H3B110.9
Br2ii—Cd1—Br187.67 (4)H3A—C3—H3B108.9
Br1i—Cd1—Br1177.27 (4)C3—C4—C5106.0 (12)
Br2—Cd1—Br190.44 (4)C3—C4—H4A110.5
Cd1ii—Br1—Cd185.27 (3)C5—C4—H4A110.5
Cd1i—Br2—Cd185.98 (3)C3—C4—H4B110.5
C1—O1—Cd1127.7 (6)C5—C4—H4B110.5
C1—O2—Cd1ii132.9 (7)H4A—C4—H4B108.7
C2—N1—C5108.9 (10)C4—C5—N1102.3 (10)
C2—N1—H1A109.9C4—C5—H5A111.3
C5—N1—H1A109.9N1—C5—H5A111.3
C2—N1—H1B109.9C4—C5—H5B111.3
C5—N1—H1B109.9N1—C5—H5B111.3
H1A—N1—H1B108.3H5A—C5—H5B109.2
O2—C1—O1126.0 (8)H1W—O1W—H2W106 (4)
O2—C1—C2119.0 (10)
Cd1ii—O2—C1—O144.5 (15)C5—N1—C2—C1107.4 (11)
Cd1ii—O2—C1—C2132.7 (9)C5—N1—C2—C313.1 (11)
Cd1—O1—C1—O240.4 (15)C1—C2—C3—C487.0 (14)
Cd1—O1—C1—C2136.8 (8)N1—C2—C3—C431.8 (13)
O2—C1—C2—N16.1 (15)C2—C3—C4—C539.1 (15)
O1—C1—C2—N1176.4 (9)C3—C4—C5—N129.9 (14)
O2—C1—C2—C3109.1 (12)C2—N1—C5—C49.7 (12)
O1—C1—C2—C368.3 (13)
Symmetry codes: (i) x+1/2, y, z+1/2; (ii) x+1/2, y, z1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O20.892.162.626 (12)112
O1W—H2W···O10.84 (17)2.6 (2)3.175 (19)132
O1W—H2W···Br20.84 (17)2.8 (3)3.311 (19)123
N1—H1A···O1Wiii0.892.052.90 (2)159
N1—H1B···Br1iv0.892.693.416 (11)140
O1W—H1W···Br2v0.88 (16)2.7 (3)3.197 (19)116
Symmetry codes: (iii) x, y, z1; (iv) x1/2, y+1/2, z; (v) x1/2, y+1/2, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O20.892.162.626 (12)112.1
O1W—H2W···O10.84 (17)2.6 (2)3.175 (19)132
O1W—H2W···Br20.84 (17)2.8 (3)3.311 (19)123
N1—H1A···O1Wi0.892.052.90 (2)159
N1—H1B···Br1ii0.892.693.416 (11)140
O1W—H1W···Br2iii0.88 (16)2.7 (3)3.197 (19)116
Symmetry codes: (i) x, y, z1; (ii) x1/2, y+1/2, z; (iii) x1/2, y+1/2, z+1.

Experimental details

Crystal data
Chemical formula[CdBr2(C5H9NO2)]·H2O
Mr405.37
Crystal system, space groupOrthorhombic, P212121
Temperature (K)296
a, b, c (Å)10.1891 (8), 13.4961 (11), 7.4491 (5)
V3)1024.35 (13)
Z4
Radiation typeMo Kα
µ (mm1)9.90
Crystal size (mm)0.35 × 0.30 × 0.30
Data collection
DiffractometerBruker SMART CCD area detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2008)
Tmin, Tmax0.129, 0.155
No. of measured, independent and
observed [I > 2σ(I)] reflections
8264, 2481, 1964
Rint0.068
(sin θ/λ)max1)0.666
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.041, 0.089, 1.06
No. of reflections2481
No. of parameters115
No. of restraints3
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)1.02, 1.07
Absolute structureFlack x determined using 705 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013)
Absolute structure parameter0.035 (15)

Computer programs: APEX2 (Bruker, 2008), APEX2 and SAINT (Bruker, 2008), SAINT and XPREP (Bruker, 2008), atomic coordinates of chlorido analogue (Yukawa et al., 1983) used as starting values in the initial cycles of the refinement, SHELXL2014/6 (Sheldrick, 2015), PLATON (Spek, 2009) and Mercury (Macrae et al., 2008).

 

Footnotes

Additional correspondence author, e-mail: thamu@scbt.sastra.edu.

Acknowledgements

TB and SS acknowledge the University Grants Commission (UGC), New Delhi, India, for providing financial support [project ref. No. 41–956/2012(SR)]. ST is very grateful to the management of SASTRA University for infrastructural and financial support (Professor TRR grant).

References

First citationBalakrishnan, T., Ramamurthi, K., Jeyakanthan, J. & Thamotharan, S. (2013). Acta Cryst. E69, m60–m61.  Google Scholar
First citationBruker (2008). APEX2, SAINT, XPREP and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationEimerl, D., Velsko, S., Davis, L., Wang, F., Loiacono, G. & Kennedy, G. (1989). IEEE J. Quantum Electron. 25, 179–193.  CrossRef CAS Web of Science Google Scholar
First citationGroom, C. R. & Allen, F. H. (2014). Angew. Chem. Int. Ed. 53, 662–671.  Web of Science CrossRef CAS Google Scholar
First citationLamberts, K. & Englert, U. (2012). Acta Cryst. B68, 610–618.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationNardelli, M. (1999). J. Appl. Cryst. 32, 563–571.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationPal, T., Kar, T., Bocelli, G. & Rigi, L. (2004). Cryst. Growth Des. 4, 743–747.  Google Scholar
First citationParsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationRao, S. T., Westhof, E. & Sundaralingam, M. (1981). Acta Cryst. A37, 421–425.  CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationRzączyńska, Z., Mrozek, R. & Glowiak, T. (1997). J. Chem. Crystallogr. 27, 417–422.  Google Scholar
First citationSathiskumar, S., Balakrishnan, T., Ramamurthi, K. & Thamotharan, S. (2015). Spectrochim. Acta Part A, 138, 187–194.  Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSrinivasan, P., Kanagasekaran, T., Gopalakrishnan, R., Bhagavannarayana, G. & Ramasamy, P. (2006). Cryst. Growth Des. 6, 1663–1670.  Google Scholar
First citationTilborg, A., Michaux, C., Norberg, B. & Wouters, J. (2010). Eur. J. Med. Chem. 45, 3511–3517.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationYukawa, Y., Inomata, Y. & Takeuchi, T. (1983). Bull. Chem. Soc. Jpn, 56, 2125–2128.  CSD CrossRef CAS Web of Science Google Scholar
First citationYukawa, Y., Inomata, Y., Takeuchi, T., Shimoi, M. & Ouchi, A. (1982). Bull. Chem. Soc. Jpn, 55, 3135–3137.  CrossRef CAS Web of Science Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 71| Part 2| February 2015| Pages 217-219
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds