research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 71| Part 2| February 2015| Pages 195-198

Crystal structure of aqua[N-(2-oxido­benzyl-κO)-L-leucinato-κ2N,O](1,10-phenanthroline-κ2N,N′)­nickel(II) penta­hydrate

aDepartment of Chemistry, Indian Institute of Technology Kanpur, Kanpur, UP 208 016, India, and bNational Taras Shevchenko University, Department of Chemistry, Volodymyrska str. 64, 01601 Kyiv, Ukraine
*Correspondence e-mail: nsharkina@ukr.net

Edited by K. Fejfarova, Institute of Macromolecular Chemistry, AS CR, v.v.i, Czech Republic (Received 2 January 2015; accepted 19 January 2015; online 21 January 2015)

In the title compound, [Ni(C13H17NO3)(C12H8N2)(H2O)]·5H2O, the NiII atom is in a distorted octa­hedral coordination environment provided by the two N atoms of one bidentate phenanthroline ligand and two O atoms and one N atom from a tridentate 2-[(2-hy­droxy­benz­yl)amino]-4-methyl­penta­noic acid (HAMA) ligand and one water mol­ecule. The complex was prepared by the reaction of nickel(II) nitrate with HAMA in the presence of 1,10-phenanthroline in a 1:1:1 ratio. In the crystal, the complex mol­ecules and solvate water mol­ecules are associated via O—H⋯O hydrogen bonds into a three-dimensional network.

1. Chemical context

Metal complexes of 1,10-phenanthroline (phen) and its deriv­atives are of increasing inter­est because of their versatile roles in many fields such as analytical chemistry (Chalk & Tyson, 1994[Chalk, S. J. & Tyson, J. F. (1994). Anal. Chem. 66, 660-666.]), catalysis (Samnani et al., 1996[Samnani, P. B., Bhattacharya, P. K., Ganeshpure, P. A., Koshy, V. J. & Satish, N. (1996). J. Mol. Catal. A Chem. 110, 89-94.]), electrochemical polymerization (Bachas et al., 1997[Bachas, L. G., Cullen, L., Hutchins, R. S. & Scott, D. L. (1997). J. Chem. Soc. Dalton Trans. pp. 1571-1578.]), and biochemistry (Sammes & Yahioglu, 1994[Sammes, P. G. & Yahioglu, G. (1994). Chem. Soc. Rev. 23, 327-350.]). 1,10-Phenanthroline is a chelating bidentate ligand with notable coordination ability for transition metal cations. It is widely used in coordination chemistry, in particular, for the preparation of mixed-ligand complexes (Fritsky et al., 2004[Fritsky, I. O., Świątek-Kozłowska, J., Dobosz, A., Sliva, T. Y. & Dudarenko, N. M. (2004). Inorg. Chim. Acta, 357, 3746-3752.]; Kanderal et al., 2005[Kanderal, O. M., Kozlowski, H., Dobosz, A., Swiatek-Kozlowska, J., Meyer, F. & Fritsky, I. O. (2005). Dalton Trans. pp. 1428-1437.]), and in the synthesis of polynuclear complexes and coordination polymers in order to control nuclearity and dimensionality by blocking a certain number of vacant sites in the coordination sphere of a metal ion (Fritsky et al., 2006[Fritsky, I. O., Kozłowski, H., Kanderal, O. M., Haukka, M., Świątek-Kozłowska, J., Gumienna-Kontecka, E. & Meyer, F. (2006). Chem. Commun. pp. 4125-4127.]; Penkova et al., 2010[Penkova, L., Demeshko, S., Pavlenko, V. A., Dechert, S., Meyer, F. & Fritsky, I. O. (2010). Inorg. Chim. Acta, 363, 3036-3040.]). Over the last few decades, the complex formation of transition metal ions with amino acids has also been studied extensively (Auclair et al., 1984[Auclair, C., Voisin, E., Banoun, H., Paoletti, C., Bernadou, J. & Meunier, B. (1984). J. Med. Chem. 27, 1161-1166.]). Amino acid–metallic ion inter­actions are found to be responsible for enzymatic activity and the stability of protein structures (Dinelli et al., 2010[Dinelli, L. R., Bezerra, T. M. & Sene, J. J. (2010). Curr. Res. Chem. 2, 18-23.]). Nickel is also essential for the healthy life of animals. It is associated with several enzymes (Poellot et al., 1990[Poellot, R. A., Shuler, T. R., Uthus, E. O. & Nielsen, F. H. (1990). Proc. Natl. Acad. Sci. USA, 44, 80-97.]) and plays a role in physiological processes as a co-factor in the absorption of iron from the intestine (Nielsen et al., 1980[Nielsen, F. H. (1980). J. Nutr. 110, 965-973.]). Any change in its concentration leads to metabolic disorder (Kolodziej, 1994[Kolodziej, A. F. (1994). Progress in Inorganic Chemistry, Vol. 41, edited by K. D. Karlin, pp. 493-523. New York: Wiley.]). With the discovery of the biological importance of nickel, it is essential to study its complex formation with amino acids in order to understand more about the functions of their complexes.

2. Structural commentary

The NiII ion in the title compound is in a distorted octa­hedral coordination environment provided by the two N atoms of one bidentate phen ligand and two O atoms and one N atom from a tridentate anion of HAMA and one water mol­ecule (Fig. 1[link]).

[Scheme 1]
[Figure 1]
Figure 1
The mol­ecular structure and atom-numbering scheme for the title compound, with displacement ellipsoids drawn at the 40% probability level.

The equatorial plane consists of two nitro­gen atoms of 1,10-phenanthroline and two oxygen atoms of the HAMA ligand. The axial positions are occupied by the nitro­gen atom from the HAMA ligand and a water O atom. The equatorial Ni—N and Ni—O bond lengths are in the range 2.0383 (11)– 2.1058 (13) Å, the axial Ni—N and Ni—O bond lengths are 2.1429 (14) and 2.1110 (12) Å. The coordination Ni—N and Ni—O bond lengths are typical for distorted octa­hedral NiII complexes with nitro­gen and oxygen donors (Fritsky et al., 1998[Fritsky, I. O., Kozłowski, H., Sadler, P. J., Yefetova, O. P., Świątek-Kozłowska, J., Kalibabchuk, V. A. & Głowiak, T. (1998). J. Chem. Soc. Dalton Trans. pp. 3269-3274.]; Moroz et al., 2012[Moroz, Y. S., Demeshko, S., Haukka, M., Mokhir, A., Mitra, U., Stocker, M., Müller, P., Meyer, F. & Fritsky, I. O. (2012). Inorg. Chem. 51, 7445-7447.]). The N1—Ni1—N2 and O2—Ni1—N3 bite angles are decreased to 79.43 (5) and 80.50 (5)° as a consequence of the formation of the five-membered chelate rings. The C—C and C—N bond lengths in the organic ligands are well within the limits expected for those in aromatic rings (Petrusenko et al., 1997[Petrusenko, S. R., Kokozay, V. N. & Fritsky, I. O. (1997). Polyhedron, 16, 267-274.]; Strotmeyer et al., 2003[Strotmeyer, K. P., Fritsky, I. O., Ott, R., Pritzkow, H. & Krämer, R. (2003). Supramol. Chem. 15, 529-547.]; Penkova et al., 2009[Penkova, L. V., Maciąg, A., Rybak-Akimova, E. V., Haukka, M., Pavlenko, V. A., Iskenderov, T. S., Kozłowski, H., Meyer, F. & Fritsky, I. O. (2009). Inorg. Chem. 48, 6960-6971.]).

3. Supra­molecular features

In the crystal packing, the complex mol­ecules and solvate water mol­ecules are associated via inter­molecular hydrogen bonds (Table 1[link] and Fig. 2[link]) that involve O—H inter­actions of medium strength between the donor atoms of the water mol­ecules and acceptor oxygen atoms of the phenolic and the carb­oxy­lic groups and solvate water mol­ecules, forming a three-dimensional network (Fig. 3[link]).

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O4—H1O4⋯O7 0.83 1.89 2.709 (2) 169
O4—H2O4⋯O5 0.98 1.80 2.772 (2) 169
O5—H1O5⋯O3i 1.00 1.82 2.8137 (19) 171
O5—H2O5⋯O1 0.95 1.81 2.7393 (19) 164
O6—H1O6⋯O2 0.96 1.83 2.7310 (18) 156
O6—H2O6⋯O9 1.00 1.85 2.807 (2) 160
O7—H1O7⋯O8 0.93 1.78 2.693 (3) 171
O7—H2O7⋯O6 0.94 1.91 2.832 (3) 165
O8—H1O8⋯O6ii 0.87 1.89 2.730 (3) 162
O8—H2O8⋯O5ii 1.08 1.68 2.749 (2) 169
O9—H1O9⋯O3 0.95 1.81 2.749 (2) 171
O9—H2O9⋯O1iii 0.87 1.98 2.8459 (18) 173
Symmetry codes: (i) [-x+1, y-{\script{1\over 2}}, -z+{\script{3\over 2}}]; (ii) [x+{\script{1\over 2}}, -y+{\script{1\over 2}}, -z+1]; (iii) [-x+1, y+{\script{1\over 2}}, -z+{\script{3\over 2}}].
[Figure 2]
Figure 2
A view of the O—H⋯O hydrogen-bond inter­actions between the donor atoms of the water mol­ecules and acceptor oxygen atoms of the phenolic and carb­oxy­lic groups and solvate water mol­ecules in the crystal of the title compound (hydrogen bonds are shown as dashed lines; see Table 1[link] for details).
[Figure 3]
Figure 3
A view along the a axis of the crystal packing of the title compound. The O—H⋯O hydrogen-bonding inter­actions between the donor atoms of the water mol­ecules and acceptor oxygen atoms of the phenolic and carb­oxy­lic groups and solvate water mol­ecules are shown as magenta dashed lines (see Table 1[link] for details).

4. Synthesis and crystallization

The ligand 2-[(2-hy­droxy­benz­yl)amino]-4-methyl­penta­noic acid (HAMA) was prepared by following procedure: L-Leucine (1.00 g, 6.71 mmol) and LiOH·H2O (0.284 g, 6.77 mmol) in dry methanol (30 ml) were stirred for 30 min to dissolve. A methano­lic solution of salicyl­aldehyde ­(1.44 g, 6.72 mmol) was added dropwise to the above solution. The solution was stirred for 1 h and then treated with sodium borohydride (0.248 g, 6.71 mmol) with constant stirring. The solvent was evaporated and the resulting sticky mass was dissolved in water. A cloudy solution was obtained, which was then acidified with dilute HCl and the solution pH was maintained between 5–7. The ligand precipitated as a colourless solid. The solid was filtered off, thoroughly washed with water and finally dried inside a vacuum desiccator. Yield 2.08 g (85%).

The title compound was prepared as follows: HAMA (0.500 g, 1.43 mmol) was deprotonated with LiOH·H2O (0.060 g, 1.44 mmol) in 25 ml MeOH, which resulted in a clear colourless solution after 30 min. A methano­lic solution of Ni(NO3)2·6H2O (0.17 g, 0.71 mmol) was added dropwise to the ligand with stirring. The colour of the solution changed to green immediately. The solution was stirred for 2 h and evaporated to dryness on a rotary evaporator. The blue solid obtained by adding aceto­nitrile was recrystallized as green plates by slow diffusion of diethyl ether into a methano­lic solution of the crude solid over 2–3 days. The crystals were filtered off and washed with diethyl ether. Yield 74%.

5. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. The N—H hydrogen atoms were located in a difference Fourier map and freely refined. The O—H hydrogen atoms were also located in a difference Fourier map but constrained to ride on their parent atoms with Uiso(H) = 1.5Ueq(O). The C-bound H atoms were included in calculated positions and treated as riding atoms: with C—H = 0.95 Å and Uiso(H) = 1.2–1.5Ueq(C).

Table 2
Experimental details

Crystal data
Chemical formula [Ni(C13H17NO3)(C12H8N2)(H2O)]·5H2O
Mr 582.29
Crystal system, space group Orthorhombic, P212121
Temperature (K) 100
a, b, c (Å) 11.7968 (2), 14.8290 (3), 16.1406 (3)
V3) 2823.55 (9)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.74
Crystal size (mm) 0.30 × 0.21 × 0.15
 
Data collection
Diffractometer Bruker SMART APEX CCD
Absorption correction Multi-scan (SADABS; Bruker, 2001[Bruker (2001). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.803, 0.865
No. of measured, independent and observed [I > 2σ(I)] reflections 29541, 5240, 5046
Rint 0.024
(sin θ/λ)max−1) 0.606
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.022, 0.057, 1.03
No. of reflections 5240
No. of parameters 347
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.22, −0.24
Absolute structure (Flack, 1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 2291 Friedel pairs
Absolute structure parameter 0.008 (7)
Computer programs: SMART and SAINT (Bruker, 2003[Bruker (2003). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]), SIR97 (Altomare et al., 1999[Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115-119.]), SHELXL97 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]) and DIAMOND (Brandenburg & Putz, 2006[Brandenburg, K. & Putz, H. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.]).

Supporting information


Chemical context top

Metal complexes of 1,10-phenanthroline (phen) and its derivatives are of increasing inter­est because of their versatile roles in many fields such as analytical chemistry (Chalk & Tyson, 1994), catalysis (Samnani et al., 1996), electrochemical polymerization (Bachas et al., 1997), and biochemistry (Sammes & Yahioglu, 1994). 1,10-Phenanthroline is a chelating bidentate ligand with notable coordination ability for transition metal cations. It is widely used in coordination chemistry, in particular, for the preparation of mixed-ligand complexes (Fritsky et al., 2004; Kanderal et al., 2005), and in the synthesis of polynuclear complexes and coordination polymers in order to control nuclearity and dimensionality by blocking a certain number of vacant sites in the coordination sphere of a metal ion (Fritsky et al., 2006; Penkova et al., 2010). Over the last few decades, the complex formation of transition metal ions with amino acids has also been studied extensively (Auclair et al., 1984). Amino acid–metallic ion inter­actions are found to be responsible for enzymatic activity and the stability of protein structures (Dinelli et al., 2010). Nickel is also essential for the healthy life of animals. It associated with several enzymes (Poellot et al., 1990) and plays a role in physiological processes as a co-factor in the absorption of iron from the intestine (Nielsen et al., 1980). Any change in its concentration leads to metabolic disorder (Kolodziej, 1994). With the discovery of the biological importance of nickel, it is important to study its complex formation with amino acids in order to understand more about functions of their complexes.

Structural commentary top

The NiII ion in the title compound is in a distorted o­cta­hedral coordination environment provided by the two N atoms of one bidentate phen ligand and two O atoms and one N atom from a tridentate HAMA group and one water molecule (Fig. 1). The equatorial plane consists of two nitro­gen atoms of 1,10-phenanthroline and two oxygen atoms of the HAMA ligand. The axial positions are occupied by the nitro­gen atom from the HAMA ligand and the water oxygen atom. The equatorial Ni—N and Ni—O bond lengths are in the range 2.0383 (11)– 2.1058 (13) Å, the axial Ni—N and Ni—O bond distances are 2.1429 (14) and 2.1110 (12) Å. The coordination Ni—N and Ni—O bond lengths are typical for distorted o­cta­hedral NiII complexes with nitro­gen and oxygen donors (Fritsky et al., 1998; Moroz et al., 2012). The N1—Ni1—N2 and O2—Ni1—N3 bite angles are decreased to 79.43 (5) and 80.50 (5)° as a consequence of the formation of the five-membered chelate rings. The C—C and C—N bond lengths in the organic ligands are well within the limits expected for aromatic rings (Petrusenko et al., 1997; Strotmeyer et al., 2003; Penkova et al., 2009).

Supra­molecular features top

In the crystal packing, the complex molecules and solvate water molecules are associated via inter­molecular hydrogen bonds (Table 1 and Fig. 2) that involve O—H inter­actions between the donor atoms of the water molecules and acceptor oxygen atoms of the phenolic and the carb­oxy­lic groups and solvate water molecules, forming a three-dimensional network (Fig. 3).

Synthesis and crystallization top

The ligand 2-[(2-hy­droxy­benzyl)­amino]-4-methyl­penta­noic acid (HAMA) was prepared by following procedure: L-Leucine (1.00 g, 6.71 mmol) and LiOH·H2O (0.284 g, 6.77 mmol) in dry methanol (30 ml) were stirred for 30 min to dissolve. A methano­lic solution of salicyl­aldehyde­(1.44 g, 6.72 mmol) was added dropwise to the above solution. The solution was stirred for 1 h and then treated with sodium borohydride (0.248 g, 6.71 mmol) with constant stirring. The solvent was evaporated and the resulting sticky mass was dissolved in water. A cloudy solution was obtained, which was then acidified with dilute HCl and the solution pH was maintained between 5–7. The ligand precipitated out as a colourless solid. The solid was filtered off, thoroughly washed with water and finally dried inside a vacuum desiccator. Yield 2.08 g (85%).

The title compound was been prepared as follows: HAMA (0.500 g, 1.43 mmol) was deprotonated with LiOH·H2O (0.060 g, 1.44 mmol) in 25 ml MeOH, which resulted in a clear colourless solution after 30 min. A methano­lic solution of Ni(NO3)2·6H2O (0.17 g, 0.71 mmol) was added dropwise to the ligand with stirring. The colour of the solution changed to green immediately. The solution was stirred for 2 h and evaporated to dryness on a rotary evaporator. The blue solid obtained by adding aceto­nitrile was recrystallized as green plates by slow diffusion of di­ethyl ether into a methano­lic solution of the crude solid over 2–3 days. The crystals were filtered off and washed with ether. Yield 74%.

Refinement top

The N—H hydrogen atoms were located in a difference Fourier map and freely refined. The O—H hydrogen atoms were also located in a difference Fourier map but constrained to ride on their parent atoms with Uiso(H) = 1.5Ueq(O). The C-bound H atoms were included in calculated positions and treated as riding atoms: with C—H = 0.95 Å and Uiso(H) = 1.2–1.5Ueq(C).

Related literature top

For the application of 1,10-phenanthroline, amino acids and Nickel, see: Auclair et al. (1984); Bachas et al. (1997); Chalk et al. (1994); Dinelli et al. (2010); Kolodziej, (1994); Sammes et al. (1994); Samnani et al. (1996); Nielsen et al. (1980); Poellot et al. (1990). For the background of the related compounds, see: Fritsky et al. (1998); Fritsky et al. (2004); Fritsky et al. (2006); Kanderal et al. (2005); Moroz et al. (2012); Penkova et al. (2009); Penkova et al. (2010); Petrusenko et al. (1997); Strotmeyer et al. (2003).

Computing details top

Data collection: SMART (Bruker, 2003); cell refinement: SAINT (Bruker, 2003); data reduction: SAINT (Bruker, 2003); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2015); molecular graphics: DIAMOND (Brandenburg & Putz, 2006); software used to prepare material for publication: DIAMOND (Brandenburg & Putz, 2006).

Figures top
[Figure 1] Fig. 1. The molecular structure and atom-numbering scheme for the title compound, with displacement ellipsoids drawn at the 40% probability level.
[Figure 2] Fig. 2. A view of the O—H···O hydrogen-bond interactions between the donor atoms of the water molecules and acceptor oxygen atoms of the phenolic and carboxylic groups and solvate water molecules in the crystal of the title compound (hydrogen bonds are shown as dashed lines; see Table 1 for details).
[Figure 3] Fig. 3. A view along the a axis of the crystal packing of the title compound. The O—H···O hydrogen-bonding interactions between the donor atoms of the water molecules and acceptor oxygen atoms of the phenolic and carboxylic groups and solvate water molecules (shown as magenta dashed lines) form a three-dimensional network (see Table 1 for details).
Aqua[N-(2-oxidobenzyl-κO)-L-leucinato-κ2N,O](1,10-phenanthroline-N,N')nickel(II) pentahydrate top
Crystal data top
[Ni(C13H17NO3)(C12H8N2)(H2O)]·5H2OF(000) = 1232
Mr = 582.29Dx = 1.370 Mg m3
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 1399 reflections
a = 11.7968 (2) Åθ = 2.6–28.6°
b = 14.8290 (3) ŵ = 0.74 mm1
c = 16.1406 (3) ÅT = 100 K
V = 2823.55 (9) Å3Block, green
Z = 40.30 × 0.21 × 0.15 mm
Data collection top
Bruker SMART APEX CCD
diffractometer
5240 independent reflections
Radiation source: fine-focus sealed tube5046 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.024
ω scansθmax = 25.5°, θmin = 2.9°
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
h = 1414
Tmin = 0.803, Tmax = 0.865k = 1717
29541 measured reflectionsl = 1919
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.022H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.057 w = 1/[σ2(Fo2) + (0.0322P)2 + 0.3183P]
where P = (Fo2 + 2Fc2)/3
S = 1.03(Δ/σ)max = 0.001
5240 reflectionsΔρmax = 0.22 e Å3
347 parametersΔρmin = 0.24 e Å3
0 restraintsAbsolute structure: (Flack, 1983), 2291 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.008 (7)
Crystal data top
[Ni(C13H17NO3)(C12H8N2)(H2O)]·5H2OV = 2823.55 (9) Å3
Mr = 582.29Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 11.7968 (2) ŵ = 0.74 mm1
b = 14.8290 (3) ÅT = 100 K
c = 16.1406 (3) Å0.30 × 0.21 × 0.15 mm
Data collection top
Bruker SMART APEX CCD
diffractometer
5240 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
5046 reflections with I > 2σ(I)
Tmin = 0.803, Tmax = 0.865Rint = 0.024
29541 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.022H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.057Δρmax = 0.22 e Å3
S = 1.03Δρmin = 0.24 e Å3
5240 reflectionsAbsolute structure: (Flack, 1983), 2291 Friedel pairs
347 parametersAbsolute structure parameter: 0.008 (7)
0 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.67912 (16)0.00202 (12)0.88437 (13)0.0487 (5)
H10.60180.01370.88090.058*
C20.71452 (18)0.07817 (13)0.92143 (13)0.0558 (5)
H20.66140.11860.94220.067*
C30.82686 (17)0.09691 (13)0.92708 (13)0.0522 (5)
H30.85140.14960.95260.063*
C40.90610 (15)0.03549 (12)0.89372 (11)0.0422 (4)
C51.02594 (17)0.04941 (14)0.89504 (13)0.0553 (5)
H51.05500.10100.92000.066*
C61.09760 (17)0.01069 (15)0.86086 (14)0.0573 (5)
H61.17520.00020.86250.069*
C71.05636 (15)0.09111 (13)0.82204 (11)0.0442 (4)
C81.12618 (17)0.15465 (15)0.78282 (14)0.0576 (5)
H81.20440.14680.78190.069*
C91.07804 (18)0.22823 (16)0.74592 (15)0.0589 (5)
H91.12310.27010.71840.071*
C100.96122 (16)0.24002 (13)0.74975 (13)0.0481 (4)
H100.92990.29070.72460.058*
C110.93931 (14)0.10790 (11)0.82141 (9)0.0346 (3)
C120.86278 (14)0.04341 (10)0.85744 (10)0.0339 (3)
C130.48304 (14)0.24458 (11)0.83796 (11)0.0386 (4)
