organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 71| Part 2| February 2015| Pages o75-o76

Crystal structure of N-[(8E)-12-methyl-14-phenyl-10,13,14,16-tetra­aza­tetra­cyclo­[7.7.0.02,7.011,15]hexa­deca-1(16),2,4,6,9,11(15),12-heptaen-8-yl­­idene]hydroxyl­amine 1,4-dioxane hemisolvate

aChemistry and Environmental Division, Manchester Metropolitan University, Manchester M1 5GD, England, bChemistry Department, Faculty of Science, Minia University, 61519 El-Minia, Egypt, cDepartment of Chemistry, Tulane University, New Orleans, LA 70118, USA, dDepartment of Physics, Faculty of Sciences, Erciyes University, 38039 Kayseri, Turkey, eDepartment of Chemistry, Faculty of Science, Assiut University, 71515 Assiut, Egypt, and fKirkuk University, College of Science, Department of Chemistry, Kirkuk, Iraq
*Correspondence e-mail: shaabankamel@yahoo.com

Edited by W. T. A. Harrison, University of Aberdeen, Scotland (Received 11 December 2014; accepted 14 December 2014; online 3 January 2015)

In the title solvate, C19H13N5O·0.5C4H8O2, the main mol­ecule is almost planar (r.m.s. deviation for the non-H atoms = 0.066 Å). The hydroxyl­amine group is disordered over two orientations in a 0.761 (4):0.239 (4) ratio. The complete dioxane solvent mol­ecule is generated by a crystallographic inversion centre. In the crystal, both disorder components of the hydroxyl­amine group form O—H⋯N hydrogen bonds to the same N-atom acceptor, thereby generating [010] chains. The chains encompass [010] channels occupied by the solvent mol­ecules. Aromatic ππ stacking is also observed [shortest centroid–centroid separation = 3.3394 (19) Å].

1. Related literature

For a related structure see: Mague et al. (2014[Mague, J. T., Mohamed, S. K., Akkurt, M., El-Kashef, H. M. S. & Albayati, M. R. (2014). Acta Cryst. E70, o1244-o1245.]). For background to the biological properties of pyrazino­pyroles or pyrazino­pyrazoles see: Nyeki et al. (2002[Nyeki, O., Nogradi, K., Chongor, E.-A., Bartane, S. G., Domany, G., Demeter, A., Galaambos, J., Gizur, T., Kassai, F., Kiss, C., Rill, A., Schoen, I., Trischler, F., Torey, J., Kyotani, Y. & Yokoyama, A. (2002). Chem. Abstr. 137, 232907.]); Askew et al. (1997[Askew, B. C., McIntyre, C. J., Hunt, C. A., Claremon, D. A., Baldwin, J. J., Anderson, P. S., Gould, R. J., Lynch, R. J., Chang, C. C.-T., Cook, J. J., Lynch, J. J., Holahan, M. A., Sitko, G. R. & Stranieri, M. T. (1997). Bioorg. Med. Chem. Lett. 7, 1531-1536.]); Wehner et al. (1998[Wehner, V., Stilz, H.-U., Peyman, A., Knolle, J., Ruxer, J.-M., Carniato, D., Lefrancois, J.-M., Gadek, T. R. & McDowell, R. (1998). Chem. Abstr. 129, 81970.]); Zimmerman (1995[Zimmerman, W. T. (1995). Chem. Abstr. 122, 49104.]).

[Scheme 1]

2. Experimental

2.1. Crystal data

  • C19H13N5O·0.5C4H8O2

  • Mr = 371.40

  • Monoclinic, P 21 /n

  • a = 15.8019 (4) Å

  • b = 5.5675 (1) Å

  • c = 20.4756 (5) Å

  • β = 102.093 (2)°

  • V = 1761.41 (7) Å3

  • Z = 4

  • Cu Kα radiation

  • μ = 0.77 mm−1

  • T = 150 K

  • 0.15 × 0.07 × 0.04 mm

2.2. Data collection

  • Bruker D8 VENTURE PHOTON 100 CMOS diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2014[Bruker (2014). APEX2, SAINT and SADABS. Bruker AXS, Inc., Madison, Wisconsin, USA.]) Tmin = 0.85, Tmax = 0.97

  • 12942 measured reflections

  • 3122 independent reflections

  • 1934 reflections with I > 2σ(I)

  • Rint = 0.066

2.3. Refinement

  • R[F2 > 2σ(F2)] = 0.060

  • wR(F2) = 0.166

  • S = 1.05

  • 3122 reflections

  • 261 parameters

  • 2 restraints

  • H-atom parameters constrained

  • Δρmax = 0.49 e Å−3

  • Δρmin = −0.21 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯N4i 0.84 2.04 2.878 (3) 172
O1a—H1a⋯N4i 0.84 1.94 2.749 (5) 162
Symmetry code: (i) [-x+{\script{1\over 2}}, y+{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2014[Bruker (2014). APEX2, SAINT and SADABS. Bruker AXS, Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2014[Bruker (2014). APEX2, SAINT and SADABS. Bruker AXS, Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXT (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: DIAMOND (Brandenburg & Putz, 2012[Brandenburg, K. & Putz, H. (2012). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]).

Supporting information


Comment top

Heterocyclic compounds containing pyrolo- or pyrazino-pyrazole core structures represent a relatively little-explored group with interesting pharmaceutical properties. They have been described as vasodilators (Nyeki et al., 2002), fibrinogen receptor antagonists with antiplatelet activity (Askew et al., 1997), vitronectin-receptor antagonists (Wehner et al., 1998) and herbicidal agents (Zimmerman, 1995). In a continuation of our efforts towards the synthesis of bio-active pyrazinopyrazines, we report here the synthesis and crystal structure of the title compound.

The fused, four-ring core of the title molecule (Fig. 1) is nearly planar with only a 3.0 (2)° dihedral angle between the C14–C19 and C7/C9/C10/N1/N2 rings while the dihedral angle between the latter ring and the pendant phenyl ring is 5.2 (2)°. The values of the geometric parameters of the title molecule are normal and are comparable to those reported for a similar structure (Mague et al., 2014).

The molecules form stacks via π-π interactions between the C7/C9/C10/N1/N2 ring in one molecule with the C11–C15 ring in the molecule at x, -1 + y, z (centroid–centroid distance = 3.34 Å, Fig. 2). Two screw-axis-related stacks are associated via O1—H1···N4 hydrogen bonds forming columns running parallel to the b axis (Table 1 and Fig. 3). In each column, the mean planes of the molecules in one stack are inclined to those of the second by 73.3°. The solvent dioxane molecules lie adjacent to the hydroxylamine groups and fill channels between the columns.

Related literature top

For a related structure see: Mague et al. (2014). For background to the biological properties of of pyrazinopyroles or pyrazinopyrazoles see: Nyeki et al. (2002); Askew et al. (1997); Wehner et al. (1998); Zimmerman (1995).

Experimental top

A mixture of 2 mmol (624 mg) of 3-methyl-1-phenylindeno[2,1-e]pyrazolo[3,4-b]pyrazin-5(1H)-one and 2 mmol (139 mg) of hydroxylamine hydrochloride in dry pyridine (15 ml) was heated under reflux for 3 h. After cooling, the reaction mixture was poured into an ice-water mixture. The resulting solid product was then filtered off, washed with water, dried and crystallized from a mixture of dioxane/water (1:2 v/v) to afford light yellow crystals of the title compound. Mp 577 – 579 K.

Refinement top

H-atoms attached to carbon atoms were placed in calculated positions (C—H = 0.95 - 0.98 Å) while that attached to the oxygen atom was placed in a location derived from a difference map and its parameters adjusted to give O—H = 0.84 Å. All were included as riding contributions with isotropic displacement parameters 1.2 - 1.5 times those of the attached atoms. The {N—OH} unit is disordered over two resolved sites in a 3:1 ratio and was refined subject to restraints that the geometries of the two components be comparable. The solvent molecule of dioxane located on a center of symmetry appeared to be slightly disordered on the basis of the size and shape of its displacement ellipsoids but attempts to refine it with a split atom model were unsuccessful.

Computing details top

Data collection: APEX2 (Bruker, 2014); cell refinement: SAINT (Bruker, 2014); data reduction: SAINT (Bruker, 2014); program(s) used to solve structure: SHELXT (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg & Putz, 2012); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The title molecule showing 50% probability ellipsoids. Only the major componenet of the disordered hydroxylamine substituent is shown.
[Figure 2] Fig. 2. Packing showing the π-π interactions as green dotted lines.
[Figure 3] Fig. 3. Packing viewed down the b axis showing the formation of one column via O—H···N hydrogen bonds (red dotted lines).
N-[(8E)-12-Methyl-14-phenyl-10,13,14,16-tetraazatetracyclo[7.7.0.02,7.011,15]hexadeca-1(16),2,4,6,9,11 (15),12-heptaen-8-ylidene]hydroxylamine 1,4-dioxane hemisolvate top
Crystal data top
C19H13N5O·0.5C4H8O2F(000) = 776
Mr = 371.40Dx = 1.401 Mg m3
Monoclinic, P21/nCu Kα radiation, λ = 1.54178 Å
a = 15.8019 (4) ÅCell parameters from 5735 reflections
b = 5.5675 (1) Åθ = 3.2–67.0°
c = 20.4756 (5) ŵ = 0.77 mm1
β = 102.093 (2)°T = 150 K
V = 1761.41 (7) Å3Column, light yellow
Z = 40.15 × 0.07 × 0.04 mm
Data collection top
Bruker D8 VENTURE PHOTON 100 CMOS
diffractometer
3122 independent reflections
Radiation source: INCOATEC IµS micro-focus source1934 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.066
Detector resolution: 10.4167 pixels mm-1θmax = 67.1°, θmin = 3.2°
ω scansh = 1818
Absorption correction: multi-scan
(SADABS; Bruker, 2014)
k = 66
Tmin = 0.85, Tmax = 0.97l = 2123
12942 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.060Hydrogen site location: mixed
wR(F2) = 0.166H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.0629P)2 + 1.2077P]
where P = (Fo2 + 2Fc2)/3
3122 reflections(Δ/σ)max < 0.001
261 parametersΔρmax = 0.49 e Å3
2 restraintsΔρmin = 0.21 e Å3
Crystal data top
C19H13N5O·0.5C4H8O2V = 1761.41 (7) Å3
Mr = 371.40Z = 4
Monoclinic, P21/nCu Kα radiation
a = 15.8019 (4) ŵ = 0.77 mm1
b = 5.5675 (1) ÅT = 150 K
c = 20.4756 (5) Å0.15 × 0.07 × 0.04 mm
β = 102.093 (2)°
Data collection top
Bruker D8 VENTURE PHOTON 100 CMOS
diffractometer
3122 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2014)
1934 reflections with I > 2σ(I)
Tmin = 0.85, Tmax = 0.97Rint = 0.066
12942 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0602 restraints
wR(F2) = 0.166H-atom parameters constrained
S = 1.05Δρmax = 0.49 e Å3
3122 reflectionsΔρmin = 0.21 e Å3
261 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes)

are estimated using the full covariance matrix. The cell e.s.d.'s are taken

into account individually in the estimation of e.s.d.'s in distances, angles

and torsion angles; correlations between e.s.d.'s in cell parameters are only

used when they are defined by crystal symmetry. An approximate (isotropic)

treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and

goodness of fit S are based on F2, conventional R-factors R are based

on F, with F set to zero for negative F2. The threshold expression of

F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is

not relevant to the choice of reflections for refinement. R-factors based

on F2 are statistically about twice as large as those based on F, and R-

factors based on ALL data will be even larger. H-atoms attached to carbon

were placed in calculated positions (C—H = 0.95 - 0.98 Å) while that

attached to oxygen was placed in a location derived from a difference

map and its parameters adjusted to give O—H = 0.84 Å. All were

included as riding contributions with isotropic displacement

parameters 1.2 - 1.5 times those of the attached atoms. The {N—OH} unit

is disordered over two resolved sites in a 3:1 ratio and was refined

subject to restraints that the geometries of the two components be

comparable. The molecule of lattice dioxane located on a center of symmetry

appeared to be slightly disordered on the basis of the size and shape of

its displacement ellipsoids but attempts to refine it with a split atom

model were unsuccessful.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
O10.31941 (17)0.8942 (5)0.31844 (14)0.0526 (9)0.761 (4)
H10.26530.88680.31330.063*0.761 (4)
N50.3255 (3)0.7078 (7)0.27450 (18)0.0477 (10)0.761 (4)
O1A0.2787 (7)0.6744 (19)0.2677 (5)0.0526 (9)0.239 (4)
H1A0.23080.72940.27230.063*0.239 (4)
N5A0.3523 (7)0.811 (3)0.2922 (7)0.0477 (10)0.239 (4)
N10.50054 (14)0.0011 (5)0.10956 (11)0.0441 (6)
N20.42463 (15)0.1296 (5)0.08969 (12)0.0483 (7)
N30.54532 (15)0.3519 (5)0.17927 (11)0.0436 (6)
N40.36329 (15)0.3403 (5)0.18808 (12)0.0479 (7)
C10.57561 (18)0.0748 (6)0.08673 (14)0.0434 (7)
C20.65086 (19)0.0591 (6)0.10022 (16)0.0525 (8)
H20.65410.20270.12570.063*
C30.7218 (2)0.0197 (6)0.07592 (17)0.0568 (9)
H30.77370.07180.08490.068*
C40.7184 (2)0.2271 (6)0.03920 (15)0.0529 (9)
H40.76740.27920.02290.063*
C50.6431 (2)0.3581 (6)0.02643 (16)0.0558 (9)
H50.63990.50200.00110.067*
C60.5719 (2)0.2820 (6)0.05014 (15)0.0526 (8)
H60.52010.37380.04100.063*
C70.36423 (19)0.0231 (6)0.11490 (14)0.0478 (8)
C80.27394 (18)0.1199 (6)0.10347 (16)0.0564 (9)
H8A0.23410.00600.07630.085*
H8B0.25730.14290.14650.085*
H8C0.27130.27410.08010.085*
C90.39917 (18)0.1795 (6)0.15255 (14)0.0457 (8)
C100.48730 (18)0.1895 (6)0.14854 (14)0.0435 (7)
C110.50897 (18)0.5059 (6)0.21488 (14)0.0436 (7)
C120.41977 (18)0.4993 (6)0.21947 (14)0.0467 (8)
C130.40452 (19)0.6952 (6)0.26329 (15)0.0501 (8)
C140.4877 (2)0.8210 (6)0.28446 (14)0.0492 (8)
C150.55051 (18)0.7031 (6)0.25596 (14)0.0455 (8)
C160.6360 (2)0.7815 (6)0.26910 (16)0.0531 (8)
H160.67830.70270.25000.064*
C170.6576 (2)0.9791 (6)0.31112 (16)0.0573 (9)
H170.71571.03490.32120.069*
C180.5955 (2)1.0949 (6)0.33833 (16)0.0595 (9)
H180.61171.23050.36630.071*
C190.5100 (2)1.0176 (6)0.32565 (16)0.0560 (9)
H190.46811.09780.34480.067*
C200.4575 (3)0.6668 (10)0.4576 (3)0.1110 (18)
H20A0.44270.83600.44540.133*
H20B0.42960.56350.41980.133*
O60.42711 (19)0.6056 (7)0.51479 (14)0.1018 (11)
C220.4493 (3)0.3649 (12)0.5297 (3)0.155 (3)
H22A0.42170.26170.49190.186*
H22B0.42750.31490.56960.186*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0353 (15)0.068 (2)0.0564 (18)0.0043 (13)0.0138 (13)0.0102 (15)
N50.042 (3)0.062 (3)0.039 (2)0.007 (2)0.009 (2)0.0014 (18)
O1A0.0353 (15)0.068 (2)0.0564 (18)0.0043 (13)0.0138 (13)0.0102 (15)
N5A0.042 (3)0.062 (3)0.039 (2)0.007 (2)0.009 (2)0.0014 (18)
N10.0379 (13)0.0535 (16)0.0418 (14)0.0011 (12)0.0104 (11)0.0027 (13)
N20.0416 (14)0.0578 (17)0.0450 (15)0.0042 (13)0.0081 (11)0.0065 (13)
N30.0394 (13)0.0542 (17)0.0378 (13)0.0035 (12)0.0095 (11)0.0052 (12)
N40.0387 (14)0.0641 (18)0.0424 (14)0.0025 (13)0.0122 (11)0.0115 (13)
C10.0427 (17)0.051 (2)0.0376 (16)0.0041 (15)0.0102 (13)0.0083 (15)
C20.0440 (18)0.057 (2)0.058 (2)0.0012 (16)0.0163 (15)0.0074 (17)
C30.0435 (18)0.066 (2)0.062 (2)0.0022 (17)0.0132 (16)0.0082 (19)
C40.0480 (19)0.063 (2)0.0496 (19)0.0088 (17)0.0157 (15)0.0043 (17)
C50.060 (2)0.056 (2)0.055 (2)0.0002 (17)0.0187 (16)0.0035 (17)
C60.0488 (19)0.059 (2)0.0521 (19)0.0069 (16)0.0157 (15)0.0022 (17)
C70.0431 (17)0.063 (2)0.0383 (17)0.0018 (16)0.0094 (13)0.0092 (16)
C80.0398 (17)0.073 (2)0.056 (2)0.0058 (16)0.0100 (15)0.0081 (18)
C90.0394 (16)0.060 (2)0.0392 (17)0.0029 (15)0.0112 (13)0.0092 (16)
C100.0408 (16)0.054 (2)0.0361 (16)0.0024 (15)0.0092 (13)0.0091 (15)
C110.0417 (16)0.054 (2)0.0365 (16)0.0077 (15)0.0113 (13)0.0096 (15)
C120.0387 (17)0.063 (2)0.0408 (17)0.0066 (16)0.0130 (13)0.0126 (16)
C130.0441 (18)0.067 (2)0.0418 (17)0.0122 (16)0.0145 (14)0.0101 (16)
C140.0556 (19)0.058 (2)0.0350 (16)0.0144 (17)0.0121 (14)0.0073 (16)
C150.0418 (17)0.055 (2)0.0402 (17)0.0032 (15)0.0096 (13)0.0062 (15)
C160.0503 (19)0.061 (2)0.0486 (19)0.0069 (17)0.0123 (15)0.0064 (17)
C170.054 (2)0.065 (2)0.051 (2)0.0013 (18)0.0082 (16)0.0026 (18)
C180.071 (2)0.061 (2)0.0463 (19)0.0031 (19)0.0110 (17)0.0026 (17)
C190.061 (2)0.062 (2)0.0458 (19)0.0103 (18)0.0144 (16)0.0056 (17)
C200.078 (3)0.147 (5)0.113 (4)0.030 (3)0.032 (3)0.062 (4)
O60.089 (2)0.151 (3)0.0728 (18)0.054 (2)0.0329 (16)0.009 (2)
C220.082 (4)0.200 (7)0.191 (6)0.047 (4)0.051 (4)0.130 (6)
Geometric parameters (Å, º) top
O1—N51.390 (4)C8—H8A0.9800
O1—H10.8400C8—H8B0.9800
N5—C131.318 (5)C8—H8C0.9800
O1A—N5A1.392 (12)C9—C101.413 (4)
O1A—H1A0.8402C11—C121.433 (4)
N5A—C131.286 (12)C11—C151.453 (4)
N1—C101.360 (4)C12—C131.464 (4)
N1—N21.389 (3)C13—C141.472 (4)
N1—C11.427 (3)C14—C191.382 (4)
N2—C71.317 (4)C14—C151.414 (4)
N3—C111.331 (4)C15—C161.391 (4)
N3—C101.346 (4)C16—C171.394 (5)
N4—C121.324 (4)C16—H160.9500
N4—C91.351 (4)C17—C181.385 (4)
C1—C61.370 (4)C17—H170.9500
C1—C21.382 (4)C18—C191.389 (5)
C2—C31.389 (4)C18—H180.9500
C2—H20.9500C19—H190.9500
C3—C41.373 (5)C20—O61.398 (5)
C3—H30.9500C20—C22i1.452 (6)
C4—C51.374 (4)C20—H20A0.9900
C4—H40.9500C20—H20B0.9900
C5—C61.382 (4)O6—C221.403 (6)
C5—H50.9500C22—C20i1.452 (6)
C6—H60.9500C22—H22A0.9900
C7—C91.412 (4)C22—H22B0.9900
C7—C81.497 (4)
N5—O1—H195.1N3—C11—C12124.3 (3)
C13—N5—O1110.4 (4)N3—C11—C15127.5 (3)
N5A—O1A—H1A117.7C12—C11—C15108.2 (3)
C13—N5A—O1A97.3 (9)N4—C12—C11123.9 (3)
C10—N1—N2110.3 (2)N4—C12—C13127.9 (3)
C10—N1—C1131.4 (3)C11—C12—C13108.2 (3)
N2—N1—C1118.4 (2)N5A—C13—C12149.3 (6)
C7—N2—N1107.5 (3)N5—C13—C12115.5 (3)
C11—N3—C10111.0 (2)N5A—C13—C14104.2 (6)
C12—N4—C9112.8 (2)N5—C13—C14138.0 (3)
C6—C1—C2120.0 (3)C12—C13—C14106.5 (2)
C6—C1—N1119.0 (3)C19—C14—C15120.5 (3)
C2—C1—N1120.9 (3)C19—C14—C13130.9 (3)
C1—C2—C3118.9 (3)C15—C14—C13108.6 (3)
C1—C2—H2120.6C16—C15—C14120.8 (3)
C3—C2—H2120.6C16—C15—C11130.6 (3)
C4—C3—C2121.4 (3)C14—C15—C11108.6 (3)
C4—C3—H3119.3C15—C16—C17118.0 (3)
C2—C3—H3119.3C15—C16—H16121.0
C3—C4—C5118.9 (3)C17—C16—H16121.0
C3—C4—H4120.6C18—C17—C16120.8 (3)
C5—C4—H4120.6C18—C17—H17119.6
C4—C5—C6120.5 (3)C16—C17—H17119.6
C4—C5—H5119.8C17—C18—C19121.6 (3)
C6—C5—H5119.8C17—C18—H18119.2
C1—C6—C5120.4 (3)C19—C18—H18119.2
C1—C6—H6119.8C14—C19—C18118.3 (3)
C5—C6—H6119.8C14—C19—H19120.9
N2—C7—C9109.9 (3)C18—C19—H19120.9
N2—C7—C8121.4 (3)O6—C20—C22i109.5 (4)
C9—C7—C8128.6 (3)O6—C20—H20A109.8
C7—C8—H8A109.5C22i—C20—H20A109.8
C7—C8—H8B109.5O6—C20—H20B109.8
H8A—C8—H8B109.5C22i—C20—H20B109.8
C7—C8—H8C109.5H20A—C20—H20B108.2
H8A—C8—H8C109.5C20—O6—C22107.6 (4)
H8B—C8—H8C109.5O6—C22—C20i110.7 (5)
N4—C9—C7131.5 (3)O6—C22—H22A109.5
N4—C9—C10122.4 (3)C20i—C22—H22A109.5
C7—C9—C10106.1 (3)O6—C22—H22B109.5
N3—C10—N1128.2 (3)C20i—C22—H22B109.5
N3—C10—C9125.6 (3)H22A—C22—H22B108.1
N1—C10—C9106.2 (3)
C10—N1—N2—C70.9 (3)C15—C11—C12—N4179.8 (3)
C1—N1—N2—C7178.2 (2)N3—C11—C12—C13179.6 (3)
C10—N1—C1—C6176.7 (3)C15—C11—C12—C130.5 (3)
N2—N1—C1—C64.5 (4)O1A—N5A—C13—C120 (2)
C10—N1—C1—C24.3 (5)O1A—N5A—C13—C14179.8 (8)
N2—N1—C1—C2174.6 (3)O1—N5—C13—C12177.9 (3)
C6—C1—C2—C30.2 (5)O1—N5—C13—C140.6 (6)
N1—C1—C2—C3178.8 (3)N4—C12—C13—N5A0.6 (15)
C1—C2—C3—C40.2 (5)C11—C12—C13—N5A179.8 (14)
C2—C3—C4—C50.1 (5)N4—C12—C13—N52.7 (5)
C3—C4—C5—C60.1 (5)C11—C12—C13—N5177.7 (3)
C2—C1—C6—C50.1 (5)N4—C12—C13—C14179.2 (3)
N1—C1—C6—C5179.0 (3)C11—C12—C13—C140.4 (3)
C4—C5—C6—C10.0 (5)N5A—C13—C14—C190.2 (8)
N1—N2—C7—C90.5 (3)N5—C13—C14—C192.6 (7)
N1—N2—C7—C8179.4 (3)C12—C13—C14—C19180.0 (3)
C12—N4—C9—C7176.7 (3)N5A—C13—C14—C15178.9 (7)
C12—N4—C9—C101.9 (4)N5—C13—C14—C15176.2 (4)
N2—C7—C9—N4178.8 (3)C12—C13—C14—C151.2 (3)
C8—C7—C9—N40.0 (5)C19—C14—C15—C160.4 (4)
N2—C7—C9—C100.1 (3)C13—C14—C15—C16178.5 (3)
C8—C7—C9—C10178.8 (3)C19—C14—C15—C11179.5 (3)
C11—N3—C10—N1178.0 (3)C13—C14—C15—C111.6 (3)
C11—N3—C10—C90.1 (4)N3—C11—C15—C160.3 (5)
N2—N1—C10—N3177.4 (3)C12—C11—C15—C16178.8 (3)
C1—N1—C10—N33.6 (5)N3—C11—C15—C14179.6 (3)
N2—N1—C10—C91.0 (3)C12—C11—C15—C141.3 (3)
C1—N1—C10—C9178.0 (3)C14—C15—C16—C170.0 (4)
N4—C9—C10—N31.1 (5)C11—C15—C16—C17179.9 (3)
C7—C9—C10—N3177.8 (3)C15—C16—C17—C180.7 (5)
N4—C9—C10—N1179.5 (3)C16—C17—C18—C190.8 (5)
C7—C9—C10—N10.6 (3)C15—C14—C19—C180.2 (4)
C10—N3—C11—C120.2 (4)C13—C14—C19—C18178.4 (3)
C10—N3—C11—C15178.7 (3)C17—C18—C19—C140.4 (5)
C9—N4—C12—C111.8 (4)C22i—C20—O6—C2259.7 (7)
C9—N4—C12—C13178.7 (3)C20—O6—C22—C20i60.4 (7)
N3—C11—C12—N40.8 (5)
Symmetry code: (i) x+1, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···N4ii0.842.042.878 (3)172
O1a—H1a···N4ii0.841.942.749 (5)162
Symmetry code: (ii) x+1/2, y+1/2, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···N4i0.842.042.878 (3)172
O1a—H1a···N4i0.841.942.749 (5)162
Symmetry code: (i) x+1/2, y+1/2, z+1/2.
 

Acknowledgements

The support of NSF–MRI grant No. 1228232 for the purchase of the diffractometer and Tulane University for support of the Tulane Crystallography Laboratory are gratefully acknowledged.

References

First citationAskew, B. C., McIntyre, C. J., Hunt, C. A., Claremon, D. A., Baldwin, J. J., Anderson, P. S., Gould, R. J., Lynch, R. J., Chang, C. C.-T., Cook, J. J., Lynch, J. J., Holahan, M. A., Sitko, G. R. & Stranieri, M. T. (1997). Bioorg. Med. Chem. Lett. 7, 1531–1536.  CrossRef CAS Google Scholar
First citationBrandenburg, K. & Putz, H. (2012). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2014). APEX2, SAINT and SADABS. Bruker AXS, Inc., Madison, Wisconsin, USA.  Google Scholar
First citationMague, J. T., Mohamed, S. K., Akkurt, M., El-Kashef, H. M. S. & Albayati, M. R. (2014). Acta Cryst. E70, o1244–o1245.  CSD CrossRef IUCr Journals Google Scholar
First citationNyeki, O., Nogradi, K., Chongor, E.-A., Bartane, S. G., Domany, G., Demeter, A., Galaambos, J., Gizur, T., Kassai, F., Kiss, C., Rill, A., Schoen, I., Trischler, F., Torey, J., Kyotani, Y. & Yokoyama, A. (2002). Chem. Abstr. 137, 232907.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWehner, V., Stilz, H.-U., Peyman, A., Knolle, J., Ruxer, J.-M., Carniato, D., Lefrancois, J.-M., Gadek, T. R. & McDowell, R. (1998). Chem. Abstr. 129, 81970.  Google Scholar
First citationZimmerman, W. T. (1995). Chem. Abstr. 122, 49104.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 71| Part 2| February 2015| Pages o75-o76
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds