organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 71| Part 2| February 2015| Pages o77-o78

Crystal structure of 4-[1-(2-hy­dr­oxy­prop­yl)-4,5-di­phenyl-1H-imidazol-2-yl]benzoic acid

aDepartment of Chemistry, Keene State College, 229 Main Street, Keene, NH 03435-2001, USA, bChemistry and Environmental Division, Manchester Metropolitan University, Manchester M1 5GD, England, cChemistry Department, Faculty of Science, Minia University, 61519 El-Minia, Egypt, dDepartment of Physics, Faculty of Sciences, Erciyes University, 38039 Kayseri, Turkey, eChemistry Department, Faculty of Science, Sohag University, Sohag, Egypt, and fKirkuk University, College of Science, Department of Chemistry, Kirkuk, Iraq
*Correspondence e-mail: shaabankamel@yahoo.com

Edited by W. T. A. Harrison, University of Aberdeen, Scotland (Received 8 December 2014; accepted 10 December 2014; online 3 January 2015)

In the title compound, C25H22N2O3, the central imidazole ring makes dihedral angles of 48.43 (10), 20.23 (10) and 75.38 (11)° with the benzene ring and the two phenyl rings, respectively. The phenyl ring adjacent to the N-bonded 2-hy­droxy­propyl group shows the greatest twist, presumably to minimize steric inter­actions. In the crystal, mol­ecules are linked by O—H⋯N, O—H⋯O and C—H⋯O hydrogen bonds, forming a three-dimensional network. In addition, C—H⋯π inter­actions are also observed.

1. Related literature

For similar structures and background to the biological properties of imidazole derivatives, see: Akkurt et al. (2013[Akkurt, M., Fronczek, F. R., Mohamed, S. K., Talybov, A. H., Marzouk, A. A. E. & Abdelhamid, A. A. (2013). Acta Cryst. E69, o527-o528.]); Mohamed et al. (2013a[Mohamed, S. K., Akkurt, M., Marzouk, A. A., Abdelhamid, A. A. & Santoyo-Gonzalez, F. (2013a). Acta Cryst. E69, o1105-o1106.],b[Mohamed, S. K., Akkurt, M., Marzouk, A. A., Abbasov, V. M. & Gurbanov, A. V. (2013b). Acta Cryst. E69, o474-o475.]). For the synthesis of the title compound, see: Mohamed et al. (2012[Mohamed, S. K., Akkurt, M., Fronczek, F. R., Marzouk, A. A. E. & Abdelhamid, A. A. (2012). Acta Cryst. E68, o2979-o2980.]).

[Scheme 1]

2. Experimental

2.1. Crystal data

  • C25H22N2O3

  • Mr = 398.45

  • Triclinic, [P \overline 1]

  • a = 6.8710 (4) Å

  • b = 10.7188 (6) Å

  • c = 14.9178 (7) Å

  • α = 103.569 (4)°

  • β = 93.094 (4)°

  • γ = 105.878 (5)°

  • V = 1019.03 (10) Å3

  • Z = 2

  • Cu Kα radiation

  • μ = 0.69 mm−1

  • T = 293 K

  • 0.36 × 0.32 × 0.24 mm

2.2. Data collection

  • Agilent Xcalibur (Eos, Gemini) diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2014[Agilent (2014). CrysAlis PRO. Agilent Technologies Ltd, Yarnton, England.]) Tmin = 0.928, Tmax = 1.000

  • 6591 measured reflections

  • 3859 independent reflections

  • 3209 reflections with I > 2σ(I)

  • Rint = 0.022

2.3. Refinement

  • R[F2 > 2σ(F2)] = 0.048

  • wR(F2) = 0.136

  • S = 1.02

  • 3859 reflections

  • 274 parameters

  • H-atom parameters constrained

  • Δρmax = 0.25 e Å−3

  • Δρmin = −0.25 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 is the centroid of the N1/N2/C1–C3 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
O2—H2⋯O3i 0.82 1.86 2.6718 (17) 170
O3—H3⋯N1ii 0.82 2.04 2.8377 (19) 166
C19—H19B⋯O1iii 0.96 2.46 3.355 (3) 155
C24—H24⋯O2iv 0.93 2.57 3.482 (3) 167
C19—H19CCg1ii 0.96 2.53 3.422 (2) 154
Symmetry codes: (i) -x+1, -y+3, -z+2; (ii) x-1, y, z; (iii) x-1, y-1, z; (iv) -x+1, -y+2, -z+2.

Data collection: CrysAlis PRO (Agilent, 2014[Agilent (2014). CrysAlis PRO. Agilent Technologies Ltd, Yarnton, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS2013 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL2013 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]); software used to prepare material for publication: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Following to our ongoing study on synthesis of imidazole based amino alcohols (Akkurt et al., 2013; Mohamed et al., 2013a,b) we herein report the synthesis and crystal structure of the title compound.

In the title compound, Fig. 1, the central 1H-imidazole ring (N1/N2/C1—C3) makes dihedral angles of 48.43 (10), 20.23 (10) and 75.38 (11)°, with the benzene ring (C10–C15) and two phenyl rings (C4–C9 and C20–C25), respectively. The dihedral angle between the (C4–C9 and C20–C25) phenyl rings is 69.94 (11)°. The (C10–C15) benzene ring forms dihedral angles of 36.05 (10) and 35.91 (10)° with two the phenyl rings (C4–C9 and C20–C25), respectively. The bond lengths are comparable to those reported for similar compounds reported in the literature (Akkurt et al., 2013; Mohamed et al., 2013a,b).

In the crystal, O—H···N, O—H···O and C—H···O hydrogen bonds link the adjacent molecules, into a three dimensional network structure (Table 1, Fig. 2). Furthermore, C—H···π interactions (Table 1) are also observed in the packing of the title compound.

Related literature top

For similar structures and background to the biological properties of imidazole derivatives, see: Akkurt et al. (2013); Mohamed et al. (2013a,b). For the synthesis of the title compound, see: Mohamed et al. (2012).

Experimental top

The title compound has been prepared according to our reported method (Mohamed et al., 2012). Irregular colourless chunks of (I) were obtained by the slow evaporation method using ethanol as a solvent. M.p. 456 K.

Refinement top

All hydrogen atoms were located in geometrically idealized positions and constrained to ride on their parent atoms, with C—H = 0.93–0.98 Å, O—H = 0.82 Å and Uiso(H) = 1.2Ueq(C) or Uiso(H) = 1.5Ueq(O).

Computing details top

Data collection: CrysAlis PRO (Agilent, 2014); cell refinement: CrysAlis PRO (Agilent, 2014); data reduction: CrysAlis PRO (Agilent, 2014); program(s) used to solve structure: SHELXS2013 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2013 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. Perspective view of the title molecule with 50% probability ellipsoids.
[Figure 2] Fig. 2. View of a part of the hydrogen bonding in the title compound
4-[1-(2-Hydroxypropyl)-4,5-diphenyl-1H-imidazol-2-yl]benzoic acid top
Crystal data top
C25H22N2O3Z = 2
Mr = 398.45F(000) = 420
Triclinic, P1Dx = 1.299 Mg m3
Hall symbol: -P 1Cu Kα radiation, λ = 1.54184 Å
a = 6.8710 (4) ÅCell parameters from 2716 reflections
b = 10.7188 (6) Åθ = 4.7–70.9°
c = 14.9178 (7) ŵ = 0.69 mm1
α = 103.569 (4)°T = 293 K
β = 93.094 (4)°Irregular, colourless
γ = 105.878 (5)°0.36 × 0.32 × 0.24 mm
V = 1019.03 (10) Å3
Data collection top
Agilent Xcalibur (Eos, Gemini)
diffractometer
3859 independent reflections
Radiation source: Enhance (Cu) X-ray Source3209 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.022
Detector resolution: 16.0416 pixels mm-1θmax = 71.3°, θmin = 3.1°
ω scansh = 88
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2014)
k = 1311
Tmin = 0.928, Tmax = 1.000l = 1518
6591 measured reflections
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.048H-atom parameters constrained
wR(F2) = 0.136 w = 1/[σ2(Fo2) + (0.0703P)2 + 0.2833P]
where P = (Fo2 + 2Fc2)/3
S = 1.02(Δ/σ)max < 0.001
3859 reflectionsΔρmax = 0.25 e Å3
274 parametersΔρmin = 0.25 e Å3
Crystal data top
C25H22N2O3γ = 105.878 (5)°
Mr = 398.45V = 1019.03 (10) Å3
Triclinic, P1Z = 2
a = 6.8710 (4) ÅCu Kα radiation
b = 10.7188 (6) ŵ = 0.69 mm1
c = 14.9178 (7) ÅT = 293 K
α = 103.569 (4)°0.36 × 0.32 × 0.24 mm
β = 93.094 (4)°
Data collection top
Agilent Xcalibur (Eos, Gemini)
diffractometer
3859 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2014)
3209 reflections with I > 2σ(I)
Tmin = 0.928, Tmax = 1.000Rint = 0.022
6591 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0480 restraints
wR(F2) = 0.136H-atom parameters constrained
S = 1.02Δρmax = 0.25 e Å3
3859 reflectionsΔρmin = 0.25 e Å3
274 parameters
Special details top

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement on F2 for ALL reflections except those flagged by the user for potential systematic errors. Weighted R-factors wR and all goodnesses of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The observed criterion of F2 > σ(F2) is used only for calculating -R-factor-obs etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.8499 (3)1.73494 (13)0.98882 (10)0.0517 (5)
O20.8373 (2)1.64288 (12)1.10828 (8)0.0388 (4)
O30.02746 (18)1.11133 (11)0.77597 (8)0.0320 (3)
N10.6209 (2)1.07389 (14)0.70106 (10)0.0308 (4)
N20.3691 (2)0.99670 (14)0.77918 (10)0.0303 (4)
C10.5243 (2)1.10427 (16)0.77304 (11)0.0296 (5)
C20.3686 (3)0.89049 (17)0.70448 (12)0.0307 (5)
C30.5245 (3)0.93989 (17)0.65689 (12)0.0304 (5)
C40.5945 (3)0.87422 (17)0.57186 (12)0.0323 (5)
C50.5483 (3)0.73492 (19)0.53904 (14)0.0420 (6)
C60.6122 (3)0.6785 (2)0.45708 (15)0.0480 (6)
C70.7243 (3)0.7582 (2)0.40643 (13)0.0441 (6)
C80.7719 (3)0.8962 (2)0.43826 (13)0.0421 (6)
C90.7082 (3)0.95396 (19)0.52012 (13)0.0376 (6)
C100.5889 (2)1.23891 (17)0.83951 (12)0.0306 (5)
C110.6297 (3)1.35063 (18)0.80399 (12)0.0355 (5)
C120.7025 (3)1.47865 (18)0.86269 (12)0.0357 (5)
C130.7361 (2)1.49682 (16)0.95828 (12)0.0303 (5)
C140.6976 (3)1.38537 (18)0.99390 (12)0.0338 (5)
C150.6249 (3)1.25733 (17)0.93528 (12)0.0338 (5)
C160.8137 (3)1.63675 (17)1.01870 (12)0.0337 (5)
C170.2157 (3)0.99226 (18)0.84355 (12)0.0335 (5)
C180.0062 (3)0.98690 (17)0.80001 (13)0.0332 (5)
C190.1480 (3)0.9614 (2)0.86693 (15)0.0434 (6)
C200.2276 (3)0.75300 (17)0.69024 (12)0.0333 (5)
C210.0656 (3)0.70164 (19)0.61958 (14)0.0434 (6)
C220.0584 (3)0.5708 (2)0.60422 (17)0.0544 (7)
C230.0218 (4)0.4910 (2)0.65886 (17)0.0563 (7)
C240.1364 (4)0.5410 (2)0.72990 (16)0.0581 (8)
C250.2614 (4)0.6721 (2)0.74577 (14)0.0465 (6)
H20.883001.721601.138200.0580*
H30.080501.108800.748300.0480*
H50.473900.679700.572600.0500*
H60.579200.585500.435800.0580*
H70.767400.719600.351500.0530*
H80.847300.950700.404500.0500*
H90.741601.047000.540900.0450*
H110.607901.339400.740100.0430*
H120.729101.552900.838100.0430*
H140.720801.396701.057700.0410*
H150.600001.183200.959800.0410*
H17A0.263301.071100.895800.0400*
H17B0.201800.913900.867400.0400*
H180.035500.913200.743200.0400*
H19A0.109201.033900.922500.0650*
H19B0.152700.878600.882300.0650*
H19C0.280100.955700.838600.0650*
H210.040000.755200.582300.0520*
H220.166900.536900.556700.0650*
H230.104300.402900.647700.0680*
H240.159900.487200.767400.0700*
H250.368500.705800.794000.0560*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0798 (11)0.0273 (7)0.0409 (8)0.0080 (7)0.0013 (7)0.0064 (6)
O20.0508 (8)0.0250 (6)0.0327 (7)0.0062 (6)0.0012 (6)0.0002 (5)
O30.0303 (6)0.0279 (6)0.0335 (6)0.0054 (5)0.0004 (5)0.0044 (5)
N10.0295 (7)0.0261 (7)0.0316 (7)0.0062 (6)0.0012 (6)0.0011 (6)
N20.0271 (7)0.0277 (7)0.0318 (7)0.0083 (6)0.0001 (6)0.0004 (6)
C10.0285 (8)0.0264 (8)0.0301 (8)0.0086 (7)0.0027 (6)0.0010 (7)
C20.0289 (8)0.0272 (8)0.0316 (8)0.0089 (7)0.0031 (7)0.0000 (7)
C30.0295 (8)0.0278 (8)0.0300 (8)0.0087 (7)0.0036 (7)0.0013 (7)
C40.0300 (8)0.0329 (9)0.0308 (8)0.0104 (7)0.0017 (7)0.0019 (7)
C50.0448 (11)0.0330 (10)0.0435 (10)0.0099 (8)0.0077 (8)0.0023 (8)
C60.0527 (12)0.0353 (10)0.0472 (11)0.0131 (9)0.0046 (9)0.0060 (9)
C70.0427 (11)0.0521 (12)0.0329 (9)0.0197 (9)0.0014 (8)0.0039 (8)
C80.0394 (10)0.0502 (12)0.0367 (10)0.0144 (9)0.0055 (8)0.0098 (8)
C90.0375 (10)0.0352 (10)0.0375 (10)0.0113 (8)0.0022 (8)0.0042 (8)
C100.0252 (8)0.0271 (8)0.0337 (9)0.0069 (6)0.0005 (6)0.0012 (7)
C110.0378 (9)0.0335 (9)0.0293 (9)0.0071 (7)0.0005 (7)0.0020 (7)
C120.0403 (10)0.0277 (9)0.0361 (9)0.0063 (7)0.0019 (7)0.0078 (7)
C130.0275 (8)0.0268 (8)0.0327 (9)0.0078 (7)0.0008 (7)0.0012 (7)
C140.0370 (9)0.0318 (9)0.0284 (8)0.0092 (7)0.0004 (7)0.0018 (7)
C150.0371 (9)0.0257 (8)0.0353 (9)0.0074 (7)0.0001 (7)0.0047 (7)
C160.0352 (9)0.0282 (9)0.0343 (9)0.0086 (7)0.0011 (7)0.0031 (7)
C170.0334 (9)0.0302 (9)0.0341 (9)0.0094 (7)0.0044 (7)0.0028 (7)
C180.0313 (9)0.0247 (8)0.0401 (9)0.0073 (7)0.0018 (7)0.0034 (7)
C190.0382 (10)0.0434 (11)0.0510 (12)0.0111 (8)0.0069 (9)0.0174 (9)
C200.0344 (9)0.0275 (8)0.0336 (9)0.0078 (7)0.0063 (7)0.0009 (7)
C210.0417 (11)0.0324 (10)0.0481 (11)0.0083 (8)0.0020 (9)0.0002 (8)
C220.0411 (11)0.0385 (11)0.0647 (14)0.0005 (9)0.0001 (10)0.0065 (10)
C230.0623 (14)0.0296 (10)0.0615 (14)0.0034 (9)0.0226 (11)0.0010 (10)
C240.0905 (18)0.0328 (11)0.0473 (12)0.0096 (11)0.0154 (12)0.0118 (9)
C250.0608 (13)0.0348 (10)0.0378 (10)0.0094 (9)0.0005 (9)0.0047 (8)
Geometric parameters (Å, º) top
O1—C161.207 (2)C18—C191.509 (3)
O2—C161.321 (2)C20—C251.385 (3)
O3—C181.433 (2)C20—C211.385 (3)
N1—C11.316 (2)C21—C221.386 (3)
N1—C31.387 (2)C22—C231.372 (3)
N2—C11.365 (2)C23—C241.372 (4)
N2—C21.393 (2)C24—C251.389 (3)
N2—C171.462 (2)C5—H50.9300
O2—H20.8200C6—H60.9300
O3—H30.8200C7—H70.9300
C1—C101.481 (2)C8—H80.9300
C2—C201.485 (3)C9—H90.9300
C2—C31.371 (3)C11—H110.9300
C3—C41.472 (3)C12—H120.9300
C4—C91.395 (3)C14—H140.9300
C4—C51.397 (3)C15—H150.9300
C5—C61.382 (3)C17—H17A0.9700
C6—C71.378 (3)C17—H17B0.9700
C7—C81.382 (3)C18—H180.9800
C8—C91.385 (3)C19—H19A0.9600
C10—C151.394 (2)C19—H19B0.9600
C10—C111.387 (3)C19—H19C0.9600
C11—C121.383 (3)C21—H210.9300
C12—C131.391 (2)C22—H220.9300
C13—C141.386 (3)C23—H230.9300
C13—C161.491 (2)C24—H240.9300
C14—C151.383 (3)C25—H250.9300
C17—C181.528 (3)
C1—N1—C3106.24 (15)C22—C23—C24120.1 (2)
C1—N2—C2106.50 (14)C23—C24—C25120.0 (2)
C1—N2—C17128.48 (15)C20—C25—C24120.4 (2)
C2—N2—C17124.71 (15)C4—C5—H5120.00
C16—O2—H2109.00C6—C5—H5120.00
C18—O3—H3109.00C5—C6—H6120.00
N1—C1—N2111.74 (15)C7—C6—H6120.00
N1—C1—C10122.02 (15)C6—C7—H7120.00
N2—C1—C10126.19 (14)C8—C7—H7120.00
N2—C2—C3106.17 (16)C7—C8—H8120.00
C3—C2—C20131.12 (17)C9—C8—H8120.00
N2—C2—C20122.60 (16)C4—C9—H9120.00
N1—C3—C4120.13 (17)C8—C9—H9120.00
N1—C3—C2109.35 (16)C10—C11—H11120.00
C2—C3—C4130.52 (17)C12—C11—H11120.00
C3—C4—C9118.87 (16)C11—C12—H12120.00
C3—C4—C5123.02 (17)C13—C12—H12120.00
C5—C4—C9118.10 (17)C13—C14—H14120.00
C4—C5—C6120.58 (19)C15—C14—H14120.00
C5—C6—C7120.9 (2)C10—C15—H15120.00
C6—C7—C8119.21 (19)C14—C15—H15120.00
C7—C8—C9120.50 (19)N2—C17—H17A109.00
C4—C9—C8120.76 (18)N2—C17—H17B109.00
C11—C10—C15119.05 (16)C18—C17—H17A109.00
C1—C10—C11118.17 (15)C18—C17—H17B109.00
C1—C10—C15122.60 (16)H17A—C17—H17B108.00
C10—C11—C12120.58 (16)O3—C18—H18109.00
C11—C12—C13120.27 (17)C17—C18—H18109.00
C12—C13—C16118.27 (16)C19—C18—H18109.00
C12—C13—C14119.29 (16)C18—C19—H19A109.00
C14—C13—C16122.44 (16)C18—C19—H19B109.00
C13—C14—C15120.49 (16)C18—C19—H19C109.00
C10—C15—C14120.32 (17)H19A—C19—H19B109.00
O2—C16—C13113.42 (15)H19A—C19—H19C109.00
O1—C16—C13123.33 (16)H19B—C19—H19C110.00
O1—C16—O2123.25 (17)C20—C21—H21120.00
N2—C17—C18113.88 (14)C22—C21—H21120.00
O3—C18—C17107.26 (15)C21—C22—H22120.00
O3—C18—C19112.97 (16)C23—C22—H22120.00
C17—C18—C19109.78 (16)C22—C23—H23120.00
C2—C20—C21120.99 (17)C24—C23—H23120.00
C21—C20—C25118.92 (18)C23—C24—H24120.00
C2—C20—C25120.05 (18)C25—C24—H24120.00
C20—C21—C22120.29 (19)C20—C25—H25120.00
C21—C22—C23120.3 (2)C24—C25—H25120.00
C3—N1—C1—N20.37 (19)C5—C4—C9—C80.4 (3)
C3—N1—C1—C10177.80 (15)C3—C4—C5—C6177.8 (2)
C1—N1—C3—C4179.15 (17)C9—C4—C5—C60.7 (3)
C1—N1—C3—C20.4 (2)C4—C5—C6—C70.6 (3)
C17—N2—C1—N1173.96 (16)C5—C6—C7—C80.3 (3)
C2—N2—C1—N10.23 (19)C6—C7—C8—C90.1 (3)
C17—N2—C2—C209.4 (3)C7—C8—C9—C40.2 (3)
C2—N2—C1—C10177.53 (16)C1—C10—C15—C14175.83 (17)
C17—N2—C1—C108.7 (3)C11—C10—C15—C140.9 (3)
C1—N2—C2—C20176.53 (17)C15—C10—C11—C120.9 (3)
C1—N2—C2—C30.0 (2)C1—C10—C11—C12176.03 (17)
C17—N2—C2—C3174.02 (17)C10—C11—C12—C130.1 (3)
C2—N2—C17—C1869.5 (2)C11—C12—C13—C16179.71 (18)
C1—N2—C17—C18103.2 (2)C11—C12—C13—C140.6 (3)
N2—C1—C10—C1549.3 (2)C12—C13—C16—O10.4 (3)
N1—C1—C10—C1147.3 (2)C12—C13—C16—O2179.00 (17)
N1—C1—C10—C15127.74 (19)C14—C13—C16—O1179.3 (2)
N2—C1—C10—C11135.71 (18)C14—C13—C16—O21.3 (3)
N2—C2—C3—N10.2 (2)C12—C13—C14—C150.5 (3)
N2—C2—C20—C21108.0 (2)C16—C13—C14—C15179.75 (18)
C20—C2—C3—C44.7 (4)C13—C14—C15—C100.2 (3)
C3—C2—C20—C25101.1 (3)N2—C17—C18—O365.48 (19)
N2—C2—C3—C4179.22 (19)N2—C17—C18—C19171.44 (16)
C20—C2—C3—N1175.90 (19)C2—C20—C21—C22176.72 (19)
N2—C2—C20—C2574.5 (3)C25—C20—C21—C220.9 (3)
C3—C2—C20—C2176.4 (3)C2—C20—C25—C24176.7 (2)
N1—C3—C4—C5160.89 (19)C21—C20—C25—C240.9 (3)
C2—C3—C4—C9158.7 (2)C20—C21—C22—C230.0 (3)
N1—C3—C4—C920.7 (3)C21—C22—C23—C240.9 (4)
C2—C3—C4—C519.7 (3)C22—C23—C24—C250.9 (4)
C3—C4—C9—C8178.07 (19)C23—C24—C25—C200.0 (4)
Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the N1/N2/C1–C3 ring.
D—H···AD—HH···AD···AD—H···A
O2—H2···O3i0.821.862.6718 (17)170
O3—H3···N1ii0.822.042.8377 (19)166
C19—H19B···O1iii0.962.463.355 (3)155
C24—H24···O2iv0.932.573.482 (3)167
C19—H19C···Cg1ii0.962.533.422 (2)154
Symmetry codes: (i) x+1, y+3, z+2; (ii) x1, y, z; (iii) x1, y1, z; (iv) x+1, y+2, z+2.
Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the N1/N2/C1–C3 ring.
D—H···AD—HH···AD···AD—H···A
O2—H2···O3i0.821.862.6718 (17)170
O3—H3···N1ii0.822.042.8377 (19)166
C19—H19B···O1iii0.962.463.355 (3)155
C24—H24···O2iv0.932.573.482 (3)167
C19—H19C···Cg1ii0.962.533.422 (2)154
Symmetry codes: (i) x+1, y+3, z+2; (ii) x1, y, z; (iii) x1, y1, z; (iv) x+1, y+2, z+2.
 

Acknowledgements

JPJ acknowledges the NSF–MRI program (grant No. CHE-1039027) for funds to purchase the X-ray diffractometer. Also, SKM would like to thank Keene State College for providing all X-ray data and Manchester Metropolitan University for supporting this study.

References

First citationAgilent (2014). CrysAlis PRO. Agilent Technologies Ltd, Yarnton, England.  Google Scholar
First citationAkkurt, M., Fronczek, F. R., Mohamed, S. K., Talybov, A. H., Marzouk, A. A. E. & Abdelhamid, A. A. (2013). Acta Cryst. E69, o527–o528.  CSD CrossRef CAS IUCr Journals Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationMohamed, S. K., Akkurt, M., Fronczek, F. R., Marzouk, A. A. E. & Abdelhamid, A. A. (2012). Acta Cryst. E68, o2979–o2980.  CSD CrossRef IUCr Journals Google Scholar
First citationMohamed, S. K., Akkurt, M., Marzouk, A. A., Abbasov, V. M. & Gurbanov, A. V. (2013b). Acta Cryst. E69, o474–o475.  CSD CrossRef IUCr Journals Google Scholar
First citationMohamed, S. K., Akkurt, M., Marzouk, A. A., Abdelhamid, A. A. & Santoyo-Gonzalez, F. (2013a). Acta Cryst. E69, o1105–o1106.  CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 71| Part 2| February 2015| Pages o77-o78
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds