organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 71| Part 2| February 2015| Pages o97-o98

Crystal structure of 4-(prop-2-yn-1-yl­­oxy)benzo­nitrile

aDepartment of Material Science and Chemistry, Wakayama University, Sakaedani, Wakayama, 640-8510, Japan
*Correspondence e-mail: okuno@center.wakayama-u.ac.jp

Edited by W. T. A. Harrison, University of Aberdeen, Scotland (Received 22 November 2014; accepted 24 December 2014; online 10 January 2015)

In the title compound, C10H7NO, the dihedral angle between the aromatic ring and the prop-2-yn-1-yl­oxy grouping is 9.47 (10)°. The bond lengths indicate electronic conjugation between the cyano group, the benzene ring and the propyn­yloxy oxygen atom. In the crystal, a hydrogen bond between the acetyl­enic C—H atom and the cyano nitro­gen atom link the mol­ecules into wave-like [30-1] C(11) chains. These chains are connected by Csp2—H⋯πac (πac is the acetyl­inic C—C triple bond) close contacts [2.794 (1) Å], resulting in a rolling sheet structure parallel to the ac plane and aromatic ππ stacking inter­actions between the sheets [centroid–centroid distance = 3.593 (2) Å] generate a three-dimensional network.

1. Related literature

The title compound is an aryl propargyl ether derivative which attracts inter­est with regard to Claisen rearrangement (Kenny et al. 2006[Kenny, R. S., Mashelkar, U. C., Rane, D. M. & Bezawada, D. K. (2006). Tetrahedron, 62, 9280-9288.]; Wang et al. 2012[Wang, Y., Ji, K., Lan, S. & Zhang, L. (2012). Angew. Chem. Int. Ed. 51, 1915-1918.]) or cleavage of the O–CH2 bond by boron reagents (Yao et al. 2009[Yao, M. L., Reddy, M. S., Zeng, W., Hall, K., Walfish, I. & Kabalka, G. W. (2009). J. Org. Chem. 74, 1385-1387.]). For related structures of 4-(prop-2-yn-1-yl­oxy)benzenes, see: Lindeman et al. (1993[Lindeman, S. V., Dvorikova, R. A., Gol'ding, I. R., Struchkov, Y. T. & Teplyakov, M. M. (1993). Russ. Chem. Bull. 42, 1601-1605.]); Zhu et al. (2006[Zhu, N., Lightsey, D., Foroozesh, M., Alworth, W., Chaudhary, A., Willett, K. L. & Stevens, C. L. K. (2006). J. Chem. Cryst. 36, 289-296.]); Zhang et al. (2008[Zhang, W., Yao, L. & Tao, R.-J. (2008). Acta Cryst. E64, o307.]); Marsh (2009[Marsh, R. E. (2009). Acta Cryst. B65, 782-783.]); Ranjith et al. (2010[Ranjith, S., Thirunarayanan, A., Raja, S., Rajakumar, P. & SubbiahPandi, A. (2010). Acta Cryst. E66, o2261-o2262.]); Li et al. (2009[Li, Z.-X., Ren, C.-M., Yang, S., Yao, G.-J. & Shi, Q.-Z. (2009). Acta Cryst. E65, o65.]); Ao et al. (2011[Ao, L., Tu, J.-H., Huang, X. & Ding, B.-Y. (2011). Acta Cryst. E67, o2642.]); Al-Mehana et al. (2011[Al-Mehana, W. N. A., Yahya, R. & Lo, K. M. (2011). Acta Cryst. E67, o2900.]); Belay et al. (2012[Belay, Y. H., Kinfe, H. H. & Muller, A. (2012). Acta Cryst. E68, o3072.]); Doi & Okuno (2013[Doi, I. & Okuno, T. (2013). Acta Cryst. E69, o125.]).

[Scheme 1]

2. Experimental

2.1. Crystal data

  • C10H7NO

  • Mr = 157.17

  • Monoclinic, P 21 /n

  • a = 6.033 (4) Å

  • b = 7.393 (5) Å

  • c = 17.527 (11) Å

  • β = 90.836 (11)°

  • V = 781.7 (9) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 93 K

  • 0.20 × 0.07 × 0.03 mm

2.2. Data collection

  • Rigaku Saturn724+ diffractometer

  • Absorption correction: numerical (NUMABS; Rigaku, 1999[Rigaku (1999). NUMABS. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.986, Tmax = 0.997

  • 6174 measured reflections

  • 1795 independent reflections

  • 1457 reflections with F2 > 2.0σ(F2)

  • Rint = 0.046

2.3. Refinement

  • R[F2 > 2σ(F2)] = 0.050

  • wR(F2) = 0.120

  • S = 1.08

  • 1795 reflections

  • 113 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.22 e Å−3

  • Δρmin = −0.19 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C10—H1⋯N1i 0.94 (2) 2.41 (2) 3.300 (3) 158.18 (11)
C6—H6⋯C10ii 0.95 2.79 3.616 (3) 145
Symmetry codes: (i) [x-{\script{3\over 2}}, -y+{\script{3\over 2}}, z+{\script{1\over 2}}]; (ii) [x+{\script{1\over 2}}, -y+{\script{3\over 2}}, z-{\script{1\over 2}}].

Data collection: CrystalClear (Rigaku, 2008[Rigaku (2008). CrystalClear. Rigaku Corporation, Tokyo, Japan.]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXD2013 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL2013 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]); software used to prepare material for publication: CrystalStructure (Rigaku, 2014[Rigaku (2014). CrystalStructure. Rigaku Corporation, Tokyo, Japan.]).

Supporting information


Comment top

The title compound, C10H7N1O1, is an aryl propargyl ether derivative which attracts interest from viewpoints of Claisen rearrangement (Kenny et al. 2006; Wang et al. 2012) or cleavage of O–CH2 bond by boron reagents (Yao et al. 2009). In these reactions, a direction of the lone pair of the oxygen has large influence upon reactivity.

The molecule has an almost planar structure (atoms C1—C10/N1/O1 are essentailly co-planar with r.m.s. deviation = 0.0862 Å), indicating an effective conjugation of the cyano group, the C1—C6 benzene ring and the lone pair of the O1 (Fig. 1). This is presumably because push-pull effect between an electron donating alkyloxy group and an electron withdrawing cyano group (Zhu et al. 2006; Marsh 2009; Ranjith et al. 2010; Ao et al. 2011; Al-Mehana et al. 2011; Belay et al. 2012; Doi & Okuno 2013).

In the crystal, C10–H1···N1i hydrogen bonds [Symmetry code: (i) x - 3/2, -y + 3/2, z + 1/2] connect the molecules to make a one-dimensional wavy chain. Intermolecular C6–H6···C10ii interaction [Symmetry code: (ii) x + 1/2, -y + 3/2, z - 1/2], whose distance is 2.794 (1) Å, binds the chains to form a rolling sheet structure as shown in Fig. 2.

Fig. 3 shows π···π stacking interactions between the sheets, where the centroid to centroid distance is 3.593 (2) Å and the C3···C5v is 3.387 (3) Å [Symmetry code: (v) -x + 2, -y + 1, -z]. The molecules also form weak intersheet C5–H5···O1vi bonds whose distance is 2.690 (1) Å [Symmetry code: (vi) -x + 1, -y + 1, -z]. In this crystal, the intermolecular hydrogen bonds, the C–H···π interactions and the π···π stacking interactions are found to make a three-dimensional molecular network.

Related literature top

The title compound is an aryl propargyl ether derivative which attracts interest with regard to Claisen rearrangement (Kenny et al. 2006; Wang et al. 2012) or cleavage of the O–CH2 bond by boron reagents (Yao et al. 2009). For related structures of 4-(prop-2-yn-1-yloxy)benzenes, see: Lindeman et al. (1993); Zhu et al. (2006); Zhang et al. (2008); Marsh (2009); Ranjith et al. (2010); Li et al. (2009); Ao et al. (2011); Al-Mehana et al. (2011); Belay et al. (2012); Doi & Okuno (2013).

Experimental top

The title compound is commercially available. Colourless platelets of sufficient quality for diffraction measurements were prepared by sublimation at room temperature.

Refinement top

The C-bound H atoms except for Csp—H were placed at ideal positions and were refined as riding on their parent C atoms. Uiso(H) values of the H atoms were set at 1.2Ueq(parent atom). The Csp-bound H atom was obtained from a difference Fourier map and was refined isotropically without any restrictions.

Computing details top

Data collection: CrystalClear (Rigaku, 2008); cell refinement: CrystalClear (Rigaku, 2008); data reduction: CrystalClear (Rigaku, 2008); program(s) used to solve structure: SHELXD2013 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2013 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: CrystalStructure (Rigaku, 2014).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with displacement ellipsoids drawn at the 50% probability level and H atoms are shown as small spheres.
[Figure 2] Fig. 2. Part of the crystal structure showing the rolling sheet structure formed by the C–H···N and C–H···π hydrogen bonds [Symmetry codes: (i) x - 3/2, -y + 3/2, z + 1/2; (ii) x + 1/2, -y + 3/2, z - 1/2; (iii) x + 3/2, -y + 3/2, z - 1/2; (iv) x - 1/2, -y + 3/2, z + 1/2].
[Figure 3] Fig. 3. Part of the crystal structure showing the intersheet π···π stacking interactions and the weak C–H···O hydrogen bonds [Symmetry codes: (v) -x + 2, -y + 1, -z; (vi) -x + 1, -y + 1, -z].
4-(Prop-2-yn-1-yloxy)benzonitrile top
Crystal data top
C10H7NOF(000) = 328.00
Mr = 157.17Dx = 1.335 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71075 Å
a = 6.033 (4) ÅCell parameters from 2559 reflections
b = 7.393 (5) Åθ = 2.3–31.1°
c = 17.527 (11) ŵ = 0.09 mm1
β = 90.836 (11)°T = 93 K
V = 781.7 (9) Å3Platelet, colorless
Z = 40.20 × 0.07 × 0.03 mm
Data collection top
Rigaku Saturn724+
diffractometer
1457 reflections with F2 > 2σ(F2)
Detector resolution: 28.445 pixels mm-1Rint = 0.046
ω scansθmax = 27.5°, θmin = 2.3°
Absorption correction: numerical
(NUMABS; Rigaku, 1999)
h = 77
Tmin = 0.986, Tmax = 0.997k = 99
6174 measured reflectionsl = 2122
1795 independent reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.050Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.120H atoms treated by a mixture of independent and constrained refinement
S = 1.08 w = 1/[σ2(Fo2) + (0.0584P)2 + 0.1471P]
where P = (Fo2 + 2Fc2)/3
1795 reflections(Δ/σ)max < 0.001
113 parametersΔρmax = 0.22 e Å3
0 restraintsΔρmin = 0.19 e Å3
Primary atom site location: structure-invariant direct methods
Crystal data top
C10H7NOV = 781.7 (9) Å3
Mr = 157.17Z = 4
Monoclinic, P21/nMo Kα radiation
a = 6.033 (4) ŵ = 0.09 mm1
b = 7.393 (5) ÅT = 93 K
c = 17.527 (11) Å0.20 × 0.07 × 0.03 mm
β = 90.836 (11)°
Data collection top
Rigaku Saturn724+
diffractometer
1795 independent reflections
Absorption correction: numerical
(NUMABS; Rigaku, 1999)
1457 reflections with F2 > 2σ(F2)
Tmin = 0.986, Tmax = 0.997Rint = 0.046
6174 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0500 restraints
wR(F2) = 0.120H atoms treated by a mixture of independent and constrained refinement
S = 1.08Δρmax = 0.22 e Å3
1795 reflectionsΔρmin = 0.19 e Å3
113 parameters
Special details top

Geometry. ENTER SPECIAL DETAILS OF THE MOLECULAR GEOMETRY

Refinement. Refinement was performed using all reflections. The weighted R-factor (wR) and goodness of fit (S) are based on F2. R-factor (gt) are based on F. The threshold expression of F2 > 2.0 σ(F2) is used only for calculating R-factor (gt).

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.66646 (16)0.60053 (14)0.09599 (6)0.0181 (3)
N11.4021 (2)0.95596 (18)0.14609 (7)0.0234 (3)
C11.1274 (2)0.81486 (19)0.05087 (8)0.0166 (3)
C21.1843 (2)0.79920 (19)0.02615 (8)0.0175 (3)
C31.0358 (2)0.72770 (19)0.07719 (8)0.0168 (3)
C40.8276 (2)0.67109 (18)0.05072 (8)0.0152 (3)
C50.7705 (2)0.68441 (19)0.02634 (8)0.0162 (3)
C60.9187 (2)0.75633 (19)0.07715 (8)0.0168 (3)
C71.2805 (2)0.8928 (2)0.10375 (8)0.0176 (3)
C80.7121 (2)0.5908 (2)0.17643 (8)0.0197 (3)
C90.5068 (2)0.5386 (2)0.21392 (8)0.0190 (3)
C100.3416 (3)0.4999 (2)0.24560 (9)0.0235 (4)
H10.211 (3)0.479 (3)0.2728 (11)0.033 (5)*
H21.326220.8380.043680.0210*
H31.074750.717120.129710.0201*
H50.629290.643890.04390.0195*
H60.87980.766230.12970.0202*
H8A0.763550.709760.195660.0236*
H8B0.829420.500260.187050.0236*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0144 (5)0.0253 (6)0.0147 (5)0.0035 (4)0.0030 (4)0.0018 (4)
N10.0173 (6)0.0298 (7)0.0233 (7)0.0007 (6)0.0032 (5)0.0022 (6)
C10.0143 (7)0.0156 (7)0.0199 (8)0.0023 (5)0.0042 (6)0.0003 (6)
C20.0117 (7)0.0177 (7)0.0231 (8)0.0021 (5)0.0005 (6)0.0021 (6)
C30.0146 (7)0.0199 (7)0.0158 (7)0.0018 (5)0.0005 (6)0.0003 (6)
C40.0131 (6)0.0141 (7)0.0186 (7)0.0011 (5)0.0046 (5)0.0006 (6)
C50.0119 (7)0.0174 (7)0.0193 (8)0.0003 (5)0.0005 (5)0.0007 (6)
C60.0160 (7)0.0189 (7)0.0155 (7)0.0015 (6)0.0004 (6)0.0003 (6)
C70.0141 (7)0.0195 (7)0.0193 (8)0.0012 (6)0.0001 (6)0.0011 (6)
C80.0155 (7)0.0276 (8)0.0161 (8)0.0004 (6)0.0024 (6)0.0006 (6)
C90.0179 (7)0.0239 (8)0.0151 (7)0.0018 (6)0.0002 (6)0.0005 (6)
C100.0182 (7)0.0339 (9)0.0185 (8)0.0014 (7)0.0027 (6)0.0000 (7)
Geometric parameters (Å, º) top
O1—C41.3673 (18)C8—C91.463 (2)
O1—C81.434 (2)C9—C101.183 (2)
N1—C71.150 (2)C2—H20.950
C1—C21.393 (2)C3—H30.950
C1—C61.403 (2)C5—H50.950
C1—C71.438 (2)C6—H60.950
C2—C31.380 (2)C8—H8A0.990
C3—C41.397 (2)C8—H8B0.990
C4—C51.392 (2)C10—H10.94 (2)
C5—C61.378 (2)
C4—O1—C8117.49 (11)C1—C2—H2119.768
C2—C1—C6119.99 (13)C3—C2—H2119.770
C2—C1—C7120.43 (13)C2—C3—H3120.380
C6—C1—C7119.58 (13)C4—C3—H3120.387
C1—C2—C3120.46 (13)C4—C5—H5119.993
C2—C3—C4119.23 (13)C6—C5—H5119.976
O1—C4—C3124.41 (13)C1—C6—H6120.174
O1—C4—C5114.96 (12)C5—C6—H6120.181
C3—C4—C5120.63 (13)O1—C8—H8A110.181
C4—C5—C6120.03 (13)O1—C8—H8B110.187
C1—C6—C5119.65 (13)C9—C8—H8A110.179
N1—C7—C1179.63 (15)C9—C8—H8B110.175
O1—C8—C9107.64 (12)H8A—C8—H8B108.478
C8—C9—C10178.27 (16)C9—C10—H1175.1 (12)
C4—O1—C8—C9171.29 (10)C1—C2—C3—C40.0 (2)
C8—O1—C4—C32.52 (18)C2—C3—C4—O1179.13 (12)
C8—O1—C4—C5177.34 (10)C2—C3—C4—C50.7 (2)
C2—C1—C6—C50.4 (2)O1—C4—C5—C6178.94 (10)
C6—C1—C2—C30.6 (2)C3—C4—C5—C60.9 (2)
C7—C1—C2—C3178.70 (12)C4—C5—C6—C10.4 (2)
C7—C1—C6—C5178.91 (11)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C10—H1···N1i0.94 (2)2.41 (2)3.300 (3)158.18 (11)
C6—H6···C10ii0.952.793.616 (3)145
Symmetry codes: (i) x3/2, y+3/2, z+1/2; (ii) x+1/2, y+3/2, z1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C10—H1···N1i0.94 (2)2.41 (2)3.300 (3)158.18 (11)
C6—H6···C10ii0.952.793.616 (3)145
Symmetry codes: (i) x3/2, y+3/2, z+1/2; (ii) x+1/2, y+3/2, z1/2.
 

Acknowledgements

This work was supported by Research for Promoting Technological Seeds from the Japan Science and Technology Agency (JST).

References

First citationAl-Mehana, W. N. A., Yahya, R. & Lo, K. M. (2011). Acta Cryst. E67, o2900.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationAo, L., Tu, J.-H., Huang, X. & Ding, B.-Y. (2011). Acta Cryst. E67, o2642.  Google Scholar
First citationBelay, Y. H., Kinfe, H. H. & Muller, A. (2012). Acta Cryst. E68, o3072.  Google Scholar
First citationDoi, I. & Okuno, T. (2013). Acta Cryst. E69, o125.  Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationKenny, R. S., Mashelkar, U. C., Rane, D. M. & Bezawada, D. K. (2006). Tetrahedron, 62, 9280–9288.  Google Scholar
First citationLi, Z.-X., Ren, C.-M., Yang, S., Yao, G.-J. & Shi, Q.-Z. (2009). Acta Cryst. E65, o65.  Google Scholar
First citationLindeman, S. V., Dvorikova, R. A., Gol'ding, I. R., Struchkov, Y. T. & Teplyakov, M. M. (1993). Russ. Chem. Bull. 42, 1601–1605.  Google Scholar
First citationMarsh, R. E. (2009). Acta Cryst. B65, 782–783.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationRanjith, S., Thirunarayanan, A., Raja, S., Rajakumar, P. & SubbiahPandi, A. (2010). Acta Cryst. E66, o2261–o2262.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationRigaku (1999). NUMABS. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku (2008). CrystalClear. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku (2014). CrystalStructure. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWang, Y., Ji, K., Lan, S. & Zhang, L. (2012). Angew. Chem. Int. Ed. 51, 1915–1918.  Google Scholar
First citationYao, M. L., Reddy, M. S., Zeng, W., Hall, K., Walfish, I. & Kabalka, G. W. (2009). J. Org. Chem. 74, 1385–1387.  Google Scholar
First citationZhang, W., Yao, L. & Tao, R.-J. (2008). Acta Cryst. E64, o307.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationZhu, N., Lightsey, D., Foroozesh, M., Alworth, W., Chaudhary, A., Willett, K. L. & Stevens, C. L. K. (2006). J. Chem. Cryst. 36, 289–296.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 71| Part 2| February 2015| Pages o97-o98
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds