metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 71| Part 2| February 2015| Pages m21-m22

Crystal structure of di­chlorido­bis­­(4-ethyl­aniline-κN)zinc

aDepartment of Physics, Pachaiyappa's College for Men, Kanchipuram 631 501, India, bDepartment of Chemistry, Pondicherry University, Pondicherry 605 014, India, and cDepartment of Physics, Presidency College (Autonomous), Chennai 600 005, India
*Correspondence e-mail: aspandian59@gmail.com

Edited by K. Fejfarova, Institute of Macromolecular Chemistry, AS CR, v.v.i, Czech Republic (Received 17 November 2014; accepted 21 December 2014; online 14 January 2015)

The title compound, [ZnCl2(C8H11N)2], was synthesized by the reaction of zinc dichloride and 4-ethyl­aniline. The Zn2+ cation is coordinated by two Cl anions and the N atoms of two 4-ethyl­aniline ligands, forming a distorted Zn(N2Cl2) tetra­hedron. The dihedral angle between the two benzene rings is 85.3 (2)° The Zn atom lies on a twofold rotation axis. The ethyl substituents are disordered over two sets of sites in a 0.74 (2):0.26 (2) ratio. In the crystal, N—H⋯Cl hydrogen bonds link the mol­ecules into sheets perpendicular to the a axis. C—H⋯Cl inter­actions also occur.

1. Related literature

For the biological activity and potential applications of mixed-ligand di­chlorido­zinc complexes, see: Tang & Shay (2001[Tang, X.-H. & Shay, N. F. (2001). J. Nutr. 131, 1414-1420.]); Lynch et al. (2001[Lynch, C. J., Patson, B. J., Goodman, S. A., Trapolsi, D. & Kimball, S. R. (2001). Am. J. Physiol. Endocrinol. Metab. 281, E25-E34.]); Coulston & Dandona (1980[Coulston, L. & Dandona, P. (1980). Diabetes, 29, 665-667.]); May & Contoreggi (1982[May, J. M. & Contoreggi, C. S. (1982). J. Biol. Chem. 257, 4362-4368.]). For a related structure, see; Ejaz et al. (2009[Ejaz, Sahin, O. & Khan, I. U. (2009). Acta Cryst. E65, m1457.]).

[Scheme 1]

2. Experimental

2.1. Crystal data

  • [ZnCl2(C8H11N)2]

  • Mr = 378.63

  • Monoclinic, C 2/c

  • a = 32.7291 (16) Å

  • b = 4.7499 (4) Å

  • c = 11.6479 (8) Å

  • β = 98.016 (7)°

  • V = 1793.1 (2) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.66 mm−1

  • T = 293 K

  • 0.35 × 0.30 × 0.25 mm

2.2. Data collection

  • Oxford diffraction Xcalibur diffractometer with an Eos detector

  • Absorption correction: multi-scan (CrysAlis PRO; Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis CCD, CrysAlis RED and CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.]) Tmin = 0.564, Tmax = 0.660

  • 4578 measured reflections

  • 1578 independent reflections

  • 1440 reflections with I > 2σ(I)

  • Rint = 0.029

2.3. Refinement

  • R[F2 > 2σ(F2)] = 0.028

  • wR(F2) = 0.077

  • S = 1.10

  • 1578 reflections

  • 123 parameters

  • 66 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.46 e Å−3

  • Δρmin = −0.28 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C2—H2⋯Cl1i 0.93 2.94 3.630 (2) 132
N1—H1A⋯Cl1ii 0.88 (2) 2.65 (2) 3.424 (2) 149 (2)
N1—H1B⋯Cl1iii 0.88 (2) 2.66 (2) 3.5083 (19) 161 (2)
Symmetry codes: (i) -x+1, -y+1, -z+2; (ii) [-x+1, y-1, -z+{\script{3\over 2}}]; (iii) -x+1, -y, -z+2.

Data collection: CrysAlis CCD (Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis CCD, CrysAlis RED and CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.]); cell refinement: CrysAlis RED (Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis CCD, CrysAlis RED and CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.]); data reduction: CrysAlis RED; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and DIAMOND (Brandenburg, 2006[Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Zinc has many biological functions. It is considered to be an essential nutrient that is required for optimal growth and normal development of vertebrate organisms, as well as being important for maintaining the structure of many proteins. From previous research results, it has been known for many years that zinc mimics the actions of insulin on cells, including promotion of both lipogenesis and glucose transport. Zinc deficiency may indeed affect the optimal functioning of the insulin-signaling pathway (Tang & Shay, 2001; Lynch et al., 2001; Coulston & Dandona, 1980; May & Contoreggi, 1982).

In the title compound (I), (Fig. 1), the Zn2+ cation lies on a crystallographic twofold rotation axis, with one half of the molecule connected to the other on by this symmetry operation. The bond distance Zn—Cl and Zn—N are 2.2409 (6) and 2.048 (2) Å, and the bond angles Cl—Zn—Cl and N—Zn—N are 109.41 (3) and 114.80 (11)°. All bond lengths and bond angles in (I) are in the range of expected values. The dihedral angle between the aromatic rings of the 4-ethylaniline ligands is 85.3 (2)°.

N—H···Cl hydrogen bonds serve to link the molecules into sheets perpendicular to the a axis.

Related literature top

For the biological activity and potential applications of mixed-ligand dichloridozinc complexes, see: Tang & Shay (2001); Lynch et al. (2001); Coulston & Dandona (1980); May & Contoreggi (1982). For related structure, see; Ejaz et al. (2009).

Experimental top

The title compound was synthesized using zinc chloride (0.5 g, 1 mmol) and 4-ethylaniline (0.91 ml, 2 mmol) in 20 ml of ethanol stirring for 2 h. Colorless crystals were obtained and recrystallized from ethanol. The resulting solution was subjected to crystallization by slow evaporation of the solvent resulting in single crystals suitable for X-ray crystallographic studies.

Refinement top

N and C-bound H atoms were positioned geometrically (C–H = 0.93–0.97 Å) and allowed to ride on their parent atoms, with Uiso(H) = 1.5Ueq(C) for methyl H atoms and 1.2Ueq(C) for all other H atoms.

Computing details top

Data collection: CrysAlis CCD (Oxford Diffraction, 2009); cell refinement: CrysAlis RED (Oxford Diffraction, 2009); data reduction: CrysAlis RED (Oxford Diffraction, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and DIAMOND (Brandenburg, 2006); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with displacement ellipsoids drawn at the 30% probability level.
[Figure 2] Fig. 2. The crystal packing of the title compound viewed down the a axis showing the hydrogen bonded sheet. Hydrogen bond are shown as dashed lines. The minor disorder component and hydrogen atoms not participating in N—H···Cl interactions are omitted for clarity.
Dichloridobis(4-ethylaniline-κN)zinc top
Crystal data top
[ZnCl2(C8H11N)2]F(000) = 784
Mr = 378.63Dx = 1.403 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 5623 reflections
a = 32.7291 (16) Åθ = 2.6–24.9°
b = 4.7499 (4) ŵ = 1.66 mm1
c = 11.6479 (8) ÅT = 293 K
β = 98.016 (7)°Block, colourless
V = 1793.1 (2) Å30.35 × 0.30 × 0.25 mm
Z = 4
Data collection top
Oxford diffraction Xcalibur
diffractometer with an Eos detector
1578 independent reflections
Radiation source: fine-focus sealed tube1440 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.029
ω and ϕ scansθmax = 25.0°, θmin = 4.6°
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2009)
h = 3638
Tmin = 0.564, Tmax = 0.660k = 55
4578 measured reflectionsl = 1313
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.028Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.077H atoms treated by a mixture of independent and constrained refinement
S = 1.10 w = 1/[σ2(Fo2) + (0.0411P)2]
where P = (Fo2 + 2Fc2)/3
1578 reflections(Δ/σ)max = 0.001
123 parametersΔρmax = 0.46 e Å3
66 restraintsΔρmin = 0.28 e Å3
Crystal data top
[ZnCl2(C8H11N)2]V = 1793.1 (2) Å3
Mr = 378.63Z = 4
Monoclinic, C2/cMo Kα radiation
a = 32.7291 (16) ŵ = 1.66 mm1
b = 4.7499 (4) ÅT = 293 K
c = 11.6479 (8) Å0.35 × 0.30 × 0.25 mm
β = 98.016 (7)°
Data collection top
Oxford diffraction Xcalibur
diffractometer with an Eos detector
1578 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2009)
1440 reflections with I > 2σ(I)
Tmin = 0.564, Tmax = 0.660Rint = 0.029
4578 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.02866 restraints
wR(F2) = 0.077H atoms treated by a mixture of independent and constrained refinement
S = 1.10Δρmax = 0.46 e Å3
1578 reflectionsΔρmin = 0.28 e Å3
123 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
C10.41733 (7)0.0083 (5)0.81147 (18)0.0354 (5)
C20.41424 (8)0.1721 (5)0.90189 (19)0.0434 (6)
H20.43580.18630.96280.052*
C30.37917 (9)0.3321 (6)0.9021 (2)0.0583 (7)
H30.37750.45380.96380.070*
C40.34669 (9)0.3176 (7)0.8144 (3)0.0638 (8)
C50.35114 (10)0.1405 (8)0.7234 (3)0.0727 (9)
H50.33000.13060.66130.087*
C60.38593 (9)0.0229 (6)0.7211 (2)0.0557 (7)
H60.38800.14170.65860.067*
C70.3096 (3)0.505 (3)0.8230 (13)0.096 (4)0.74 (2)
H7A0.31910.69160.84800.115*0.74 (2)
H7B0.29350.52290.74690.115*0.74 (2)
C80.2826 (2)0.392 (3)0.9062 (8)0.108 (3)0.74 (2)
H8A0.25960.51590.90880.162*0.74 (2)
H8B0.29830.37730.98210.162*0.74 (2)
H8C0.27260.20850.88090.162*0.74 (2)
C7'0.3026 (5)0.427 (8)0.800 (3)0.090 (7)0.26 (2)
H7'10.28340.27230.78120.109*0.26 (2)
H7'20.29840.56260.73720.109*0.26 (2)
C8'0.2950 (11)0.565 (9)0.913 (2)0.119 (8)0.26 (2)
H8'10.26720.63530.90540.178*0.26 (2)
H8'20.31390.71850.93090.178*0.26 (2)
H8'30.29900.42930.97480.178*0.26 (2)
N10.45462 (6)0.1686 (4)0.80964 (16)0.0371 (4)
Cl10.530459 (19)0.33620 (12)0.89413 (4)0.04150 (19)
Zn10.50000.06363 (7)0.75000.03228 (16)
H1A0.4494 (7)0.320 (4)0.7676 (17)0.048 (7)*
H1B0.4647 (7)0.216 (5)0.8810 (14)0.058 (8)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0385 (13)0.0332 (11)0.0360 (12)0.0035 (11)0.0103 (10)0.0059 (9)
C20.0492 (15)0.0410 (13)0.0398 (12)0.0043 (12)0.0059 (10)0.0019 (10)
C30.0674 (19)0.0497 (16)0.0624 (17)0.0114 (16)0.0253 (15)0.0013 (13)
C40.0467 (16)0.068 (2)0.080 (2)0.0142 (16)0.0189 (15)0.0256 (16)
C50.0452 (17)0.104 (3)0.0649 (19)0.0029 (18)0.0070 (14)0.0154 (18)
C60.0479 (17)0.0712 (18)0.0472 (15)0.0081 (15)0.0034 (13)0.0095 (13)
C70.061 (4)0.103 (7)0.129 (7)0.030 (4)0.036 (4)0.032 (5)
C80.060 (4)0.119 (7)0.155 (6)0.017 (4)0.048 (4)0.007 (5)
C7'0.069 (10)0.075 (11)0.126 (11)0.019 (8)0.010 (9)0.019 (9)
C8'0.093 (14)0.131 (16)0.136 (13)0.051 (12)0.031 (11)0.011 (13)
N10.0438 (12)0.0288 (10)0.0396 (11)0.0005 (9)0.0087 (9)0.0011 (8)
Cl10.0565 (4)0.0367 (3)0.0300 (3)0.0007 (3)0.0015 (2)0.0050 (2)
Zn10.0388 (3)0.0283 (2)0.0307 (2)0.0000.00804 (16)0.000
Geometric parameters (Å, º) top
C1—C61.367 (3)C8—H8A0.9600
C1—C21.372 (3)C8—H8B0.9600
C1—N11.441 (3)C8—H8C0.9600
C2—C31.377 (4)C7'—C8'1.527 (19)
C2—H20.9300C7'—H7'10.9700
C3—C41.370 (4)C7'—H7'20.9700
C3—H30.9300C8'—H8'10.9600
C4—C51.377 (4)C8'—H8'20.9600
C4—C71.521 (6)C8'—H8'30.9600
C4—C7'1.521 (10)N1—Zn12.0478 (19)
C5—C61.381 (4)N1—H1A0.875 (16)
C5—H50.9300N1—H1B0.881 (16)
C6—H60.9300Cl1—Zn12.2409 (5)
C7—C81.500 (11)Zn1—N1i2.0478 (19)
C7—H7A0.9700Zn1—Cl1i2.2409 (6)
C7—H7B0.9700
C6—C1—C2119.7 (2)H8A—C8—H8B109.5
C6—C1—N1120.6 (2)C7—C8—H8C109.5
C2—C1—N1119.6 (2)H8A—C8—H8C109.5
C1—C2—C3119.8 (2)H8B—C8—H8C109.5
C1—C2—H2120.1C4—C7'—C8'108.5 (16)
C3—C2—H2120.1C4—C7'—H7'1110.0
C4—C3—C2122.1 (3)C8'—C7'—H7'1110.0
C4—C3—H3119.0C4—C7'—H7'2110.0
C2—C3—H3119.0C8'—C7'—H7'2110.0
C3—C4—C5116.8 (3)H7'1—C7'—H7'2108.4
C3—C4—C7117.7 (7)C7'—C8'—H8'1109.5
C5—C4—C7125.4 (7)C7'—C8'—H8'2109.5
C3—C4—C7'133.8 (10)H8'1—C8'—H8'2109.5
C5—C4—C7'108.9 (10)C7'—C8'—H8'3109.5
C7—C4—C7'18.8 (14)H8'1—C8'—H8'3109.5
C4—C5—C6122.3 (3)H8'2—C8'—H8'3109.5
C4—C5—H5118.9C1—N1—Zn1112.09 (13)
C6—C5—H5118.9C1—N1—H1A110.0 (16)
C1—C6—C5119.3 (3)Zn1—N1—H1A110.4 (16)
C1—C6—H6120.3C1—N1—H1B109.2 (17)
C5—C6—H6120.3Zn1—N1—H1B105.3 (17)
C8—C7—C4112.3 (8)H1A—N1—H1B110 (2)
C8—C7—H7A109.1N1i—Zn1—N1114.80 (11)
C4—C7—H7A109.1N1i—Zn1—Cl1i108.97 (6)
C8—C7—H7B109.1N1—Zn1—Cl1i107.31 (6)
C4—C7—H7B109.1N1i—Zn1—Cl1107.31 (6)
H7A—C7—H7B107.9N1—Zn1—Cl1108.97 (6)
C7—C8—H8A109.5Cl1i—Zn1—Cl1109.41 (3)
C7—C8—H8B109.5
C6—C1—C2—C31.5 (4)C3—C4—C7—C877.7 (15)
N1—C1—C2—C3178.0 (2)C5—C4—C7—C8104.8 (14)
C1—C2—C3—C40.1 (4)C7'—C4—C7—C874 (5)
C2—C3—C4—C51.8 (4)C3—C4—C7'—C8'4 (5)
C2—C3—C4—C7179.6 (5)C5—C4—C7'—C8'167 (3)
C2—C3—C4—C7'168 (2)C7—C4—C7'—C8'39 (4)
C3—C4—C5—C62.0 (5)C6—C1—N1—Zn195.6 (2)
C7—C4—C5—C6179.6 (6)C2—C1—N1—Zn180.9 (2)
C7'—C4—C5—C6170.4 (17)C1—N1—Zn1—N1i159.46 (17)
C2—C1—C6—C51.3 (4)C1—N1—Zn1—Cl1i38.19 (16)
N1—C1—C6—C5177.8 (2)C1—N1—Zn1—Cl180.18 (15)
C4—C5—C6—C10.5 (5)
Symmetry code: (i) x+1, y, z+3/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C2—H2···Cl1ii0.932.943.630 (2)132
N1—H1A···Cl1iii0.88 (2)2.65 (2)3.424 (2)149 (2)
N1—H1B···Cl1iv0.88 (2)2.66 (2)3.5083 (19)161 (2)
Symmetry codes: (ii) x+1, y+1, z+2; (iii) x+1, y1, z+3/2; (iv) x+1, y, z+2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C2—H2···Cl1i0.932.943.630 (2)132.4
N1—H1A···Cl1ii0.875 (16)2.645 (18)3.424 (2)149 (2)
N1—H1B···Cl1iii0.881 (16)2.663 (18)3.5083 (19)161 (2)
Symmetry codes: (i) x+1, y+1, z+2; (ii) x+1, y1, z+3/2; (iii) x+1, y, z+2.
 

Acknowledgements

KA is thankful to the CSIR, New Delhi [Lr: No. 01 (2570)/12/EMR-II/3.4.2012], for financial support through a major research project. The authors are thankful to the Department of Chemistry, Pondicherry University, for the single-crystal XRD instrumentation facility.

References

First citationBrandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationCoulston, L. & Dandona, P. (1980). Diabetes, 29, 665–667.  CrossRef CAS PubMed Web of Science Google Scholar
First citationEjaz, Sahin, O. & Khan, I. U. (2009). Acta Cryst. E65, m1457.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationLynch, C. J., Patson, B. J., Goodman, S. A., Trapolsi, D. & Kimball, S. R. (2001). Am. J. Physiol. Endocrinol. Metab. 281, E25–E34.  Google Scholar
First citationMay, J. M. & Contoreggi, C. S. (1982). J. Biol. Chem. 257, 4362–4368.  CAS PubMed Web of Science Google Scholar
First citationOxford Diffraction (2009). CrysAlis CCD, CrysAlis RED and CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTang, X.-H. & Shay, N. F. (2001). J. Nutr. 131, 1414–1420.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 71| Part 2| February 2015| Pages m21-m22
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds