metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 71| Part 2| February 2015| Pages m26-m27

Crystal structure of bis­­[S-hexyl 3-(4-methyl­benzyl­­idene)di­thio­carbazato-κ2N3,S]nickel(II)

aDepartment of Chemistry, Rajshahi University, Rajshahi-6205, Bangladesh, bDepartment of Applied Chemistry, Faculty of Engineering, University of Toyama, 3190 Gofuku, Toyama 930-8555, Japan, cCenter for Environmental Conservation and Research Safety, University of Toyama, 3190 Gofuku, Toyama 930-8555, Japan, and dDepartment of Chemical and Pharmaceutical Sciences, via Giorgieri 1, 34127 Trieste, Italy
*Correspondence e-mail: sabina_sust@yahoo.com

Edited by P. Dastidar, Indian Association for the Cultivation of Science, India (Received 2 January 2015; accepted 7 January 2015; online 14 January 2015)

In the title complex, [Ni(C15H21N2S2)2], the NiII atom exhibits a square-planar coordination geometry and is located on an inversion centre leading to a trans configuration of the N,S-chelating ligands. In the crystal, the complex mol­ecules stack at a distance of 4.6738 (3) Å along the a axis, which exclude any significant inter­actions between the aromatic rings.

1. Related literature

For the structures of related complexes, see: Chan et al. (2008[Chan, M. H. E., Crouse, K. A., Tahir, M. I. M., Rosli, R., Umar-Tsafe, N. & Cowley, A. R. (2008). Polyhedron, 27, 1141-1149.]); Islam et al. (2011[Islam, M. A. A. A. A., Tarafder, M. T. H., Sheikh, M. C., Alam, M. A. & Zangrando, E. (2011). Transition Met. Chem. 36, 531-537.], 2014[Islam, M. A. A. A. A., Sheikh, M. C., Alam, M. S., Zangrando, E., Alam, M. A., Tarafder, M. T. H. & Miyatake, R. (2014). Transition Met. Chem. 39, 141-149.]); Li et al. (2006[Li, S. L., Wu, J. Y., Tian, Y. P., Tang, Y. W., Jiang, M. H., Fun, H. K. & Chantrapromma, S. (2006). Opt. Mater. 28, 897-903.]); Zhang et al. (2004[Zhang, M. L., Tian, Y. P., Zhang, X. J., Wu, J. Y., Zhang, S. Y., Wang, D., Jiang, M. H., Chantrapromms, S. & Fun, H. K. (2004). Transition Met. Chem. 29, 596-602.]). For the structure of the ligand, see: Howlader et al. (2015[Howlader, M. B. H., Begum, M. S., Sheikh, M. C., Miyatake, R. & Zangrando, E. (2015). Acta Cryst. E71, o103-o104.]).

[Scheme 1]

2. Experimental

2.1. Crystal data

  • [Ni(C15H21N2S2)2]

  • Mr = 645.62

  • Triclinic, [P \overline 1]

  • a = 4.6738 (3) Å

  • b = 10.5132 (5) Å

  • c = 16.4789 (8) Å

  • α = 86.522 (3)°

  • β = 84.850 (3)°

  • γ = 79.057 (3)°

  • V = 791.00 (7) Å3

  • Z = 1

  • Cu Kα radiation

  • μ = 3.55 mm−1

  • T = 173 K

  • 0.37 × 0.08 × 0.02 mm

2.2. Data collection

  • Rigaku R-AXIS RAPID diffractometer

  • Absorption correction: multi-scan (ABSCOR; Rigaku, 1995[Rigaku (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.615, Tmax = 0.932

  • 9100 measured reflections

  • 2834 independent reflections

  • 2029 reflections with F2 > 2σ(F2)

  • Rint = 0.074

2.3. Refinement

  • R[F2 > 2σ(F2)] = 0.071

  • wR(F2) = 0.218

  • S = 1.09

  • 2834 reflections

  • 180 parameters

  • H-atom parameters constrained

  • Δρmax = 0.98 e Å−3

  • Δρmin = −0.35 e Å−3

Table 1
Selected bond lengths (Å)

Ni—N1 1.933 (3)
Ni—S1 2.1775 (10)

Data collection: RAPID-AUTO (Rigaku, 2001[Rigaku (2001). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.]); cell refinement: RAPID-AUTO; data reduction: RAPID-AUTO; program(s) used to solve structure: SIR92 (Altomare et al., 1994[Altomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: CrystalStructure (Rigaku, 2010[Rigaku (2010). CrystalStructure. Rigaku Corporation, Tokyo, Japan.]); software used to prepare material for publication: CrystalStructure.

Supporting information


Structural commentary top

The metal is located on a crystallographic inversion centre and the two Schiff bases, in their deprotonated imino thiol­ate form, act as chelating ligands to the metal centre via the azomethine nitro­gen N1 and thiol­ate sulphur S1 atoms in a trans-planar configuration as imposed by the crystal symmetry. The complex has coplanar geometry with the exception of the hexyl chains that pend hedgewise. In the complex, the Ni—S and Ni–N bond distances are of 2.1777 (11) and 1.933 (4) Å, respectively, with a S(2)—Ni—N(2) chelating angle of 86.06 (10)°. These geometrical parameters agree with those reported for similar nickel complexes either when ligands assume a trans (Islam, et al., 2011; Islam, et al., 2014; Zhang, et al., 2004) or a cis configuration (Chan, et al., 2008; Li, et al., 2006). The ligand, recently reported (Howlader, et al., 2015), underwent rotation about the C9—N2 by 180° in order to allow the N,S chelating behavior towards the metal. Upon coordination some salient features are observed with respect to the free ligand, and the most significant are an elongation of the C(9)—S(1) bond length (1.720 (4) Å in NiL2 that must be compared to 1.670 (3) Å in HL, thus validating the coordination with deprotonated thiol­ate sulphur atom. Correspondingly the N(2)—C(9) bond length, of 1.335 (3) Å, shortens to 1.270 (6) Å in the NiL2 complex, while the N(1)—N(2) bond length of 1.375 (3) Å in HL is slightly elongated in the complex (1.426 (5) Å, Table 1).

Supra­molecular features top

The complexes stack at a distance of 4.6738 (3) Å (axis a), which exclude any significant inter­actions between the aromatic rings.

Synthesis and crystallization top

A solution of Ni(CH3COO)2.4H2O (0.06 g, 0.25 mmol, 8 mL methanol) was added to a solution of the ligand, S-hexyl (E)-3-(4-methyl­benzyl­idene)di­thio­carbazate, (0.15 g, 0.5 mmol, 10 mL methanol ). The resulting mixture was stirred at room temperature for four hours. A dark reddish brown precipitate was formed, filtered off, washed with methanol and dried in vacuo over anhydrous CaCl2. Dark reddish brown single crystals, suitable for X-ray diffraction, of the compound were obtained by slow evaporation from a mixture of chloro­form and aceto­nitrile (1:1) after 7 days. M.P. 374 K.

Refinement top

Crystal data, data collection and structure refinement details are summarized in Table 1. All H atoms were located geometrically and treated as riding atoms, with C—H = 0.95–0.99 Å, and with Uĩso~(H) = 1.2U~eq~(C) or 1.5U~eq~(C) for methyl H atoms.

Related literature top

For the structures of related complexes, see: Chan et al. (2008); Islam et al. (2011, 2014); Li et al. (2006); Zhang et al. (2004). For the ligand, see: Howlader et al. (2015).

Computing details top

Data collection: RAPID-AUTO (Rigaku, 2001); cell refinement: RAPID-AUTO (Rigaku, 2001); data reduction: RAPID-AUTO (Rigaku, 2001); program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: CrystalStructure (Rigaku, 2010); software used to prepare material for publication: CrystalStructure (Rigaku, 2010).

Figures top
[Figure 1] Fig. 1. ORTEP drawing (ellipsoid probability at 50%) of the centrosymmetric NiL2 complex.
[Figure 2] Fig. 2. Crystal packing of the complex.
Bis[S-hexyl 3-(4-methylbenzylidene)dithiocarbazato-κ2N3,S]nickel(II) top
Crystal data top
[Ni(C15H21N2S2)2]Z = 1
Mr = 645.62F(000) = 342.00
Triclinic, P1Dx = 1.355 Mg m3
Hall symbol: -P 1Cu Kα radiation, λ = 1.54187 Å
a = 4.6738 (3) ÅCell parameters from 5923 reflections
b = 10.5132 (5) Åθ = 4.3–68.2°
c = 16.4789 (8) ŵ = 3.55 mm1
α = 86.522 (3)°T = 173 K
β = 84.850 (3)°Platelet, brown
γ = 79.057 (3)°0.37 × 0.08 × 0.02 mm
V = 791.00 (7) Å3
Data collection top
Rigaku R-AXIS RAPID
diffractometer
2029 reflections with F2 > 2σ(F2)
Detector resolution: 10.000 pixels mm-1Rint = 0.074
ω scansθmax = 68.2°
Absorption correction: multi-scan
(ABSCOR; Rigaku, 1995)
h = 55
Tmin = 0.615, Tmax = 0.932k = 1212
9100 measured reflectionsl = 1919
2834 independent reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.071Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.218H-atom parameters constrained
S = 1.09 w = 1/[σ2(Fo2) + (0.1314P)2]
where P = (Fo2 + 2Fc2)/3
2834 reflections(Δ/σ)max < 0.001
180 parametersΔρmax = 0.98 e Å3
0 restraintsΔρmin = 0.35 e Å3
Primary atom site location: structure-invariant direct methods
Crystal data top
[Ni(C15H21N2S2)2]γ = 79.057 (3)°
Mr = 645.62V = 791.00 (7) Å3
Triclinic, P1Z = 1
a = 4.6738 (3) ÅCu Kα radiation
b = 10.5132 (5) ŵ = 3.55 mm1
c = 16.4789 (8) ÅT = 173 K
α = 86.522 (3)°0.37 × 0.08 × 0.02 mm
β = 84.850 (3)°
Data collection top
Rigaku R-AXIS RAPID
diffractometer
2834 independent reflections
Absorption correction: multi-scan
(ABSCOR; Rigaku, 1995)
2029 reflections with F2 > 2σ(F2)
Tmin = 0.615, Tmax = 0.932Rint = 0.074
9100 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0710 restraints
wR(F2) = 0.218H-atom parameters constrained
S = 1.09Δρmax = 0.98 e Å3
2834 reflectionsΔρmin = 0.35 e Å3
180 parameters
Special details top

Refinement. Refinement was performed using all reflections. The weighted R-factor (wR) and goodness of fit (S) are based on F2. R-factor (gt) are based on F. The threshold expression of F2 > 2.0 σ(F2) is used only for calculating R-factor (gt).

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ni1.00001.00001.00000.0372 (4)
S11.1112 (3)0.83443 (10)0.92242 (6)0.0516 (4)
S21.4585 (2)0.80909 (9)0.76635 (6)0.0479 (4)
N10.7454 (7)0.9180 (3)1.07644 (18)0.0365 (8)
N21.3765 (7)1.0201 (3)0.85050 (18)0.0405 (8)
C10.0675 (10)0.4837 (4)1.2473 (3)0.0514 (11)
H1A0.00560.46301.30250.077*
H1B0.04910.40351.21840.077*
H1C0.27170.52881.25030.077*
C20.1222 (9)0.5695 (4)1.2022 (2)0.0420 (10)
C30.1476 (9)0.6854 (4)1.2321 (3)0.0489 (11)
H30.04310.71051.28250.059*
C40.3184 (9)0.7676 (4)1.1923 (2)0.0455 (10)
H40.32810.84711.21540.055*
C50.4769 (8)0.7344 (4)1.1181 (2)0.0390 (9)
C60.4513 (10)0.6168 (4)1.0883 (3)0.0522 (12)
H60.55550.59131.03800.063*
C70.2807 (10)0.5349 (4)1.1288 (2)0.0511 (11)
H70.27180.45471.10630.061*
C80.6638 (9)0.8089 (4)1.0680 (2)0.0418 (10)
H80.74290.76911.01860.050*
C91.3189 (8)0.9071 (4)0.8487 (2)0.0370 (9)
C101.6632 (9)0.9110 (4)0.7013 (3)0.0469 (11)
H10A1.77870.95300.73550.056*
H10B1.80220.85590.66320.056*
C111.4718 (9)1.0153 (4)0.6522 (2)0.0463 (10)
H11A1.34041.07360.69030.056*
H11B1.34820.97380.62030.056*
C121.6461 (9)1.0959 (4)0.5943 (2)0.0467 (10)
H12A1.76841.13830.62620.056*
H12B1.77841.03780.55630.056*
C131.4508 (9)1.1991 (4)0.5453 (2)0.0488 (11)
H13A1.32361.15630.51540.059*
H13B1.32271.25800.58370.059*
C141.6143 (10)1.2790 (4)0.4849 (3)0.0545 (12)
H14A1.74451.22040.44680.065*
H14B1.73861.32350.51470.065*
C151.4131 (11)1.3796 (5)0.4361 (3)0.0670 (14)
H15A1.30581.33580.40150.100*
H15B1.52931.43370.40190.100*
H15C1.27421.43420.47350.100*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ni0.0441 (7)0.0337 (6)0.0351 (5)0.0150 (4)0.0033 (4)0.0027 (4)
S10.0706 (9)0.0392 (6)0.0472 (6)0.0254 (6)0.0172 (6)0.0036 (5)
S20.0571 (8)0.0331 (6)0.0520 (6)0.0121 (5)0.0142 (5)0.0052 (4)
N10.044 (2)0.0325 (16)0.0337 (16)0.0097 (15)0.0010 (14)0.0006 (13)
N20.045 (2)0.0378 (18)0.0370 (17)0.0105 (16)0.0085 (15)0.0032 (14)
C10.047 (3)0.047 (2)0.061 (3)0.016 (2)0.001 (2)0.013 (2)
C20.034 (2)0.042 (2)0.050 (2)0.0104 (18)0.0010 (18)0.0111 (18)
C30.051 (3)0.044 (2)0.051 (2)0.013 (2)0.016 (2)0.0023 (19)
C40.053 (3)0.034 (2)0.049 (2)0.015 (2)0.012 (2)0.0064 (17)
C50.040 (2)0.039 (2)0.038 (2)0.0142 (18)0.0024 (18)0.0049 (16)
C60.071 (3)0.045 (2)0.044 (2)0.027 (2)0.013 (2)0.0083 (19)
C70.068 (3)0.043 (2)0.048 (2)0.027 (2)0.004 (2)0.0037 (18)
C80.050 (3)0.044 (2)0.0337 (19)0.017 (2)0.0048 (18)0.0028 (16)
C90.036 (2)0.037 (2)0.036 (2)0.0065 (18)0.0024 (17)0.0012 (16)
C100.049 (3)0.039 (2)0.050 (2)0.010 (2)0.016 (2)0.0037 (18)
C110.050 (3)0.044 (2)0.045 (2)0.014 (2)0.007 (2)0.0020 (18)
C120.048 (3)0.043 (2)0.049 (2)0.016 (2)0.009 (2)0.0037 (18)
C130.051 (3)0.050 (2)0.047 (2)0.017 (2)0.007 (2)0.0016 (19)
C140.061 (3)0.047 (2)0.056 (3)0.019 (2)0.011 (2)0.001 (2)
C150.079 (4)0.061 (3)0.063 (3)0.026 (3)0.001 (3)0.007 (2)
Geometric parameters (Å, º) top
Ni—N11.933 (3)C6—C71.385 (5)
Ni—N1i1.933 (3)C6—H60.9500
Ni—S12.1775 (10)C7—H70.9500
Ni—S1i2.1775 (10)C8—H80.9500
S1—C91.720 (4)C10—C111.519 (5)
S2—C91.757 (4)C10—H10A0.9900
S2—C101.811 (4)C10—H10B0.9900
N1—C81.294 (5)C11—C121.521 (5)
N1—N2i1.425 (4)C11—H11A0.9900
N2—C91.269 (5)C11—H11B0.9900
N2—N1i1.425 (4)C12—C131.521 (6)
C1—C21.501 (5)C12—H12A0.9900
C1—H1A0.9800C12—H12B0.9900
C1—H1B0.9800C13—C141.513 (5)
C1—H1C0.9800C13—H13A0.9900
C2—C31.371 (6)C13—H13B0.9900
C2—C71.391 (6)C14—C151.517 (6)
C3—C41.383 (5)C14—H14A0.9900
C3—H30.9500C14—H14B0.9900
C4—C51.399 (5)C15—H15A0.9800
C4—H40.9500C15—H15B0.9800
C5—C61.387 (5)C15—H15C0.9800
C5—C81.452 (5)
N1—Ni—N1i180.00 (14)N2—C9—S1125.9 (3)
N1—Ni—S193.96 (9)N2—C9—S2120.3 (3)
N1i—Ni—S186.04 (9)S1—C9—S2113.9 (2)
N1—Ni—S1i86.04 (9)C11—C10—S2113.5 (3)
N1i—Ni—S1i93.96 (9)C11—C10—H10A108.9
S1—Ni—S1i180.0S2—C10—H10A108.9
C9—S1—Ni95.86 (13)C11—C10—H10B108.9
C9—S2—C10103.09 (19)S2—C10—H10B108.9
C8—N1—N2i113.8 (3)H10A—C10—H10B107.7
C8—N1—Ni126.3 (3)C10—C11—C12113.2 (3)
N2i—N1—Ni119.9 (2)C10—C11—H11A108.9
C9—N2—N1i111.9 (3)C12—C11—H11A108.9
C2—C1—H1A109.5C10—C11—H11B108.9
C2—C1—H1B109.5C12—C11—H11B108.9
H1A—C1—H1B109.5H11A—C11—H11B107.8
C2—C1—H1C109.5C13—C12—C11112.4 (3)
H1A—C1—H1C109.5C13—C12—H12A109.1
H1B—C1—H1C109.5C11—C12—H12A109.1
C3—C2—C7117.1 (4)C13—C12—H12B109.1
C3—C2—C1121.3 (4)C11—C12—H12B109.1
C7—C2—C1121.7 (4)H12A—C12—H12B107.9
C2—C3—C4123.0 (4)C14—C13—C12114.4 (4)
C2—C3—H3118.5C14—C13—H13A108.7
C4—C3—H3118.5C12—C13—H13A108.7
C3—C4—C5120.4 (4)C14—C13—H13B108.7
C3—C4—H4119.8C12—C13—H13B108.7
C5—C4—H4119.8H13A—C13—H13B107.6
C6—C5—C4116.3 (3)C13—C14—C15113.0 (4)
C6—C5—C8116.0 (3)C13—C14—H14A109.0
C4—C5—C8127.8 (4)C15—C14—H14A109.0
C7—C6—C5122.9 (4)C13—C14—H14B109.0
C7—C6—H6118.6C15—C14—H14B109.0
C5—C6—H6118.6H14A—C14—H14B107.8
C6—C7—C2120.3 (4)C14—C15—H15A109.5
C6—C7—H7119.9C14—C15—H15B109.5
C2—C7—H7119.9H15A—C15—H15B109.5
N1—C8—C5133.6 (4)C14—C15—H15C109.5
N1—C8—H8113.2H15A—C15—H15C109.5
C5—C8—H8113.2H15B—C15—H15C109.5
C7—C2—C3—C40.8 (6)C4—C5—C8—N12.7 (8)
C1—C2—C3—C4179.6 (4)N1i—N2—C9—S11.8 (5)
C2—C3—C4—C50.2 (7)N1i—N2—C9—S2177.5 (2)
C3—C4—C5—C60.0 (6)Ni—S1—C9—N22.5 (4)
C3—C4—C5—C8179.5 (4)Ni—S1—C9—S2178.24 (18)
C4—C5—C6—C70.2 (7)C10—S2—C9—N20.4 (4)
C8—C5—C6—C7179.8 (4)C10—S2—C9—S1179.8 (2)
C5—C6—C7—C20.8 (7)C9—S2—C10—C1177.3 (3)
C3—C2—C7—C61.0 (6)S2—C10—C11—C12176.9 (3)
C1—C2—C7—C6179.3 (4)C10—C11—C12—C13179.6 (3)
N2i—N1—C8—C51.2 (7)C11—C12—C13—C14178.2 (3)
Ni—N1—C8—C5179.8 (3)C12—C13—C14—C15179.1 (4)
C6—C5—C8—N1177.7 (4)
Symmetry code: (i) x+2, y+2, z+2.

Experimental details

Crystal data
Chemical formula[Ni(C15H21N2S2)2]
Mr645.62
Crystal system, space groupTriclinic, P1
Temperature (K)173
a, b, c (Å)4.6738 (3), 10.5132 (5), 16.4789 (8)
α, β, γ (°)86.522 (3), 84.850 (3), 79.057 (3)
V3)791.00 (7)
Z1
Radiation typeCu Kα
µ (mm1)3.55
Crystal size (mm)0.37 × 0.08 × 0.02
Data collection
DiffractometerRigaku R-AXIS RAPID
diffractometer
Absorption correctionMulti-scan
(ABSCOR; Rigaku, 1995)
Tmin, Tmax0.615, 0.932
No. of measured, independent and
observed [F2 > 2σ(F2)] reflections
9100, 2834, 2029
Rint0.074
(sin θ/λ)max1)0.602
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.071, 0.218, 1.09
No. of reflections2834
No. of parameters180
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.98, 0.35

Computer programs: RAPID-AUTO (Rigaku, 2001), SIR92 (Altomare et al., 1994), SHELXL97 (Sheldrick, 2008), CrystalStructure (Rigaku, 2010).

Selected geometric parameters (Å, º) top
Ni—N11.933 (3)C2—C31.371 (6)
Ni—N1i1.933 (3)C2—C71.391 (6)
Ni—S12.1775 (10)C3—C41.383 (5)
Ni—S1i2.1775 (10)C4—C51.399 (5)
S1—C91.720 (4)C5—C61.387 (5)
S2—C91.757 (4)C5—C81.452 (5)
S2—C101.811 (4)C6—C71.385 (5)
N1—C81.294 (5)C10—C111.519 (5)
N1—N2i1.425 (4)C11—C121.521 (5)
N2—C91.269 (5)C12—C131.521 (6)
N2—N1i1.425 (4)C13—C141.513 (5)
C1—C21.501 (5)C14—C151.517 (6)
N1—Ni—N1i180.00 (14)C3—C4—C5120.4 (4)
N1—Ni—S193.96 (9)C6—C5—C4116.3 (3)
N1i—Ni—S186.04 (9)C6—C5—C8116.0 (3)
N1—Ni—S1i86.04 (9)C4—C5—C8127.8 (4)
N1i—Ni—S1i93.96 (9)C7—C6—C5122.9 (4)
S1—Ni—S1i180.0C6—C7—C2120.3 (4)
C9—S1—Ni95.86 (13)N1—C8—C5133.6 (4)
C9—S2—C10103.09 (19)N2—C9—S1125.9 (3)
C8—N1—N2i113.8 (3)N2—C9—S2120.3 (3)
C8—N1—Ni126.3 (3)S1—C9—S2113.9 (2)
N2i—N1—Ni119.9 (2)C11—C10—S2113.5 (3)
C9—N2—N1i111.9 (3)C10—C11—C12113.2 (3)
C3—C2—C7117.1 (4)C13—C12—C11112.4 (3)
C3—C2—C1121.3 (4)C14—C13—C12114.4 (4)
C7—C2—C1121.7 (4)C13—C14—C15113.0 (4)
C2—C3—C4123.0 (4)
Symmetry code: (i) x+2, y+2, z+2.
 

Acknowledgements

MBHH and MSB are grateful to the Department of Chemistry, Rajshahi University, for the provision of laboratory facilities. MCS acknowledges the Department of Applied Chemistry, Toyama University, for providing funds for single-crystal X-ray analyses.

References

First citationAltomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435.  CrossRef Web of Science IUCr Journals Google Scholar
First citationChan, M. H. E., Crouse, K. A., Tahir, M. I. M., Rosli, R., Umar-Tsafe, N. & Cowley, A. R. (2008). Polyhedron, 27, 1141–1149.  Web of Science CSD CrossRef CAS Google Scholar
First citationHowlader, M. B. H., Begum, M. S., Sheikh, M. C., Miyatake, R. & Zangrando, E. (2015). Acta Cryst. E71, o103–o104.  CSD CrossRef IUCr Journals Google Scholar
First citationIslam, M. A. A. A. A., Sheikh, M. C., Alam, M. S., Zangrando, E., Alam, M. A., Tarafder, M. T. H. & Miyatake, R. (2014). Transition Met. Chem. 39, 141–149.  Google Scholar
First citationIslam, M. A. A. A. A., Tarafder, M. T. H., Sheikh, M. C., Alam, M. A. & Zangrando, E. (2011). Transition Met. Chem. 36, 531–537.  Google Scholar
First citationLi, S. L., Wu, J. Y., Tian, Y. P., Tang, Y. W., Jiang, M. H., Fun, H. K. & Chantrapromma, S. (2006). Opt. Mater. 28, 897–903.  Google Scholar
First citationRigaku (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku (2001). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku (2010). CrystalStructure. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZhang, M. L., Tian, Y. P., Zhang, X. J., Wu, J. Y., Zhang, S. Y., Wang, D., Jiang, M. H., Chantrapromms, S. & Fun, H. K. (2004). Transition Met. Chem. 29, 596–602.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 71| Part 2| February 2015| Pages m26-m27
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds