organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of N,N′-(1,2-phenyl­ene)bis­­(2-chloro­acetamide)

aDepartment of Chemistry, Institute of Chemical and Biological Sciences, University of Gujrat, Gujrat 50700, Pakistan, and bDepartment of Physics, University of Sargodha, Sargodha, Punjab, Pakistan
*Correspondence e-mail: dmntahir_uos@yahoo.com

Edited by M. Gdaniec, Adam Mickiewicz University, Poland (Received 17 December 2014; accepted 7 January 2015; online 14 January 2015)

In the title compound, C10H10Cl2N2O2, the secondary amide groups are differently twisted relative to the benzene ring, with dihedral angles between the respective planes of 21.03 (2) and 81.22 (2)°. In the crystal, the mol­ecules are connected by N—H⋯O and C—H⋯O hydrogen bonds, forming a two-dimensional polymeric network parallel to (001). One of the amide carbonyl O atoms accepts two H atoms in N—H⋯O and C—H⋯O inter­actions, forming an R22(6) ring motif.

1. Related literature

For the structure of N,N′-phenyl­enebisacetamide, see: Shivanyuk et al. (2000[Shivanyuk, A., Rissanen, K., Korner, S. K., Rudkevich, D. M. & Rebek, J. Jr (2000). Helv. Chim. Acta, 83, 1778-1790.]).

[Scheme 1]

2. Experimental

2.1. Crystal data

  • C10H10Cl2N2O2

  • Mr = 261.10

  • Monoclinic, P 21 /c

  • a = 4.5731 (4) Å

  • b = 14.3260 (16) Å

  • c = 16.7472 (15) Å

  • β = 95.611 (5)°

  • V = 1091.92 (18) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.58 mm−1

  • T = 296 K

  • 0.40 × 0.22 × 0.16 mm

2.2. Data collection

  • Bruker Kappa APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005[Bruker (2005). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.803, Tmax = 0.911

  • 8308 measured reflections

  • 2154 independent reflections

  • 1685 reflections with I > 2σ(I)

  • Rint = 0.031

2.3. Refinement

  • R[F2 > 2σ(F2)] = 0.035

  • wR(F2) = 0.083

  • S = 1.03

  • 2154 reflections

  • 145 parameters

  • H-atom parameters constrained

  • Δρmax = 0.25 e Å−3

  • Δρmin = −0.28 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O2i 0.86 2.16 3.003 (2) 168
N2—H2⋯O1ii 0.86 2.23 3.004 (2) 150
C1—H1A⋯O2i 0.97 2.44 3.333 (3) 153
Symmetry codes: (i) x-1, y, z; (ii) [-x+1, y-{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: WinGX (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and PLATON.

Supporting information


Comment top

The title compound has been synthesized to check its antimicrobial activity owing to the concept that amide moiety is an important part of different drugs. The title molecule is shown in Fig. 1.

The benzene-1,2-diamine (C3—C8/N1/N2; A) unit is planar with r. m. s. deviation of 0.0084 Å. The attached chloroacetyl groups differ structurally. The groups B (C1/C2/O1) and C (C9/C10/O2) form with the fragment A the dihedral angles of 21.0 (2)° and 82.78 (13)°, respectively. The molecules are connected by N-H···O and C-H···O hydrogen bonds to form a two dimensional polymeric network parallel to (0 0 1) (Table 1, Fig. 2). In closely related N,N'-phenylenebisacetamide (Shivanyuk et al., 2000) a one dimensional ribbon is formed.

Related literature top

For the structure of N,N'-phenylenebisacetamide, see: Shivanyuk et al. (2000).

Experimental top

Benzene-1,2-diamine (0.1 g, 0.925 mmol) was dissolved in chloroform (10 ml) and pyridine (0.149 ml, 1.85 mmol) was added. The mixture was cooled to 273–278 K in ice-water bath. A separately prepared solution of chloroacetyl chloride (0.104 g, 0.925 mmol) in chloroform (5 ml) was added drop wise to the above mixture. The mixture was stirred for 3 h and solvent was evaporated to give a pink colored residue.Recrystallization from chloroform gave colorless needles with melting point of 471.15 K.

Refinement top

The H-atoms were positioned geometrically (N—H = 0.86, C–H = 0.93–0.97 Å) and were included in the refinement in the riding model approximation, with Uiso(H) = 1.2Ueq(C, N).

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and PLATON (Spek, 2009); software used to prepare material for publication: WinGX (Farrugia, 2012) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. Molecular structure with displacement ellipsoids drawn at the 50% probability level. H-atoms are shown as small spheres of arbitrary radii.
[Figure 2] Fig. 2. Two dimensional polymeric network fomed via hydrogen bonds. The H-atoms not involved in hydrogen bonding are omitted for clarity.
N,N'-(1,2-Phenylene)bis(2-chloroacetamide) top
Crystal data top
C10H10Cl2N2O2F(000) = 536
Mr = 261.10Dx = 1.588 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 4.5731 (4) ÅCell parameters from 1685 reflections
b = 14.3260 (16) Åθ = 1.9–26.0°
c = 16.7472 (15) ŵ = 0.58 mm1
β = 95.611 (5)°T = 296 K
V = 1091.92 (18) Å3Needle, colorless
Z = 40.40 × 0.22 × 0.16 mm
Data collection top
Bruker Kappa APEXII CCD
diffractometer
2154 independent reflections
Radiation source: fine-focus sealed tube1685 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.031
Detector resolution: 8.00 pixels mm-1θmax = 26.0°, θmin = 1.9°
ω scansh = 55
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
k = 1714
Tmin = 0.803, Tmax = 0.911l = 2020
8308 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.035Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.083H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0318P)2 + 0.392P]
where P = (Fo2 + 2Fc2)/3
2154 reflections(Δ/σ)max < 0.001
145 parametersΔρmax = 0.25 e Å3
0 restraintsΔρmin = 0.28 e Å3
Crystal data top
C10H10Cl2N2O2V = 1091.92 (18) Å3
Mr = 261.10Z = 4
Monoclinic, P21/cMo Kα radiation
a = 4.5731 (4) ŵ = 0.58 mm1
b = 14.3260 (16) ÅT = 296 K
c = 16.7472 (15) Å0.40 × 0.22 × 0.16 mm
β = 95.611 (5)°
Data collection top
Bruker Kappa APEXII CCD
diffractometer
2154 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
1685 reflections with I > 2σ(I)
Tmin = 0.803, Tmax = 0.911Rint = 0.031
8308 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0350 restraints
wR(F2) = 0.083H-atom parameters constrained
S = 1.03Δρmax = 0.25 e Å3
2154 reflectionsΔρmin = 0.28 e Å3
145 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.42275 (13)0.31322 (5)0.41502 (3)0.0566 (2)
Cl21.17253 (12)0.12690 (5)0.49132 (3)0.05386 (19)
O10.5571 (3)0.29789 (10)0.23928 (9)0.0451 (4)
O21.2396 (3)0.00838 (11)0.36111 (8)0.0451 (4)
N10.5615 (3)0.14134 (11)0.26212 (9)0.0310 (4)
H10.49350.09900.29170.037*
N20.8285 (3)0.03260 (11)0.28396 (9)0.0331 (4)
H20.67060.06560.28090.040*
C10.2642 (4)0.23927 (16)0.33817 (13)0.0420 (5)
H1A0.22430.17850.36020.050*
H1B0.07990.26550.31480.050*
C20.4749 (4)0.22930 (14)0.27444 (11)0.0318 (4)
C30.7526 (4)0.11071 (14)0.20580 (10)0.0297 (4)
C40.8061 (4)0.16327 (16)0.13895 (12)0.0392 (5)
H40.71630.22110.13030.047*
C50.9919 (5)0.12981 (17)0.08557 (12)0.0441 (5)
H51.02620.16530.04090.053*
C61.1271 (4)0.04451 (17)0.09760 (12)0.0428 (5)
H61.25440.02280.06180.051*
C71.0726 (4)0.00838 (15)0.16302 (12)0.0382 (5)
H71.16210.06640.17110.046*
C80.8855 (4)0.02408 (14)0.21689 (11)0.0301 (4)
C91.0116 (4)0.03627 (13)0.35130 (11)0.0314 (4)
C100.8997 (4)0.09830 (17)0.41444 (13)0.0451 (5)
H10A0.82210.15530.38930.054*
H10B0.73990.06690.43750.054*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0649 (4)0.0620 (5)0.0442 (3)0.0031 (3)0.0113 (3)0.0083 (3)
Cl20.0561 (4)0.0613 (4)0.0443 (3)0.0051 (3)0.0057 (2)0.0141 (3)
O10.0551 (9)0.0273 (9)0.0557 (9)0.0023 (6)0.0198 (7)0.0054 (7)
O20.0390 (8)0.0483 (10)0.0478 (8)0.0158 (7)0.0025 (6)0.0089 (7)
N10.0331 (8)0.0248 (10)0.0368 (8)0.0025 (6)0.0114 (7)0.0037 (7)
N20.0272 (8)0.0277 (9)0.0448 (9)0.0047 (6)0.0055 (7)0.0056 (8)
C10.0354 (11)0.0351 (13)0.0574 (13)0.0016 (9)0.0148 (9)0.0049 (11)
C20.0274 (9)0.0287 (12)0.0395 (10)0.0006 (8)0.0040 (8)0.0006 (9)
C30.0268 (9)0.0299 (11)0.0327 (9)0.0042 (8)0.0052 (7)0.0024 (9)
C40.0439 (11)0.0360 (13)0.0389 (10)0.0029 (9)0.0106 (9)0.0069 (10)
C50.0498 (13)0.0494 (15)0.0347 (10)0.0058 (11)0.0122 (9)0.0042 (10)
C60.0425 (12)0.0494 (15)0.0385 (11)0.0029 (10)0.0139 (9)0.0100 (11)
C70.0351 (10)0.0318 (12)0.0484 (12)0.0002 (9)0.0071 (9)0.0068 (10)
C80.0269 (9)0.0289 (11)0.0345 (9)0.0055 (8)0.0024 (8)0.0005 (9)
C90.0300 (10)0.0237 (11)0.0420 (10)0.0011 (8)0.0102 (8)0.0015 (9)
C100.0410 (12)0.0434 (14)0.0507 (12)0.0061 (10)0.0046 (10)0.0123 (11)
Geometric parameters (Å, º) top
Cl1—C11.767 (2)C3—C81.387 (3)
Cl2—C101.752 (2)C3—C41.391 (3)
O1—C21.223 (2)C4—C51.378 (3)
O2—C91.221 (2)C4—H40.9300
N1—C21.343 (2)C5—C61.375 (3)
N1—C31.417 (2)C5—H50.9300
N1—H10.8600C6—C71.375 (3)
N2—C91.338 (2)C6—H60.9300
N2—C81.431 (2)C7—C81.383 (3)
N2—H20.8600C7—H70.9300
C1—C21.513 (3)C9—C101.509 (3)
C1—H1A0.9700C10—H10A0.9700
C1—H1B0.9700C10—H10B0.9700
C2—N1—C3127.11 (16)C6—C5—C4120.71 (19)
C2—N1—H1116.4C6—C5—H5119.6
C3—N1—H1116.4C4—C5—H5119.6
C9—N2—C8122.45 (15)C7—C6—C5119.51 (19)
C9—N2—H2118.8C7—C6—H6120.2
C8—N2—H2118.8C5—C6—H6120.2
C2—C1—Cl1109.02 (14)C6—C7—C8120.4 (2)
C2—C1—H1A109.9C6—C7—H7119.8
Cl1—C1—H1A109.9C8—C7—H7119.8
C2—C1—H1B109.9C7—C8—C3120.32 (18)
Cl1—C1—H1B109.9C7—C8—N2119.55 (18)
H1A—C1—H1B108.3C3—C8—N2120.13 (16)
O1—C2—N1124.80 (17)O2—C9—N2123.29 (18)
O1—C2—C1120.69 (19)O2—C9—C10123.94 (17)
N1—C2—C1114.50 (17)N2—C9—C10112.73 (16)
C8—C3—C4118.89 (17)C9—C10—Cl2112.76 (14)
C8—C3—N1118.63 (16)C9—C10—H10A109.0
C4—C3—N1122.47 (18)Cl2—C10—H10A109.0
C5—C4—C3120.1 (2)C9—C10—H10B109.0
C5—C4—H4119.9Cl2—C10—H10B109.0
C3—C4—H4119.9H10A—C10—H10B107.8
C3—N1—C2—O12.1 (3)C6—C7—C8—N2179.12 (17)
C3—N1—C2—C1178.87 (16)C4—C3—C8—C71.2 (3)
Cl1—C1—C2—O158.8 (2)N1—C3—C8—C7179.76 (16)
Cl1—C1—C2—N1120.23 (16)C4—C3—C8—N2178.35 (17)
C2—N1—C3—C8161.13 (17)N1—C3—C8—N20.2 (2)
C2—N1—C3—C420.4 (3)C9—N2—C8—C781.8 (2)
C8—C3—C4—C50.9 (3)C9—N2—C8—C398.6 (2)
N1—C3—C4—C5179.38 (18)C8—N2—C9—O20.4 (3)
C3—C4—C5—C60.2 (3)C8—N2—C9—C10178.10 (17)
C4—C5—C6—C70.9 (3)O2—C9—C10—Cl217.4 (3)
C5—C6—C7—C80.6 (3)N2—C9—C10—Cl2164.89 (15)
C6—C7—C8—C30.5 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O2i0.862.163.003 (2)168
N2—H2···O1ii0.862.233.004 (2)150
C1—H1A···O2i0.972.443.333 (3)153
Symmetry codes: (i) x1, y, z; (ii) x+1, y1/2, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O2i0.862.163.003 (2)168
N2—H2···O1ii0.862.233.004 (2)150
C1—H1A···O2i0.972.443.333 (3)153
Symmetry codes: (i) x1, y, z; (ii) x+1, y1/2, z+1/2.
 

Acknowledgements

The authors acknowledge the provision of funds for the purchase of a diffractometer and encouragement by Dr Muhammad Akram Chaudhary, Vice Chancellor, University of Sargodha, Pakistan. They also acknowledge the technical support provided by Syed Muhammad Hussain Rizvi of Bana Inter­national, Karachi, Pakistan.

References

First citationBruker (2005). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationShivanyuk, A., Rissanen, K., Korner, S. K., Rudkevich, D. M. & Rebek, J. Jr (2000). Helv. Chim. Acta, 83, 1778–1790.  Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds