organic compounds
of 4-(prop-2-yn-1-yloxy)benzonitrile
aDepartment of Material Science and Chemistry, Wakayama University, Sakaedani, Wakayama, 640-8510, Japan
*Correspondence e-mail: okuno@center.wakayama-u.ac.jp
In the title compound, C10H7NO, the dihedral angle between the aromatic ring and the prop-2-yn-1-yloxy grouping is 9.47 (10)°. The bond lengths indicate electronic conjugation between the cyano group, the benzene ring and the propynyloxy oxygen atom. In the crystal, a hydrogen bond between the acetylenic C—H atom and the cyano nitrogen atom link the molecules into wave-like [30-1] C(11) chains. These chains are connected by Csp2—H⋯πac (πac is the acetylinic C—C triple bond) close contacts [2.794 (1) Å], resulting in a rolling sheet structure parallel to the ac plane and aromatic π–π stacking interactions between the sheets [centroid–centroid distance = 3.593 (2) Å] generate a three-dimensional network.
Keywords: crystal structure; prop-2-yn-1-yloxy; hydrogen bonding; C—H⋯π interactions; π–π stacking interactions.
CCDC reference: 1041123
1. Related literature
The title compound is an aryl propargyl ether derivative which attracts interest with regard to Claisen rearrangement (Kenny et al. 2006; Wang et al. 2012) or cleavage of the O–CH2 bond by boron reagents (Yao et al. 2009). For related structures of 4-(prop-2-yn-1-yloxy)benzenes, see: Lindeman et al. (1993); Zhu et al. (2006); Zhang et al. (2008); Marsh (2009); Ranjith et al. (2010); Li et al. (2009); Ao et al. (2011); Al-Mehana et al. (2011); Belay et al. (2012); Doi & Okuno (2013).
2. Experimental
2.1. Crystal data
|
2.3. Refinement
|
|
Data collection: CrystalClear (Rigaku, 2008); cell CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXD2013 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2013 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: CrystalStructure (Rigaku, 2014).
Supporting information
CCDC reference: 1041123
10.1107/S2056989014028035/hb7326sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: 10.1107/S2056989014028035/hb7326Isup2.hkl
Supporting information file. DOI: 10.1107/S2056989014028035/hb7326Isup3.cml
The title compound is commercially available. Colourless platelets of sufficient quality for diffraction measurements were prepared by
at room temperature.The C-bound H atoms except for Csp—H were placed at ideal positions and were refined as riding on their parent C atoms. Uiso(H) values of the H atoms were set at 1.2Ueq(parent atom). The Csp-bound H atom was obtained from a difference Fourier map and was refined isotropically without any restrictions.
Data collection: CrystalClear (Rigaku, 2008); cell
CrystalClear (Rigaku, 2008); data reduction: CrystalClear (Rigaku, 2008); program(s) used to solve structure: SHELXD2013 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2013 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: CrystalStructure (Rigaku, 2014).C10H7NO | F(000) = 328.00 |
Mr = 157.17 | Dx = 1.335 Mg m−3 |
Monoclinic, P21/n | Mo Kα radiation, λ = 0.71075 Å |
a = 6.033 (4) Å | Cell parameters from 2559 reflections |
b = 7.393 (5) Å | θ = 2.3–31.1° |
c = 17.527 (11) Å | µ = 0.09 mm−1 |
β = 90.836 (11)° | T = 93 K |
V = 781.7 (9) Å3 | Platelet, colorless |
Z = 4 | 0.20 × 0.07 × 0.03 mm |
Rigaku Saturn724+ diffractometer | 1457 reflections with F2 > 2σ(F2) |
Detector resolution: 28.445 pixels mm-1 | Rint = 0.046 |
ω scans | θmax = 27.5°, θmin = 2.3° |
Absorption correction: numerical (NUMABS; Rigaku, 1999) | h = −7→7 |
Tmin = 0.986, Tmax = 0.997 | k = −9→9 |
6174 measured reflections | l = −21→22 |
1795 independent reflections |
Refinement on F2 | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.050 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.120 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.08 | w = 1/[σ2(Fo2) + (0.0584P)2 + 0.1471P] where P = (Fo2 + 2Fc2)/3 |
1795 reflections | (Δ/σ)max < 0.001 |
113 parameters | Δρmax = 0.22 e Å−3 |
0 restraints | Δρmin = −0.19 e Å−3 |
Primary atom site location: structure-invariant direct methods |
C10H7NO | V = 781.7 (9) Å3 |
Mr = 157.17 | Z = 4 |
Monoclinic, P21/n | Mo Kα radiation |
a = 6.033 (4) Å | µ = 0.09 mm−1 |
b = 7.393 (5) Å | T = 93 K |
c = 17.527 (11) Å | 0.20 × 0.07 × 0.03 mm |
β = 90.836 (11)° |
Rigaku Saturn724+ diffractometer | 1795 independent reflections |
Absorption correction: numerical (NUMABS; Rigaku, 1999) | 1457 reflections with F2 > 2σ(F2) |
Tmin = 0.986, Tmax = 0.997 | Rint = 0.046 |
6174 measured reflections |
R[F2 > 2σ(F2)] = 0.050 | 0 restraints |
wR(F2) = 0.120 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.08 | Δρmax = 0.22 e Å−3 |
1795 reflections | Δρmin = −0.19 e Å−3 |
113 parameters |
Geometry. ENTER SPECIAL DETAILS OF THE MOLECULAR GEOMETRY |
Refinement. Refinement was performed using all reflections. The weighted R-factor (wR) and goodness of fit (S) are based on F2. R-factor (gt) are based on F. The threshold expression of F2 > 2.0 σ(F2) is used only for calculating R-factor (gt). |
x | y | z | Uiso*/Ueq | ||
O1 | 0.66646 (16) | 0.60053 (14) | 0.09599 (6) | 0.0181 (3) | |
N1 | 1.4021 (2) | 0.95596 (18) | −0.14609 (7) | 0.0234 (3) | |
C1 | 1.1274 (2) | 0.81486 (19) | −0.05087 (8) | 0.0166 (3) | |
C2 | 1.1843 (2) | 0.79920 (19) | 0.02615 (8) | 0.0175 (3) | |
C3 | 1.0358 (2) | 0.72770 (19) | 0.07719 (8) | 0.0168 (3) | |
C4 | 0.8276 (2) | 0.67109 (18) | 0.05072 (8) | 0.0152 (3) | |
C5 | 0.7705 (2) | 0.68441 (19) | −0.02634 (8) | 0.0162 (3) | |
C6 | 0.9187 (2) | 0.75633 (19) | −0.07715 (8) | 0.0168 (3) | |
C7 | 1.2805 (2) | 0.8928 (2) | −0.10375 (8) | 0.0176 (3) | |
C8 | 0.7121 (2) | 0.5908 (2) | 0.17643 (8) | 0.0197 (3) | |
C9 | 0.5068 (2) | 0.5386 (2) | 0.21392 (8) | 0.0190 (3) | |
C10 | 0.3416 (3) | 0.4999 (2) | 0.24560 (9) | 0.0235 (4) | |
H1 | 0.211 (3) | 0.479 (3) | 0.2728 (11) | 0.033 (5)* | |
H2 | 1.32622 | 0.838 | 0.04368 | 0.0210* | |
H3 | 1.07475 | 0.71712 | 0.12971 | 0.0201* | |
H5 | 0.62929 | 0.64389 | −0.0439 | 0.0195* | |
H6 | 0.8798 | 0.76623 | −0.1297 | 0.0202* | |
H8A | 0.76355 | 0.70976 | 0.19566 | 0.0236* | |
H8B | 0.82942 | 0.50026 | 0.18705 | 0.0236* |
U11 | U22 | U33 | U12 | U13 | U23 | |
O1 | 0.0144 (5) | 0.0253 (6) | 0.0147 (5) | −0.0035 (4) | 0.0030 (4) | 0.0018 (4) |
N1 | 0.0173 (6) | 0.0298 (7) | 0.0233 (7) | 0.0007 (6) | 0.0032 (5) | 0.0022 (6) |
C1 | 0.0143 (7) | 0.0156 (7) | 0.0199 (8) | 0.0023 (5) | 0.0042 (6) | −0.0003 (6) |
C2 | 0.0117 (7) | 0.0177 (7) | 0.0231 (8) | 0.0021 (5) | 0.0005 (6) | −0.0021 (6) |
C3 | 0.0146 (7) | 0.0199 (7) | 0.0158 (7) | 0.0018 (5) | −0.0005 (6) | 0.0003 (6) |
C4 | 0.0131 (6) | 0.0141 (7) | 0.0186 (7) | 0.0011 (5) | 0.0046 (5) | −0.0006 (6) |
C5 | 0.0119 (7) | 0.0174 (7) | 0.0193 (8) | 0.0003 (5) | −0.0005 (5) | −0.0007 (6) |
C6 | 0.0160 (7) | 0.0189 (7) | 0.0155 (7) | 0.0015 (6) | 0.0004 (6) | −0.0003 (6) |
C7 | 0.0141 (7) | 0.0195 (7) | 0.0193 (8) | 0.0012 (6) | −0.0001 (6) | −0.0011 (6) |
C8 | 0.0155 (7) | 0.0276 (8) | 0.0161 (8) | −0.0004 (6) | 0.0024 (6) | 0.0006 (6) |
C9 | 0.0179 (7) | 0.0239 (8) | 0.0151 (7) | 0.0018 (6) | −0.0002 (6) | 0.0005 (6) |
C10 | 0.0182 (7) | 0.0339 (9) | 0.0185 (8) | −0.0014 (7) | 0.0027 (6) | 0.0000 (7) |
O1—C4 | 1.3673 (18) | C8—C9 | 1.463 (2) |
O1—C8 | 1.434 (2) | C9—C10 | 1.183 (2) |
N1—C7 | 1.150 (2) | C2—H2 | 0.950 |
C1—C2 | 1.393 (2) | C3—H3 | 0.950 |
C1—C6 | 1.403 (2) | C5—H5 | 0.950 |
C1—C7 | 1.438 (2) | C6—H6 | 0.950 |
C2—C3 | 1.380 (2) | C8—H8A | 0.990 |
C3—C4 | 1.397 (2) | C8—H8B | 0.990 |
C4—C5 | 1.392 (2) | C10—H1 | 0.94 (2) |
C5—C6 | 1.378 (2) | ||
C4—O1—C8 | 117.49 (11) | C1—C2—H2 | 119.768 |
C2—C1—C6 | 119.99 (13) | C3—C2—H2 | 119.770 |
C2—C1—C7 | 120.43 (13) | C2—C3—H3 | 120.380 |
C6—C1—C7 | 119.58 (13) | C4—C3—H3 | 120.387 |
C1—C2—C3 | 120.46 (13) | C4—C5—H5 | 119.993 |
C2—C3—C4 | 119.23 (13) | C6—C5—H5 | 119.976 |
O1—C4—C3 | 124.41 (13) | C1—C6—H6 | 120.174 |
O1—C4—C5 | 114.96 (12) | C5—C6—H6 | 120.181 |
C3—C4—C5 | 120.63 (13) | O1—C8—H8A | 110.181 |
C4—C5—C6 | 120.03 (13) | O1—C8—H8B | 110.187 |
C1—C6—C5 | 119.65 (13) | C9—C8—H8A | 110.179 |
N1—C7—C1 | 179.63 (15) | C9—C8—H8B | 110.175 |
O1—C8—C9 | 107.64 (12) | H8A—C8—H8B | 108.478 |
C8—C9—C10 | 178.27 (16) | C9—C10—H1 | 175.1 (12) |
C4—O1—C8—C9 | 171.29 (10) | C1—C2—C3—C4 | 0.0 (2) |
C8—O1—C4—C3 | 2.52 (18) | C2—C3—C4—O1 | −179.13 (12) |
C8—O1—C4—C5 | −177.34 (10) | C2—C3—C4—C5 | 0.7 (2) |
C2—C1—C6—C5 | 0.4 (2) | O1—C4—C5—C6 | 178.94 (10) |
C6—C1—C2—C3 | −0.6 (2) | C3—C4—C5—C6 | −0.9 (2) |
C7—C1—C2—C3 | 178.70 (12) | C4—C5—C6—C1 | 0.4 (2) |
C7—C1—C6—C5 | −178.91 (11) |
D—H···A | D—H | H···A | D···A | D—H···A |
C10—H1···N1i | 0.94 (2) | 2.41 (2) | 3.300 (3) | 158.18 (11) |
C6—H6···C10ii | 0.95 | 2.79 | 3.616 (3) | 145 |
Symmetry codes: (i) x−3/2, −y+3/2, z+1/2; (ii) x+1/2, −y+3/2, z−1/2. |
D—H···A | D—H | H···A | D···A | D—H···A |
C10—H1···N1i | 0.94 (2) | 2.41 (2) | 3.300 (3) | 158.18 (11) |
C6—H6···C10ii | 0.95 | 2.79 | 3.616 (3) | 145 |
Symmetry codes: (i) x−3/2, −y+3/2, z+1/2; (ii) x+1/2, −y+3/2, z−1/2. |
Acknowledgements
This work was supported by Research for Promoting Technological Seeds from the Japan Science and Technology Agency (JST).
References
Al-Mehana, W. N. A., Yahya, R. & Lo, K. M. (2011). Acta Cryst. E67, o2900. Web of Science CSD CrossRef IUCr Journals Google Scholar
Ao, L., Tu, J.-H., Huang, X. & Ding, B.-Y. (2011). Acta Cryst. E67, o2642. Google Scholar
Belay, Y. H., Kinfe, H. H. & Muller, A. (2012). Acta Cryst. E68, o3072. Google Scholar
Doi, I. & Okuno, T. (2013). Acta Cryst. E69, o125. Google Scholar
Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854. Web of Science CrossRef CAS IUCr Journals Google Scholar
Kenny, R. S., Mashelkar, U. C., Rane, D. M. & Bezawada, D. K. (2006). Tetrahedron, 62, 9280–9288. Google Scholar
Li, Z.-X., Ren, C.-M., Yang, S., Yao, G.-J. & Shi, Q.-Z. (2009). Acta Cryst. E65, o65. Google Scholar
Lindeman, S. V., Dvorikova, R. A., Gol'ding, I. R., Struchkov, Y. T. & Teplyakov, M. M. (1993). Russ. Chem. Bull. 42, 1601–1605. Google Scholar
Marsh, R. E. (2009). Acta Cryst. B65, 782–783. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Ranjith, S., Thirunarayanan, A., Raja, S., Rajakumar, P. & SubbiahPandi, A. (2010). Acta Cryst. E66, o2261–o2262. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Rigaku (1999). NUMABS. Rigaku Corporation, Tokyo, Japan. Google Scholar
Rigaku (2008). CrystalClear. Rigaku Corporation, Tokyo, Japan. Google Scholar
Rigaku (2014). CrystalStructure. Rigaku Corporation, Tokyo, Japan. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Wang, Y., Ji, K., Lan, S. & Zhang, L. (2012). Angew. Chem. Int. Ed. 51, 1915–1918. Google Scholar
Yao, M. L., Reddy, M. S., Zeng, W., Hall, K., Walfish, I. & Kabalka, G. W. (2009). J. Org. Chem. 74, 1385–1387. Google Scholar
Zhang, W., Yao, L. & Tao, R.-J. (2008). Acta Cryst. E64, o307. Web of Science CSD CrossRef IUCr Journals Google Scholar
Zhu, N., Lightsey, D., Foroozesh, M., Alworth, W., Chaudhary, A., Willett, K. L. & Stevens, C. L. K. (2006). J. Chem. Cryst. 36, 289–296. Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
The title compound, C10H7N1O1, is an aryl propargyl ether derivative which attracts interest from viewpoints of Claisen rearrangement (Kenny et al. 2006; Wang et al. 2012) or cleavage of O–CH2 bond by boron reagents (Yao et al. 2009). In these reactions, a direction of the lone pair of the oxygen has large influence upon reactivity.
The molecule has an almost planar structure (atoms C1—C10/N1/O1 are essentailly co-planar with r.m.s. deviation = 0.0862 Å), indicating an effective conjugation of the cyano group, the C1—C6 benzene ring and the lone pair of the O1 (Fig. 1). This is presumably because push-pull effect between an electron donating alkyloxy group and an electron withdrawing cyano group (Zhu et al. 2006; Marsh 2009; Ranjith et al. 2010; Ao et al. 2011; Al-Mehana et al. 2011; Belay et al. 2012; Doi & Okuno 2013).
In the crystal, C10–H1···N1i hydrogen bonds [Symmetry code: (i) x - 3/2, -y + 3/2, z + 1/2] connect the molecules to make a one-dimensional wavy chain. Intermolecular C6–H6···C10ii interaction [Symmetry code: (ii) x + 1/2, -y + 3/2, z - 1/2], whose distance is 2.794 (1) Å, binds the chains to form a rolling sheet structure as shown in Fig. 2.
Fig. 3 shows π···π stacking interactions between the sheets, where the centroid to centroid distance is 3.593 (2) Å and the C3···C5v is 3.387 (3) Å [Symmetry code: (v) -x + 2, -y + 1, -z]. The molecules also form weak intersheet C5–H5···O1vi bonds whose distance is 2.690 (1) Å [Symmetry code: (vi) -x + 1, -y + 1, -z]. In this crystal, the intermolecular hydrogen bonds, the C–H···π interactions and the π···π stacking interactions are found to make a three-dimensional molecular network.