C140.39435 (15)0.28423 (13)0.79308 (14)0.0514 (4)
H140.37660.26280.74050.062*
C150.33276 (18)0.35528 (15)0.82648 (16)0.0643 (6)
H150.27430.38110.79590.077*
C160.35715 (19)0.38806 (15)0.90432 (16)0.0649 (6)
H160.31460.43480.92690.078*
C170.44555 (17)0.35059 (14)0.94819 (13)0.0539 (5)
H170.46320.37351.00020.065*
C180.50909 (15)0.27931 (12)0.91669 (11)0.0415 (4)
C190.60869 (16)0.24162 (13)0.96300 (11)0.0462 (4)
H19A0.61290.26931.01740.055*
H19B0.59870.17720.97050.055*
C200.73468 (15)0.35627 (11)0.90083 (11)0.0388 (4)
H200.68970.39140.94040.047*
C210.69476 (13)0.37869 (10)0.81280 (11)0.0362 (3)
C220.86072 (17)0.37934 (13)0.91303 (12)0.0471 (4)
H22A0.87830.37370.97150.056*
H22B0.90550.33460.88380.056*
C230.89868 (19)0.47278 (15)0.88411 (13)0.0598 (6)
H230.87870.47850.82540.072*
C241.0279 (3)0.4786 (2)0.8908 (2)0.1145 (13)
H24A1.05270.53720.87300.172*
H24B1.06170.43330.85630.172*
H24C1.05040.46910.94730.172*
C250.8371 (3)0.54780 (16)0.93128 (17)0.0957 (10)
H25A0.86230.60540.91130.144*
H25B0.85360.54280.98930.144*
H25C0.75690.54220.92270.144*
N10.75051 (11)0.06215 (9)0.85396 (9)0.0368 (3)
N20.89272 (11)0.18292 (10)0.78726 (8)0.0370 (3)
N30.71624 (14)0.25874 (9)0.91724 (9)0.0373 (3)
H1N30.7731 (17)0.2423 (12)0.9458 (11)0.035 (5)*
O10.54218 (9)0.17497 (7)0.80691 (8)0.0404 (2)
O20.70273 (9)0.31677 (7)0.75881 (7)0.0378 (2)
O30.66098 (12)0.45636 (8)0.79805 (9)0.0528 (3)
O40.71500 (12)0.12784 (8)0.68295 (7)0.0482 (3)
H1O40.74420.15930.64620.072*
H2O40.63640.11090.66970.072*
O50.48550 (14)0.09831 (10)0.65816 (9)0.0655 (4)
H1O50.43690.04400.66930.098*
H2O50.49450.11840.71360.098*
O60.59572 (17)0.35179 (11)0.61226 (9)0.0762 (5)
H1O60.61340.33210.66750.114*
H2O60.59490.41930.61210.114*
O70.78670 (19)0.24699 (12)0.56707 (11)0.0893 (6)
H1O70.85080.26010.53620.134*
H2O70.72070.28240.57200.134*
O80.96331 (17)0.27411 (12)0.46430 (12)0.0867 (6)
H1O81.00550.22800.45050.130*
H2O80.96170.32510.41630.130*
O90.61321 (12)0.53645 (10)0.64845 (9)0.0572 (4)
H1O90.62140.50950.70150.086*
H2O90.56480.57950.65780.086*
Ni10.715392 (16)0.187826 (13)0.801560 (13)0.03288 (6)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0358 (9)0.0380 (10)0.0724 (13)0.0048 (7)0.0006 (8)0.0138 (9)
C20.0498 (11)0.0403 (10)0.0772 (13)0.0072 (9)0.0056 (11)0.0187 (9)
C30.0570 (12)0.0343 (9)0.0651 (12)0.0052 (8)0.0014 (9)0.0155 (9)
C40.0454 (10)0.0341 (9)0.0471 (9)0.0074 (7)0.0011 (8)0.0031 (7)
C50.0485 (11)0.0520 (12)0.0654 (12)0.0192 (9)0.0002 (9)0.0140 (9)
C60.0355 (10)0.0655 (13)0.0708 (13)0.0179 (9)0.0033 (9)0.0117 (11)
C70.0328 (9)0.0484 (10)0.0514 (10)0.0053 (7)0.0029 (7)0.0009 (8)
C80.0319 (9)0.0648 (13)0.0759 (14)0.0012 (9)0.0116 (9)0.0071 (10)
C90.0448 (11)0.0580 (12)0.0738 (14)0.0115 (10)0.0132 (10)0.0113 (11)
C100.0455 (10)0.0387 (10)0.0603 (11)0.0033 (8)0.0030 (9)0.0095 (8)
C110.0348 (8)0.0328 (8)0.0361 (8)0.0013 (6)0.0010 (6)0.0019 (6)
C120.0335 (8)0.0292 (8)0.0390 (8)0.0017 (7)0.0006 (7)0.0018 (6)
C130.0296 (8)0.0320 (8)0.0543 (10)0.0035 (7)0.0063 (7)0.0025 (7)
C140.0353 (9)0.0514 (10)0.0675 (12)0.0012 (8)0.0067 (9)0.0073 (9)
C150.0373 (10)0.0563 (12)0.0992 (19)0.0117 (9)0.0065 (10)0.0017 (12)
C160.0484 (12)0.0530 (12)0.0934 (17)0.0088 (10)0.0168 (12)0.0158 (12)
C170.0493 (11)0.0539 (11)0.0586 (12)0.0010 (9)0.0143 (9)0.0095 (9)
C180.0381 (9)0.0401 (9)0.0463 (9)0.0054 (7)0.0103 (7)0.0008 (8)
C190.0523 (11)0.0459 (10)0.0403 (9)0.0040 (8)0.0057 (8)0.0054 (8)
C200.0435 (10)0.0311 (8)0.0418 (9)0.0003 (7)0.0042 (7)0.0003 (7)
C210.0347 (8)0.0277 (8)0.0462 (9)0.0002 (6)0.0044 (7)0.0027 (7)
C220.0501 (11)0.0431 (10)0.0481 (10)0.0064 (8)0.0141 (8)0.0010 (8)
C230.0708 (14)0.0579 (13)0.0508 (11)0.0251 (11)0.0197 (10)0.0101 (9)
C240.0807 (19)0.118 (3)0.145 (3)0.0561 (19)0.045 (2)0.053 (2)
C250.161 (3)0.0464 (13)0.0799 (17)0.0191 (16)0.0274 (18)0.0082 (12)
N10.0331 (7)0.0304 (7)0.0469 (8)0.0005 (5)0.0002 (5)0.0050 (6)
N20.0345 (7)0.0322 (7)0.0443 (7)0.0020 (6)0.0005 (5)0.0034 (6)
N30.0368 (7)0.0345 (7)0.0407 (7)0.0008 (7)0.0061 (7)0.0070 (6)
O10.0325 (5)0.0341 (6)0.0545 (6)0.0012 (4)0.0014 (5)0.0060 (6)
O20.0436 (6)0.0292 (5)0.0405 (5)0.0021 (6)0.0054 (5)0.0037 (5)
O30.0646 (8)0.0328 (6)0.0611 (8)0.0125 (6)0.0169 (7)0.0003 (6)
O40.0507 (7)0.0445 (7)0.0496 (7)0.0037 (6)0.0031 (6)0.0051 (5)
O50.0754 (10)0.0614 (9)0.0598 (8)0.0264 (8)0.0071 (7)0.0030 (7)
O60.1227 (15)0.0539 (9)0.0519 (8)0.0023 (10)0.0210 (9)0.0008 (7)
O70.1090 (14)0.0725 (11)0.0864 (12)0.0087 (11)0.0442 (12)0.0061 (9)
O80.1077 (15)0.0609 (10)0.0915 (12)0.0078 (10)0.0424 (11)0.0001 (9)
O90.0575 (9)0.0537 (8)0.0603 (8)0.0147 (7)0.0051 (7)0.0009 (7)
Ni10.02919 (10)0.02618 (10)0.04328 (10)0.00102 (8)0.00074 (9)0.00352 (9)
Geometric parameters (Å, º) top
C1—N11.321 (2)C19—H19B0.9700
C1—C21.395 (3)C20—N31.486 (2)
C1—H10.9300C20—C211.533 (2)
C2—C31.357 (3)C20—C221.538 (3)
C2—H20.9300C20—H200.9800
C3—C41.412 (3)C21—O31.2417 (19)
C3—H30.9300C21—O21.269 (2)
C4—C121.405 (2)C22—C231.529 (3)
C4—C51.429 (3)C22—H22A0.9700
C5—C61.347 (3)C22—H22B0.9700
C5—H50.9300C23—C241.531 (4)
C6—C71.432 (3)C23—C251.531 (4)
C6—H60.9300C23—H230.9800
C7—C81.402 (3)C24—H24A0.9600
C7—C111.403 (2)C24—H24B0.9600
C8—C91.367 (3)C24—H24C0.9600
C8—H80.9300C25—H25A0.9600
C9—C101.390 (3)C25—H25B0.9600
C9—H90.9300C25—H25C0.9600
C10—N21.318 (2)N1—Ni12.0881 (14)
C10—H100.9300N2—Ni12.1058 (13)
C11—N21.358 (2)N3—Ni12.1429 (14)
C11—C121.438 (2)N3—H1N30.849 (19)
C12—N11.354 (2)O1—Ni12.0540 (11)
C13—O11.343 (2)O2—Ni12.0383 (11)
C13—C141.402 (3)O4—Ni12.1110 (12)
C13—C181.405 (3)O4—H1O40.8299
C14—C151.389 (3)O4—H2O40.9845
C14—H140.9300O5—H1O51.0049
C15—C161.378 (3)O5—H2O50.9485
C15—H150.9300O6—H1O60.9604
C16—C171.378 (3)O6—H2O61.0011
C16—H160.9300O7—H1O70.9260
C17—C181.392 (3)O7—H2O70.9419
C17—H170.9300O8—H1O80.8742
C18—C191.501 (3)O8—H2O81.0820
C19—N31.490 (2)O9—H1O90.9494
C19—H19A0.9700O9—H2O90.8705
N1—C1—C2122.94 (17)C22—C20—H20108.8
N1—C1—H1118.5O3—C21—O2124.27 (16)
C2—C1—H1118.5O3—C21—C20118.51 (15)
C3—C2—C1119.71 (18)O2—C21—C20117.17 (13)
C3—C2—H2120.1C23—C22—C20116.45 (17)
C1—C2—H2120.1C23—C22—H22A108.2
C2—C3—C4119.27 (17)C20—C22—H22A108.2
C2—C3—H3120.4C23—C22—H22B108.2
C4—C3—H3120.4C20—C22—H22B108.2
C12—C4—C3117.09 (16)H22A—C22—H22B107.3
C12—C4—C5119.12 (17)C22—C23—C24108.8 (2)
C3—C4—C5123.79 (17)C22—C23—C25111.58 (19)
C6—C5—C4121.29 (18)C24—C23—C25113.3 (2)
C6—C5—H5119.4C22—C23—H23107.7
C4—C5—H5119.4C24—C23—H23107.7
C5—C6—C7121.13 (17)C25—C23—H23107.7
C5—C6—H6119.4C23—C24—H24A109.5
C7—C6—H6119.4C23—C24—H24B109.5
C8—C7—C11117.09 (17)H24A—C24—H24B109.5
C8—C7—C6123.87 (17)C23—C24—H24C109.5
C11—C7—C6119.03 (17)H24A—C24—H24C109.5
C9—C8—C7119.28 (18)H24B—C24—H24C109.5
C9—C8—H8120.4C23—C25—H25A109.5
C7—C8—H8120.4C23—C25—H25B109.5
C8—C9—C10119.52 (19)H25A—C25—H25B109.5
C8—C9—H9120.2C23—C25—H25C109.5
C10—C9—H9120.2H25A—C25—H25C109.5
N2—C10—C9123.20 (18)H25B—C25—H25C109.5
N2—C10—H10118.4C1—N1—C12118.00 (15)
C9—C10—H10118.4C1—N1—Ni1128.79 (12)
N2—C11—C7123.15 (15)C12—N1—Ni1113.20 (10)
N2—C11—C12117.06 (14)C10—N2—C11117.69 (15)
C7—C11—C12119.79 (15)C10—N2—Ni1129.60 (12)
N1—C12—C4122.96 (15)C11—N2—Ni1112.70 (10)
N1—C12—C11117.43 (14)C20—N3—C19112.25 (14)
C4—C12—C11119.61 (15)C20—N3—Ni1108.84 (10)
O1—C13—C14121.15 (16)C19—N3—Ni1110.15 (11)
O1—C13—C18120.38 (16)C20—N3—H1N3105.1 (12)
C14—C13—C18118.48 (16)C19—N3—H1N3110.7 (12)
C15—C14—C13120.5 (2)Ni1—N3—H1N3109.6 (12)
C15—C14—H14119.7C13—O1—Ni1117.47 (9)
C13—C14—H14119.7C21—O2—Ni1116.85 (10)
C16—C15—C14120.8 (2)Ni1—O4—H1O4114.3
C16—C15—H15119.6Ni1—O4—H2O4107.9
C14—C15—H15119.6H1O4—O4—H2O4112.2
C15—C16—C17118.98 (19)H1O5—O5—H2O598.5
C15—C16—H16120.5H1O6—O6—H2O6108.0
C17—C16—H16120.5H1O7—O7—H2O7127.2
C16—C17—C18121.7 (2)H1O8—O8—H2O8111.9
C16—C17—H17119.1H1O9—O9—H2O9102.6
C18—C17—H17119.1O2—Ni1—O191.63 (5)
C17—C18—C13119.40 (17)O2—Ni1—N1171.46 (5)
C17—C18—C19121.50 (17)O1—Ni1—N195.60 (5)
C13—C18—C19119.03 (16)O2—Ni1—N293.90 (5)
N3—C19—C18110.88 (14)O1—Ni1—N2171.73 (5)
N3—C19—H19A109.5N1—Ni1—N279.43 (5)
C18—C19—H19A109.5O2—Ni1—O495.06 (5)
N3—C19—H19B109.5O1—Ni1—O489.82 (5)
C18—C19—H19B109.5N1—Ni1—O489.52 (5)
H19A—C19—H19B108.1N2—Ni1—O483.59 (5)
N3—C20—C21109.33 (13)O2—Ni1—N380.50 (5)
N3—C20—C22109.57 (14)O1—Ni1—N390.78 (6)
C21—C20—C22111.54 (15)N1—Ni1—N394.83 (5)
N3—C20—H20108.8N2—Ni1—N396.19 (6)
C21—C20—H20108.8O4—Ni1—N3175.53 (5)
N1—C1—C2—C30.2 (3)C7—C11—N2—C103.3 (2)
C1—C2—C3—C41.3 (3)C12—C11—N2—C10176.12 (16)
C2—C3—C4—C121.1 (3)C7—C11—N2—Ni1177.88 (13)
C2—C3—C4—C5178.9 (2)C12—C11—N2—Ni12.74 (17)
C12—C4—C5—C61.3 (3)C21—C20—N3—C1997.20 (16)
C3—C4—C5—C6178.7 (2)C22—C20—N3—C19140.27 (15)
C4—C5—C6—C70.2 (4)C21—C20—N3—Ni125.00 (16)
C5—C6—C7—C8177.7 (2)C22—C20—N3—Ni197.53 (15)
C5—C6—C7—C111.3 (3)C18—C19—N3—C2056.96 (19)
C11—C7—C8—C90.5 (3)C18—C19—N3—Ni164.49 (16)
C6—C7—C8—C9178.5 (2)C14—C13—O1—Ni1125.71 (15)
C7—C8—C9—C101.7 (3)C18—C13—O1—Ni154.29 (19)
C8—C9—C10—N20.4 (4)O3—C21—O2—Ni1162.77 (14)
C8—C7—C11—N22.0 (3)C20—C21—O2—Ni120.04 (18)
C6—C7—C11—N2178.93 (17)C21—O2—Ni1—O186.89 (11)
C8—C7—C11—C12177.34 (16)C21—O2—Ni1—N160.9 (4)
C6—C7—C11—C121.7 (3)C21—O2—Ni1—N299.25 (11)
C3—C4—C12—N10.4 (3)C21—O2—Ni1—O4176.86 (11)
C5—C4—C12—N1179.63 (17)C21—O2—Ni1—N33.62 (11)
C3—C4—C12—C11179.14 (16)C13—O1—Ni1—O243.27 (13)
C5—C4—C12—C110.9 (3)C13—O1—Ni1—N1132.18 (12)
N2—C11—C12—N10.5 (2)C13—O1—Ni1—N2175.3 (3)
C7—C11—C12—N1178.91 (15)C13—O1—Ni1—O4138.32 (12)
N2—C11—C12—C4179.97 (15)C13—O1—Ni1—N337.25 (12)
C7—C11—C12—C40.6 (2)C1—N1—Ni1—O2143.3 (3)
O1—C13—C14—C15179.01 (18)C12—N1—Ni1—O235.3 (4)
C18—C13—C14—C151.0 (3)C1—N1—Ni1—O14.37 (17)
C13—C14—C15—C160.2 (3)C12—N1—Ni1—O1177.07 (12)
C14—C15—C16—C171.4 (3)C1—N1—Ni1—N2177.71 (17)
C15—C16—C17—C181.4 (3)C12—N1—Ni1—N23.73 (12)
C16—C17—C18—C130.2 (3)C1—N1—Ni1—O494.14 (17)
C16—C17—C18—C19177.10 (19)C12—N1—Ni1—O487.30 (12)
O1—C13—C18—C17179.03 (16)C1—N1—Ni1—N386.88 (17)
C14—C13—C18—C171.0 (3)C12—N1—Ni1—N391.68 (12)
O1—C13—C18—C194.0 (2)C10—N2—Ni1—O210.16 (17)
C14—C13—C18—C19175.97 (17)C11—N2—Ni1—O2171.16 (11)
C17—C18—C19—N3114.01 (19)C10—N2—Ni1—O1121.7 (4)
C13—C18—C19—N362.9 (2)C11—N2—Ni1—O157.0 (4)
N3—C20—C21—O3151.94 (15)C10—N2—Ni1—N1175.22 (17)
C22—C20—C21—O386.71 (19)C11—N2—Ni1—N13.47 (11)
N3—C20—C21—O230.7 (2)C10—N2—Ni1—O484.50 (17)
C22—C20—C21—O290.65 (18)C11—N2—Ni1—O494.18 (11)
N3—C20—C22—C23169.60 (16)C10—N2—Ni1—N391.01 (17)
C21—C20—C22—C2348.4 (2)C11—N2—Ni1—N390.31 (11)
C20—C22—C23—C24172.7 (2)C20—N3—Ni1—O213.11 (11)
C20—C22—C23—C2561.5 (2)C19—N3—Ni1—O2110.36 (11)
C2—C1—N1—C121.6 (3)C20—N3—Ni1—O1104.63 (12)
C2—C1—N1—Ni1176.86 (15)C19—N3—Ni1—O118.84 (11)
C4—C12—N1—C11.7 (3)C20—N3—Ni1—N1159.69 (11)
C11—C12—N1—C1177.78 (16)C19—N3—Ni1—N176.85 (11)
C4—C12—N1—Ni1176.99 (13)C20—N3—Ni1—N279.83 (12)
C11—C12—N1—Ni13.49 (18)C19—N3—Ni1—N2156.70 (11)
C9—C10—N2—C112.0 (3)C20—N3—Ni1—O47.0 (9)
C9—C10—N2—Ni1179.36 (16)C19—N3—Ni1—O4116.5 (8)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O4—H1O4···O70.831.892.709 (2)169
O4—H2O4···O50.981.802.772 (2)169
O5—H1O5···O3i1.001.822.8137 (19)171
O5—H2O5···O10.951.812.7393 (19)164
O6—H1O6···O20.961.832.7310 (18)156
O6—H2O6···O91.001.852.807 (2)160
O7—H1O7···O80.931.782.693 (3)171
O7—H2O7···O60.941.912.832 (3)165
O8—H1O8···O6ii0.871.892.730 (3)162
O8—H2O8···O5ii1.081.682.749 (2)169
O9—H1O9···O30.951.812.749 (2)171
O9—H2O9···O1iii0.871.982.8459 (18)173
Symmetry codes: (i) x+1, y1/2, z+3/2; (ii) x+1/2, y+1/2, z+1; (iii) x+1, y+1/2, z+3/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O4—H1O4···O70.831.892.709 (2)168.6
O4—H2O4···O50.981.802.772 (2)168.8
O5—H1O5···O3i1.001.822.8137 (19)171.1
O5—H2O5···O10.951.812.7393 (19)164.4
O6—H1O6···O20.961.832.7310 (18)155.8
O6—H2O6···O91.001.852.807 (2)159.8
O7—H1O7···O80.931.782.693 (3)170.6
O7—H2O7···O60.941.912.832 (3)165.0
O8—H1O8···O6ii0.871.892.730 (3)161.5
O8—H2O8···O5ii1.081.682.749 (2)169.3
O9—H1O9···O30.951.812.749 (2)170.7
O9—H2O9···O1iii0.871.982.8459 (18)173.2
Symmetry codes: (i) x+1, y1/2, z+3/2; (ii) x+1/2, y+1/2, z+1; (iii) x+1, y+1/2, z+3/2.

Experimental details

Crystal data
Chemical formula[Ni(C13H17NO3)(C12H8N2)(H2O)]·5H2O
Mr582.29
Crystal system, space groupOrthorhombic, P212121
Temperature (K)100
a, b, c (Å)11.7968 (2), 14.8290 (3), 16.1406 (3)
V3)2823.55 (9)
Z4
Radiation typeMo Kα
µ (mm1)0.74
Crystal size (mm)0.30 × 0.21 × 0.15
Data collection
DiffractometerBruker SMART APEX CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2001)
Tmin, Tmax0.803, 0.865
No. of measured, independent and
observed [I > 2σ(I)] reflections
29541, 5240, 5046
Rint0.024
(sin θ/λ)max1)0.606
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.022, 0.057, 1.03
No. of reflections5240
No. of parameters347
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.22, 0.24
Absolute structure(Flack, 1983), 2291 Friedel pairs
Absolute structure parameter0.008 (7)

Computer programs: SMART (Bruker, 2003), SAINT (Bruker, 2003), SIR97 (Altomare et al., 1999), SHELXL97 (Sheldrick, 2015), DIAMOND (Brandenburg & Putz, 2006).

 

Acknowledgements

The authors are grateful to the Department of Chemistry, Indian Institute of Technology Kanpur, for the data collection.

References

First citationAltomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationAuclair, C., Voisin, E., Banoun, H., Paoletti, C., Bernadou, J. & Meunier, B. (1984). J. Med. Chem. 27, 1161–1166.  Google Scholar
First citationBachas, L. G., Cullen, L., Hutchins, R. S. & Scott, D. L. (1997). J. Chem. Soc. Dalton Trans. pp. 1571–1578.  Google Scholar
First citationBrandenburg, K. & Putz, H. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2001). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2003). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChalk, S. J. & Tyson, J. F. (1994). Anal. Chem. 66, 660–666.  Google Scholar
First citationDinelli, L. R., Bezerra, T. M. & Sene, J. J. (2010). Curr. Res. Chem. 2, 18–23.  Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationFritsky, I. O., Kozłowski, H., Kanderal, O. M., Haukka, M., Świątek-Kozłowska, J., Gumienna-Kontecka, E. & Meyer, F. (2006). Chem. Commun. pp. 4125–4127.  Web of Science CSD CrossRef Google Scholar
First citationFritsky, I. O., Kozłowski, H., Sadler, P. J., Yefetova, O. P., Świątek-Kozłowska, J., Kalibabchuk, V. A. & Głowiak, T. (1998). J. Chem. Soc. Dalton Trans. pp. 3269–3274.  Web of Science CSD CrossRef Google Scholar
First citationFritsky, I. O., Świątek-Kozłowska, J., Dobosz, A., Sliva, T. Y. & Dudarenko, N. M. (2004). Inorg. Chim. Acta, 357, 3746–3752.  Web of Science CSD CrossRef CAS Google Scholar
First citationKanderal, O. M., Kozlowski, H., Dobosz, A., Swiatek-Kozlowska, J., Meyer, F. & Fritsky, I. O. (2005). Dalton Trans. pp. 1428–1437.  Web of Science CrossRef Google Scholar
First citationKolodziej, A. F. (1994). Progress in Inorganic Chemistry, Vol. 41, edited by K. D. Karlin, pp. 493–523. New York: Wiley.  Google Scholar
First citationMoroz, Y. S., Demeshko, S., Haukka, M., Mokhir, A., Mitra, U., Stocker, M., Müller, P., Meyer, F. & Fritsky, I. O. (2012). Inorg. Chem. 51, 7445–7447.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationNielsen, F. H. (1980). J. Nutr. 110, 965–973.  Google Scholar
First citationPenkova, L., Demeshko, S., Pavlenko, V. A., Dechert, S., Meyer, F. & Fritsky, I. O. (2010). Inorg. Chim. Acta, 363, 3036–3040.  Web of Science CSD CrossRef CAS Google Scholar
First citationPenkova, L. V., Maciąg, A., Rybak-Akimova, E. V., Haukka, M., Pavlenko, V. A., Iskenderov, T. S., Kozłowski, H., Meyer, F. & Fritsky, I. O. (2009). Inorg. Chem. 48, 6960–6971.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationPetrusenko, S. R., Kokozay, V. N. & Fritsky, I. O. (1997). Polyhedron, 16, 267–274.  CSD CrossRef CAS Web of Science Google Scholar
First citationPoellot, R. A., Shuler, T. R., Uthus, E. O. & Nielsen, F. H. (1990). Proc. Natl. Acad. Sci. USA, 44, 80–97.  Google Scholar
First citationSammes, P. G. & Yahioglu, G. (1994). Chem. Soc. Rev. 23, 327–350.  Google Scholar
First citationSamnani, P. B., Bhattacharya, P. K., Ganeshpure, P. A., Koshy, V. J. & Satish, N. (1996). J. Mol. Catal. A Chem. 110, 89–94.  Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationStrotmeyer, K. P., Fritsky, I. O., Ott, R., Pritzkow, H. & Krämer, R. (2003). Supramol. Chem. 15, 529–547.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 71| Part 2| February 2015| Pages 195-198
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds