metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of bis­­[1,3-bis­­(di­phenyl­phosphan­yl)propane-κ2P,P′]platinum(II) dichloride chloro­form penta­solvate

aSchool of Chemical and Physical Sciences, Victoria University of Wellington, Wellington, New Zealand
*Correspondence e-mail: sarah.hoyte@vuw.ac.nz

Edited by J. F. Gallagher, Dublin City University, Ireland (Received 20 October 2014; accepted 21 January 2015; online 28 January 2015)

In the title compound, [Pt{Ph2P(CH2)3PPh2}2]Cl2·5CHCl3, the PtII cations, located on a centre of inversion, is coordinated by two chelating diphosphane ligands in a geometry which is close to square-planar. The chelate rings adopt a chair conformation. The PtII cations are arranged in layers separated by Cl anions as well as CHCl3 solvent mol­ecules. While this complex has been reported previously [Anderson et al. (1983[Anderson, G. K., Davies, J. A. & Schoeck, D. J. (1983). Inorg. Chim. Acta, 76, L251-L252.]). Inorg. Chim. Acta, 76, L251–L252], this is the first time a structure has been determined.

1. Related literature

For structures of related group 10 M2+ bis-diphosphane complexes, see: Pahor & Bruno (1977[Pahor, N. B. & Bruno, G. (1977). Cryst. Struct. Commun. 6, 717-722.]); Engelhardt et al. (1984[Engelhardt, L. M., Patrick, J. M., Raston, C. L., Twiss, P. & White, A. H. (1984). Aust. J. Chem. 37, 2193-2200.]); Ferguson et al. (1993[Ferguson, G., Lough, A. J., McAlees, A. J. & McCrindle, R. (1993). Acta Cryst. C49, 573-576.]); Berning et al. (1999[Berning, D. E., Noll, B. C. & DuBois, D. L. (1999). J. Am. Chem. Soc. 121, 11432-11447.]); Raebiger et al. (2004[Raebiger, J. W., Miedaner, A., Curtis, C. J., Miller, S. M., Anderson, O. P. & DuBois, D. L. (2004). J. Am. Chem. Soc. 126, 5502-5514.]); Fischer (2006[Fischer, R., Langer, J., Malassa, A., Walter, D., Goris, H. & Vaughan, G. (2006). Chem. Commun. pp. 2510-2512.]). The corresponding Pt0 complex [Pt(dppp)2] [dppp is 1,3-bis­(di­phenyl­phosphan­yl)propane] has been reported by Asker et al. (1990[Asker, K., Hitchcock, P., Moulding, R. & Seddon, K. (1990). Inorg. Chem. 29, 4146-4148.]). For a previous report of the title compound, see: Anderson et al. (1983[Anderson, G. K., Davies, J. A. & Schoeck, D. J. (1983). Inorg. Chim. Acta, 76, L251-L252.]).

[Scheme 1]

2. Experimental

2.1. Crystal data

  • [Pt(C27H26P2)2]Cl2·5CHCl3

  • Mr = 1687.67

  • Orthorhombic, P c c n

  • a = 26.2042 (9) Å

  • b = 15.3120 (5) Å

  • c = 16.7930 (5) Å

  • V = 6738.0 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 2.89 mm−1

  • T = 160 K

  • 0.60 × 0.38 × 0.28 mm

2.2. Data collection

  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2007[Bruker (2007). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.562, Tmax = 0.746

  • 179974 measured reflections

  • 10325 independent reflections

  • 7580 reflections with I > 2σ(I)

  • Rint = 0.063

2.3. Refinement

  • R[F2 > 2σ(F2)] = 0.037

  • wR(F2) = 0.073

  • S = 1.20

  • 10325 reflections

  • 385 parameters

  • H-atom parameters constrained

  • Δρmax = 0.73 e Å−3

  • Δρmin = −0.97 e Å−3

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]); molecular graphics: Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

When [PtCl2(SEt2)2] is reacted with bicyclopropylidene, this results in the formation of the β-chloroalkyl complex [Pt(C(CH2)2C(CH2)2Cl)Cl(SEt2)2] after 5 days. When dppp (Ph2P(CH2)3PPh2) was added in an attempt to make a phosphine β-chloroalkyl complex, the β-chloroalkyl ligand undergoes a β-chloride elimination to regenerate the alkene and [Pt(dppp)2]Cl2 is formed. While this complex has been reported previously (Anderson et al., 1983), this is the first time a structure has been obtained (Fig. 1).

The asymmetric unit contains only half of the molecule, consisting of a complete dppp ligand as well as one of the Cl- counter ions and half of the five CDCl3 solvent molecules. The platinum is close to square planar, with a P1—Pt—P2 angle of 87.23 (3)°. This is smaller than the corresponding angle in the Pt(0) complex [Pt(dppp)2] (97.76 (4)°) (Asker et al., 1990). The Pt—P bond lengths are 2.3648 (7) and 2.3790 (8) Å, longer than those in [Pt(dppp)2] (2.286 (1) Å). The chelate ring has a 'chair' conformation, typical for dppp complexes. In [Pt(dppp)2]Cl2, the chelate two rings are rotated by 180° relative to each other, while in [Pt(dppp)2] the rings are rotated by 87.20 (2)° (according to the PtP1P2 planes). While [Pt(dppp)2]Cl2 crystallized as a CDCl3 solvate in the orthorhombic Pccn space group, [Pt(dppp)2] crystallized solvent-free from tetrahydrofuran in the monoclinic C2/c space group. The Cl- counter ion is separated by 4.197 Å from the Pt, showing that it is not coordinated. The [Pt(dppp)2]2+ ions are arranged in two-dimensional layers, with the Cl- anions and solvent between the layers.

Related literature top

For structures of related group 10 M2+ bis-diphosphane complexes, see: Pahor & Bruno (1977); Engelhardt et al. (1984); Ferguson et al. (1993); Berning et al. (1999); Raebiger et al. (2004); Fischer (2006). The corresponding Pt0 complex [Pt(dppp)2] [dppp is 1,3-bis(diphenylphosphanyl)propane] has been reported by Asker et al. (1990). For a previous report of the title compound, see: Anderson et al. (1983).

Experimental top

[PtCl2(SEt2)2] (50 mg, 0.11 mmol) was dissolved in CDCl3 (0.5 ml) in an NMR tube under Ar and 5 equiv. bicyclopropylidene added (50 µL, 0.54 mmol). The reaction was stirred for 5 days, resulting in the formation of trans-[Pt(C(CH2)2C(CH2)2Cl)Cl(SEt2)2]. The solution was frozen in liquid N2, and a solution of dppp (90 mg, 0.22 mmol) in CDCl3 (0.5 ml) added. Crystals of [Pt(dppp)2]Cl2 formed as the solution warmed to RT.

Refinement top

All H atoms were positioned geometrically and refined using a riding model, with aromatic C—H = 0.93 Å, methylene C—H = 0.97 Å, and tertiary C—H = 0.98 Å. Uiso(H) = 1.2. A chloroform solvent molecule was found to be disordered about a 2-fold axis, and was refined by suppressing the symmetry restriction with a 'PART -1' instruction.

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2015); molecular graphics: Mercury (Macrae et al., 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. : ORTEP diagram of [Pt(Ph2P(C2H3)PPh2)2]Cl2 showing 50% probability ellipsoids. H atoms have been omitted for clarity.
Bis[1,3-bis(diphenylphosphanyl)propane-κ2P,P']platinum(II) dichloride chloroform pentasolvate top
Crystal data top
[Pt(C27H26P2)2]Cl2·5CHCl3F(000) = 3352.00
Mr = 1687.67Dx = 1.664 Mg m3
Orthorhombic, PccnMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ab 2acCell parameters from 9982 reflections
a = 26.2042 (9) Åθ = 2.4–30.5°
b = 15.3120 (5) ŵ = 2.89 mm1
c = 16.7930 (5) ÅT = 160 K
V = 6738.0 (4) Å3Block, colourless
Z = 40.6 × 0.38 × 0.28 mm
Data collection top
Bruker APEXII CCD
diffractometer
10325 independent reflections
Radiation source: fine-focus sealed tube7580 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.063
ϕ and ω scansθmax = 30.6°, θmin = 2.4°
Absorption correction: multi-scan
(SADABS; Bruker, 2007)
h = 3737
Tmin = 0.562, Tmax = 0.746k = 2121
179974 measured reflectionsl = 2324
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.037Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.073H-atom parameters constrained
S = 1.20 w = 1/[σ2(Fo2) + (0.P)2 + 21.821P]
where P = (Fo2 + 2Fc2)/3
10325 reflections(Δ/σ)max = 0.001
385 parametersΔρmax = 0.73 e Å3
0 restraintsΔρmin = 0.97 e Å3
Crystal data top
[Pt(C27H26P2)2]Cl2·5CHCl3V = 6738.0 (4) Å3
Mr = 1687.67Z = 4
Orthorhombic, PccnMo Kα radiation
a = 26.2042 (9) ŵ = 2.89 mm1
b = 15.3120 (5) ÅT = 160 K
c = 16.7930 (5) Å0.6 × 0.38 × 0.28 mm
Data collection top
Bruker APEXII CCD
diffractometer
10325 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2007)
7580 reflections with I > 2σ(I)
Tmin = 0.562, Tmax = 0.746Rint = 0.063
179974 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0370 restraints
wR(F2) = 0.073H-atom parameters constrained
S = 1.20 w = 1/[σ2(Fo2) + (0.P)2 + 21.821P]
where P = (Fo2 + 2Fc2)/3
10325 reflectionsΔρmax = 0.73 e Å3
385 parametersΔρmin = 0.97 e Å3
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Pt10.50000.00000.00000.01283 (4)
P20.49876 (3)0.10087 (5)0.10661 (4)0.01623 (14)
P10.48568 (3)0.11136 (5)0.09623 (4)0.01524 (15)
C40.41837 (12)0.1208 (2)0.11952 (18)0.0178 (6)
C30.52924 (13)0.0645 (2)0.19883 (18)0.0210 (6)
H3A0.56480.05190.18750.025*
H3B0.52840.11230.23670.025*
C180.53826 (15)0.3596 (2)0.1019 (2)0.0278 (8)
H180.52190.41330.10610.033*
C10.51746 (13)0.0980 (2)0.19268 (17)0.0194 (6)
H1A0.50820.14720.22610.023*
H1B0.55400.10090.18410.023*
C210.58744 (13)0.1990 (2)0.0910 (2)0.0234 (7)
H210.60400.14530.08860.028*
C20.50582 (13)0.0150 (2)0.23790 (17)0.0211 (7)
H2A0.51880.02020.29180.025*
H2B0.46910.00740.24100.025*
C90.40155 (13)0.1654 (2)0.18772 (19)0.0219 (7)
H90.42510.18790.22370.026*
C220.43463 (13)0.1321 (2)0.13539 (19)0.0203 (6)
C140.49389 (16)0.3787 (2)0.0796 (2)0.0299 (8)
H140.47190.42620.08330.036*
C50.38263 (13)0.0870 (2)0.0673 (2)0.0239 (7)
H50.39340.05680.02220.029*
C80.34994 (14)0.1758 (3)0.2012 (2)0.0294 (8)
H80.33890.20570.24610.035*
C160.53416 (12)0.2026 (2)0.09712 (18)0.0183 (6)
C190.59096 (16)0.3563 (3)0.0944 (2)0.0316 (8)
H190.60990.40770.09320.038*
C170.50980 (13)0.2833 (2)0.10331 (18)0.0217 (7)
H170.47450.28590.10840.026*
C110.56005 (14)0.2376 (2)0.0705 (2)0.0251 (7)
H110.58240.19050.06790.030*
C100.50772 (13)0.22317 (19)0.07887 (17)0.0189 (6)
C60.33060 (14)0.0978 (3)0.0817 (2)0.0352 (9)
H60.30680.07520.04630.042*
C120.57854 (16)0.3223 (3)0.0660 (2)0.0326 (9)
H120.61340.33200.05980.039*
C150.47444 (14)0.2942 (2)0.08337 (18)0.0214 (7)
H150.43950.28520.08880.026*
C230.39470 (13)0.1199 (2)0.0827 (2)0.0236 (7)
H230.40080.09380.03360.028*
C200.61522 (15)0.2762 (2)0.0886 (2)0.0291 (8)
H200.65050.27410.08300.035*
C70.31462 (15)0.1420 (3)0.1484 (2)0.0352 (9)
H70.27990.14920.15810.042*
C130.54565 (17)0.3923 (3)0.0706 (2)0.0350 (9)
H130.55830.44890.06760.042*
C260.37622 (16)0.1975 (3)0.2287 (3)0.0365 (9)
H260.36980.22350.27780.044*
C240.34563 (15)0.1462 (3)0.1022 (3)0.0343 (9)
H240.31890.13770.06650.041*
C270.42495 (15)0.1714 (3)0.2095 (2)0.0288 (8)
H270.45150.17980.24550.035*
C250.33674 (16)0.1853 (3)0.1753 (3)0.0414 (10)
H250.30390.20340.18850.050*
Cl10.35882 (4)0.04388 (8)0.11105 (5)0.0380 (2)
Cl3B0.31059 (4)0.01417 (7)0.32358 (6)0.0371 (2)
Cl2A0.21666 (4)0.05178 (8)0.17673 (6)0.0434 (3)
Cl2B0.24294 (5)0.13417 (8)0.34282 (7)0.0475 (3)
Cl3A0.14625 (5)0.09321 (7)0.16878 (7)0.0430 (2)
Cl1A0.11366 (4)0.07947 (8)0.12128 (7)0.0447 (3)
Cl1B0.29044 (4)0.05640 (10)0.48005 (6)0.0523 (3)
C1B0.26446 (14)0.0355 (3)0.3849 (2)0.0328 (8)
H1BA0.23540.00420.39070.039*
C1A0.15290 (14)0.0195 (3)0.1870 (2)0.0304 (8)
H1AA0.14200.03150.24170.036*
C1C0.2657 (3)0.2740 (5)0.4313 (4)0.0282 (15)0.5
H1C0.29540.31150.42180.034*0.5
Cl3C0.23595 (11)0.2360 (3)0.34548 (14)0.0622 (9)0.5
Cl1C0.2171 (5)0.3222 (11)0.4886 (6)0.076 (3)0.5
Cl2C0.2802 (3)0.1693 (9)0.4893 (3)0.0494 (17)0.5
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Pt10.01516 (6)0.01052 (6)0.01280 (6)0.00000 (7)0.00067 (6)0.00078 (6)
P20.0207 (4)0.0126 (3)0.0154 (3)0.0020 (3)0.0032 (3)0.0003 (3)
P10.0192 (4)0.0124 (3)0.0141 (3)0.0011 (3)0.0022 (3)0.0021 (3)
C40.0193 (15)0.0149 (15)0.0190 (14)0.0017 (12)0.0029 (11)0.0026 (11)
C30.0254 (17)0.0203 (16)0.0174 (14)0.0028 (13)0.0029 (12)0.0006 (12)
C180.044 (2)0.0149 (16)0.0248 (17)0.0045 (15)0.0073 (15)0.0037 (13)
C10.0232 (15)0.0188 (15)0.0163 (13)0.0000 (13)0.0023 (11)0.0029 (11)
C210.0261 (17)0.0215 (17)0.0227 (15)0.0029 (14)0.0008 (13)0.0006 (13)
C20.0278 (18)0.0213 (17)0.0141 (12)0.0034 (13)0.0035 (12)0.0021 (10)
C90.0237 (17)0.0212 (16)0.0208 (15)0.0015 (13)0.0028 (12)0.0020 (12)
C220.0258 (17)0.0141 (15)0.0211 (15)0.0009 (13)0.0056 (12)0.0026 (12)
C140.049 (2)0.0157 (15)0.0253 (16)0.0002 (16)0.0086 (16)0.0042 (12)
C50.0250 (17)0.0251 (18)0.0216 (15)0.0006 (14)0.0015 (13)0.0039 (13)
C80.0276 (19)0.033 (2)0.0280 (17)0.0057 (16)0.0099 (14)0.0017 (15)
C160.0240 (16)0.0164 (15)0.0146 (13)0.0049 (12)0.0009 (11)0.0003 (11)
C190.043 (2)0.0238 (18)0.0276 (17)0.0149 (17)0.0017 (16)0.0028 (15)
C170.0293 (19)0.0170 (15)0.0188 (14)0.0002 (13)0.0070 (12)0.0005 (11)
C110.0303 (19)0.0194 (17)0.0255 (16)0.0025 (14)0.0090 (14)0.0037 (13)
C100.0283 (19)0.0106 (13)0.0179 (13)0.0016 (12)0.0056 (12)0.0030 (10)
C60.0229 (18)0.046 (2)0.036 (2)0.0016 (17)0.0060 (15)0.0019 (18)
C120.034 (2)0.0257 (19)0.038 (2)0.0122 (16)0.0134 (16)0.0076 (16)
C150.0292 (18)0.0194 (16)0.0156 (14)0.0002 (13)0.0032 (12)0.0016 (12)
C230.0254 (17)0.0175 (16)0.0280 (17)0.0003 (13)0.0041 (13)0.0015 (13)
C200.0284 (19)0.0282 (19)0.0307 (18)0.0084 (15)0.0007 (15)0.0007 (15)
C70.0206 (18)0.043 (2)0.042 (2)0.0021 (17)0.0045 (16)0.0016 (18)
C130.053 (3)0.0189 (18)0.0335 (19)0.0140 (18)0.0129 (17)0.0048 (15)
C260.037 (2)0.033 (2)0.039 (2)0.0013 (18)0.0192 (18)0.0097 (17)
C240.0241 (19)0.031 (2)0.047 (2)0.0007 (16)0.0024 (17)0.0015 (18)
C270.031 (2)0.031 (2)0.0245 (16)0.0018 (16)0.0088 (14)0.0058 (14)
C250.027 (2)0.035 (2)0.063 (3)0.0041 (17)0.018 (2)0.001 (2)
Cl10.0287 (5)0.0622 (7)0.0231 (4)0.0202 (5)0.0050 (3)0.0069 (4)
Cl3B0.0336 (5)0.0431 (6)0.0346 (5)0.0032 (4)0.0003 (4)0.0038 (4)
Cl2A0.0321 (5)0.0565 (7)0.0417 (5)0.0104 (5)0.0056 (4)0.0056 (5)
Cl2B0.0446 (6)0.0378 (6)0.0602 (7)0.0017 (5)0.0086 (5)0.0088 (5)
Cl3A0.0497 (6)0.0355 (6)0.0437 (5)0.0053 (5)0.0016 (5)0.0020 (4)
Cl1A0.0346 (5)0.0484 (7)0.0510 (6)0.0033 (5)0.0021 (5)0.0146 (5)
Cl1B0.0340 (5)0.0915 (10)0.0314 (5)0.0023 (6)0.0049 (4)0.0052 (5)
C1B0.0246 (19)0.038 (2)0.0358 (19)0.0078 (16)0.0004 (15)0.0033 (17)
C1A0.031 (2)0.038 (2)0.0219 (16)0.0022 (16)0.0035 (14)0.0008 (14)
C1C0.024 (4)0.030 (4)0.030 (3)0.000 (3)0.004 (3)0.001 (3)
Cl3C0.071 (3)0.073 (3)0.0421 (11)0.0157 (19)0.0230 (11)0.0151 (14)
Cl1C0.079 (6)0.076 (5)0.074 (5)0.046 (4)0.006 (4)0.009 (3)
Cl2C0.045 (3)0.076 (4)0.027 (2)0.041 (3)0.0020 (18)0.005 (2)
Geometric parameters (Å, º) top
Pt1—P22.3648 (7)C5—C61.395 (5)
Pt1—P2i2.3648 (7)C8—C71.381 (6)
Pt1—P12.3790 (8)C16—C171.395 (4)
Pt1—P1i2.3790 (8)C19—C201.385 (5)
P2—C31.829 (3)C11—C101.396 (5)
P2—C221.813 (3)C11—C121.387 (5)
P2—C161.820 (3)C10—C151.396 (4)
P1—C41.812 (3)C6—C71.374 (6)
P1—C11.833 (3)C12—C131.377 (6)
P1—C101.830 (3)C23—C241.386 (5)
C4—C91.404 (4)C26—C271.376 (5)
C4—C51.384 (5)C26—C251.382 (6)
C3—C21.513 (4)C24—C251.386 (6)
C18—C191.388 (5)Cl3B—C1B1.761 (4)
C18—C171.387 (5)Cl2A—C1A1.751 (4)
C1—C21.512 (4)Cl2B—C1B1.760 (4)
C21—C161.401 (5)Cl3A—C1A1.761 (4)
C21—C201.390 (5)Cl1A—C1A1.766 (4)
C9—C81.380 (5)Cl1B—C1B1.765 (4)
C22—C231.382 (5)C1C—Cl3C1.739 (7)
C22—C271.405 (5)C1C—Cl1C1.759 (13)
C14—C151.391 (5)C1C—Cl2C1.914 (14)
C14—C131.381 (6)
P2—Pt1—P2i180.0C4—C5—C6120.5 (3)
P2i—Pt1—P192.77 (3)C9—C8—C7120.6 (3)
P2—Pt1—P187.23 (3)C21—C16—P2118.7 (3)
P2—Pt1—P1i92.77 (3)C17—C16—P2121.2 (2)
P2i—Pt1—P1i87.23 (3)C17—C16—C21119.8 (3)
P1i—Pt1—P1180.0C20—C19—C18119.7 (3)
C3—P2—Pt1115.85 (11)C18—C17—C16119.9 (3)
C22—P2—Pt1112.76 (11)C12—C11—C10119.8 (3)
C22—P2—C3105.04 (15)C11—C10—P1118.3 (2)
C22—P2—C16105.67 (15)C11—C10—C15119.7 (3)
C16—P2—Pt1119.06 (10)C15—C10—P1121.5 (3)
C16—P2—C396.45 (15)C7—C6—C5119.9 (4)
C4—P1—Pt1110.94 (11)C13—C12—C11120.4 (4)
C4—P1—C1105.09 (15)C14—C15—C10119.5 (3)
C4—P1—C10105.47 (15)C22—C23—C24120.8 (3)
C1—P1—Pt1116.67 (11)C19—C20—C21120.8 (3)
C10—P1—Pt1120.83 (10)C6—C7—C8120.2 (4)
C10—P1—C195.82 (15)C12—C13—C14120.2 (3)
C9—C4—P1121.3 (3)C27—C26—C25120.2 (4)
C5—C4—P1119.5 (2)C25—C24—C23119.3 (4)
C5—C4—C9119.1 (3)C26—C27—C22120.0 (4)
C2—C3—P2115.8 (2)C26—C25—C24120.5 (4)
C17—C18—C19120.4 (3)Cl3B—C1B—Cl1B110.0 (2)
C2—C1—P1116.5 (2)Cl2B—C1B—Cl3B110.8 (2)
C20—C21—C16119.4 (3)Cl2B—C1B—Cl1B109.4 (2)
C1—C2—C3112.1 (3)Cl2A—C1A—Cl3A110.8 (2)
C8—C9—C4119.8 (3)Cl2A—C1A—Cl1A110.3 (2)
C23—C22—P2119.7 (2)Cl3A—C1A—Cl1A110.1 (2)
C23—C22—C27119.2 (3)Cl3C—C1C—Cl1C105.6 (5)
C27—C22—P2121.1 (3)Cl3C—C1C—Cl2C103.3 (5)
C13—C14—C15120.3 (3)Cl1C—C1C—Cl2C102.5 (6)
Pt1—P2—C3—C261.9 (3)C21—C16—C17—C181.2 (5)
Pt1—P2—C22—C2319.8 (3)C9—C4—C5—C60.7 (5)
Pt1—P2—C22—C27162.4 (3)C9—C8—C7—C60.2 (6)
Pt1—P2—C16—C2164.6 (3)C22—P2—C3—C263.2 (3)
Pt1—P2—C16—C17121.4 (2)C22—P2—C16—C21167.4 (3)
Pt1—P1—C4—C9163.8 (2)C22—P2—C16—C176.6 (3)
Pt1—P1—C4—C519.2 (3)C22—C23—C24—C250.2 (6)
Pt1—P1—C1—C257.5 (3)C5—C4—C9—C80.8 (5)
Pt1—P1—C10—C1162.2 (3)C5—C6—C7—C80.1 (6)
Pt1—P1—C10—C15125.6 (2)C16—P2—C3—C2171.3 (3)
P2—C3—C2—C172.9 (3)C16—P2—C22—C23111.8 (3)
P2—C22—C23—C24177.6 (3)C16—P2—C22—C2765.9 (3)
P2—C22—C27—C26177.6 (3)C16—C21—C20—C191.8 (5)
P2—C16—C17—C18175.1 (2)C19—C18—C17—C160.0 (5)
P1—C4—C9—C8176.2 (3)C17—C18—C19—C200.3 (5)
P1—C4—C5—C6176.4 (3)C11—C10—C15—C140.2 (5)
P1—C1—C2—C370.5 (3)C11—C12—C13—C140.1 (6)
P1—C10—C15—C14172.0 (2)C10—P1—C4—C963.7 (3)
C4—P1—C1—C265.8 (3)C10—P1—C4—C5113.3 (3)
C4—P1—C10—C11171.2 (2)C10—P1—C1—C2173.6 (3)
C4—P1—C10—C151.1 (3)C10—C11—C12—C130.7 (6)
C4—C9—C8—C70.6 (6)C12—C11—C10—P1173.0 (3)
C4—C5—C6—C70.3 (6)C12—C11—C10—C150.6 (5)
C3—P2—C22—C23146.9 (3)C15—C14—C13—C120.7 (6)
C3—P2—C22—C2735.4 (3)C23—C22—C27—C260.2 (5)
C3—P2—C16—C2159.8 (3)C23—C24—C25—C260.5 (6)
C3—P2—C16—C17114.2 (3)C20—C21—C16—P2176.1 (3)
C18—C19—C20—C210.6 (6)C20—C21—C16—C172.1 (5)
C1—P1—C4—C936.9 (3)C13—C14—C15—C100.8 (5)
C1—P1—C4—C5146.2 (3)C27—C22—C23—C240.2 (5)
C1—P1—C10—C1163.7 (3)C27—C26—C25—C240.4 (7)
C1—P1—C10—C15108.5 (3)C25—C26—C27—C220.1 (6)
Symmetry code: (i) x+1, y, z.

Experimental details

Crystal data
Chemical formula[Pt(C27H26P2)2]Cl2·5CHCl3
Mr1687.67
Crystal system, space groupOrthorhombic, Pccn
Temperature (K)160
a, b, c (Å)26.2042 (9), 15.3120 (5), 16.7930 (5)
V3)6738.0 (4)
Z4
Radiation typeMo Kα
µ (mm1)2.89
Crystal size (mm)0.6 × 0.38 × 0.28
Data collection
DiffractometerBruker APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2007)
Tmin, Tmax0.562, 0.746
No. of measured, independent and
observed [I > 2σ(I)] reflections
179974, 10325, 7580
Rint0.063
(sin θ/λ)max1)0.716
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.037, 0.073, 1.20
No. of reflections10325
No. of parameters385
H-atom treatmentH-atom parameters constrained
w = 1/[σ2(Fo2) + (0.P)2 + 21.821P]
where P = (Fo2 + 2Fc2)/3
Δρmax, Δρmin (e Å3)0.73, 0.97

Computer programs: APEX2 (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2015), Mercury (Macrae et al., 2008), SHELXL97 (Sheldrick, 2008).

 

Acknowledgements

We thank Dr Jan Wikaira at the University of Canterbury, New Zealand, for collection of the single-crystal X-ray data.

References

First citationAnderson, G. K., Davies, J. A. & Schoeck, D. J. (1983). Inorg. Chim. Acta, 76, L251–L252.  Google Scholar
First citationAsker, K., Hitchcock, P., Moulding, R. & Seddon, K. (1990). Inorg. Chem. 29, 4146–4148.  Google Scholar
First citationBerning, D. E., Noll, B. C. & DuBois, D. L. (1999). J. Am. Chem. Soc. 121, 11432–11447.  Google Scholar
First citationBruker (2007). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationEngelhardt, L. M., Patrick, J. M., Raston, C. L., Twiss, P. & White, A. H. (1984). Aust. J. Chem. 37, 2193–2200.  Google Scholar
First citationFerguson, G., Lough, A. J., McAlees, A. J. & McCrindle, R. (1993). Acta Cryst. C49, 573–576.  Google Scholar
First citationFischer, R., Langer, J., Malassa, A., Walter, D., Goris, H. & Vaughan, G. (2006). Chem. Commun. pp. 2510–2512.  Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationPahor, N. B. & Bruno, G. (1977). Cryst. Struct. Commun. 6, 717–722.  Google Scholar
First citationRaebiger, J. W., Miedaner, A., Curtis, C. J., Miller, S. M., Anderson, O. P. & DuBois, D. L. (2004). J. Am. Chem. Soc. 126, 5502–5514.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds