organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 71| Part 2| February 2015| Pages o101-o102

Crystal structure of iso­butyl 4-(2-chloro­phen­yl)-5-cyano-6-{(E)-[(di­methyl­amino)­methyl­­idene]amino}-2-methyl-4H-pyran-3-carboxyl­ate

aDepartment of Physics, Shri Angalamman College of Engineering and Technology, Siruganoor, Tiruchirappalli, India, bDepartment of Chemistry, Annamalai University, Annamalainagar, Chidambaram, India, cDepartment of chemistry, Urumu Dhanalakshmi College, Tiruchirappalli, 620 019, India, and dDepartment of Physics, Urumu Dhanalakshmi College, Tiruchirappalli, 620 019, India
*Correspondence e-mail: sakthi2udc@gmail.com

Edited by W. T. A. Harrison, University of Aberdeen, Scotland (Received 15 December 2014; accepted 3 January 2015; online 10 January 2015)

In the title compound, C21H24ClN3O3, the dihedral angle between the pyran ring (r.m.s. deviation = 0.037 Å) and the chloro­benzene ring is 88.56 (14)°. In the crystal, the mol­ecules are linked by C—H⋯O inter­actions, generating C(7) (001) chains.

1. Related literature

For the biological activities of pyran derivatives, see: Kitamura et al. (2006[Kitamura, R. O. S., Romoff, P., Young, M. C. M., Kato, M. J. & Lago, J. H. G. (2006). Phytochemistry, 67, 2398-2402.]); Tangmouo et al. (2006[Tangmouo, J. G., Meli, A. L., Komguem, J., Kuete, V., Ngounou, F. N., Lontsi, D., Beng, V. P., Choudhary, M. I. & Sondengam, B. L. (2006). Tetrahedron Lett. 47, 3067-3070.]); Cocco et al. (2003[Cocco, M. T., Congiu, C. & Onnis, V. (2003). Bioorg. Med. Chem. 11, 495-503.]). For related structures, see: Park et al. (2012a[Park, D. H., Ramkumar, V. & Parthiban, P. (2012a). Acta Cryst. E68, o524.],b[Park, D. H., Ramkumar, V. & Parthiban, P. (2012b). Acta Cryst. E68, o525.]).

[Scheme 1]

2. Experimental

2.1. Crystal data

  • C21H24ClN3O3

  • Mr = 401.88

  • Monoclinic, P 21 /c

  • a = 15.6836 (16) Å

  • b = 15.2523 (13) Å

  • c = 9.3283 (8) Å

  • β = 105.016 (2)°

  • V = 2155.2 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.20 mm−1

  • T = 293 K

  • 0.28 × 0.26 × 0.25 mm

2.2. Data collection

  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2008[Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.985, Tmax = 0.989

  • 28118 measured reflections

  • 5524 independent reflections

  • 3062 reflections with I > 2σ(I)

  • Rint = 0.037

2.3. Refinement

  • R[F2 > 2σ(F2)] = 0.061

  • wR(F2) = 0.217

  • S = 1.00

  • 5524 reflections

  • 258 parameters

  • H-atom parameters constrained

  • Δρmax = 0.60 e Å−3

  • Δρmin = −0.44 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C17—H17⋯O2i 0.93 2.46 3.3368 157
Symmetry code: (i) [x, -y+{\script{1\over 2}}, z-{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2008[Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2008[Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

2-Amino-4H-Pyran derivatives are an important class of heterocycles, which have considerable interest due to their useful biological properties including antimicrobial (Kitamura et al. 2006), antifungal (Tangmouo et al. 2006) and cancer therapy (Cocco et al. 2003).

The torsion angles of C8/C11/O3/C12 and N1/N2/C4/C5 are -178.75° and 177.08° respectively.

The bond distances and bond angles in the title compound agree very well with the corresponding values reported in closely related compound. (Park et al.2012(a,b)).

The crystal packing features C17—H17···O2 hydrogen bonds, which generate C(7)chains running parallel to the c axis.

Related literature top

For the biological activities of pyran derivatives, see: Kitamura et al. (2006); Tangmouo et al. (2006); Cocco et al. (2003). For related structures, see: Park et al. (2012a,b).

Experimental top

Isobutyl 6-amino-4-(2-chlorophenyl)-5-cyano-2-methyl-4H-pyran-3-carboxylate (1 mmol) and K2CO3 (1.2 equivalent) were stirred in dry DMF for 15 min in ice cold condition. Then, benzene-1,3,5-tricarbonyl trichloride (1 mmol) was added and stirred for an additional 25 min. After completion of the reaction, addition of water (50 ml), resulted the precipitate which was collected by filtration and washed with a large portion of cold water. The crude product thus collected was recrystallized from ethanol to yield colourless blocks.

Refinement top

The positions of the hydrogen atoms bound to the O and C atoms are identified from the difference electron density maps and their distances are geometrically optimized. The H atoms associated with the hydroxyl groups are constrained to a distance of d(O—H) = 0.82 Å; and Uiso(H) = 1.5Ueq(O). The hydrogen atoms bound to the C atoms are treated as riding atoms, with d(C—H)=0.93 and Uiso(H) = 1.2Ueq(C) for aromatic, d(C—H)=0.97 and Uiso(H)=1.2Ueq(C) for methylene and d(C—H)=0.96 and Uiso(H) =1.5Ueq(C) for methyl groups.

Computing details top

Data collection: APEX2 (Bruker, 2008); cell refinement: SAINT (Bruker, 2008); data reduction: SAINT (Bruker, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and Mercury (Macrae et al., 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with displacement ellipsoids drawn at 30% probability level.
[Figure 2] Fig. 2. Part of crystal packing of the title compound showing the formation of C(7) chains running parallel to c axis.
Isobutyl 4-(2-chlorophenyl)-5-cyano-6-{(E)-[(dimethylamino)methylidene]amino}-2-methyl-4H-pyran-3-carboxylate top
Crystal data top
C21H24ClN3O3F(000) = 848
Mr = 401.88Dx = 1.239 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 15.6836 (16) ÅCell parameters from 3064 reflections
b = 15.2523 (13) Åθ = 1.3–29.7°
c = 9.3283 (8) ŵ = 0.20 mm1
β = 105.016 (2)°T = 293 K
V = 2155.2 (3) Å3Block, colourless
Z = 40.28 × 0.26 × 0.25 mm
Data collection top
Bruker APEXII CCD
diffractometer
5524 independent reflections
Radiation source: fine-focus sealed tube3062 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.037
ω & ϕ scansθmax = 29.7°, θmin = 2.6°
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
h = 2121
Tmin = 0.985, Tmax = 0.989k = 2020
28118 measured reflectionsl = 1212
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.061Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.217H-atom parameters constrained
S = 1.00 w = 1/[σ2(Fo2) + (0.1039P)2 + 1.1568P]
where P = (Fo2 + 2Fc2)/3
5524 reflections(Δ/σ)max = 0.033
258 parametersΔρmax = 0.60 e Å3
0 restraintsΔρmin = 0.44 e Å3
Crystal data top
C21H24ClN3O3V = 2155.2 (3) Å3
Mr = 401.88Z = 4
Monoclinic, P21/cMo Kα radiation
a = 15.6836 (16) ŵ = 0.20 mm1
b = 15.2523 (13) ÅT = 293 K
c = 9.3283 (8) Å0.28 × 0.26 × 0.25 mm
β = 105.016 (2)°
Data collection top
Bruker APEXII CCD
diffractometer
5524 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
3062 reflections with I > 2σ(I)
Tmin = 0.985, Tmax = 0.989Rint = 0.037
28118 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0610 restraints
wR(F2) = 0.217H-atom parameters constrained
S = 1.00Δρmax = 0.60 e Å3
5524 reflectionsΔρmin = 0.44 e Å3
258 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.3162 (2)0.1810 (2)0.0790 (4)0.0762 (10)
H1A0.33710.23620.03390.114*
H1B0.25460.17480.08430.114*
H1C0.32470.17880.17720.114*
C20.3449 (2)0.0213 (2)0.0425 (4)0.0722 (10)
H2A0.39280.00150.07790.108*
H2B0.29180.02080.12160.108*
H2C0.33700.01450.03780.108*
C30.42724 (17)0.12629 (16)0.1321 (3)0.0441 (6)
H30.43940.18400.16290.053*
C40.53764 (16)0.08439 (15)0.3322 (3)0.0380 (5)
C50.58829 (15)0.02517 (15)0.4233 (3)0.0381 (5)
C60.57139 (17)0.06580 (16)0.3917 (3)0.0439 (6)
C70.66429 (15)0.04929 (15)0.5534 (3)0.0378 (5)
H70.65490.02200.64320.045*
C80.66744 (16)0.14771 (16)0.5739 (3)0.0406 (6)
C90.61304 (16)0.20215 (16)0.4809 (3)0.0421 (6)
C100.6059 (2)0.29947 (17)0.4866 (4)0.0579 (8)
H10A0.60890.31740.58640.087*
H10B0.55060.31790.42220.087*
H10C0.65350.32580.45480.087*
C110.73241 (19)0.18383 (19)0.7044 (3)0.0515 (7)
C120.8380 (2)0.1463 (3)0.9286 (3)0.0742 (10)
H12A0.81750.19970.96520.089*
H12B0.84110.10131.00320.089*
C130.9252 (3)0.1612 (4)0.9120 (5)0.1227 (19)
H130.92040.21770.86060.147*
C140.9880 (3)0.1800 (5)1.0641 (6)0.164 (3)
H14A0.99000.13001.12750.246*
H14B0.96740.23011.10740.246*
H14C1.04610.19151.05270.246*
C150.9634 (3)0.1055 (4)0.8250 (6)0.134 (2)
H15A0.96100.04590.85710.202*
H15B1.02380.12210.83610.202*
H15C0.93140.11050.72260.202*
C160.74957 (16)0.01276 (16)0.5256 (3)0.0393 (5)
C170.78475 (18)0.0516 (2)0.4190 (3)0.0512 (7)
H170.75850.10190.37060.061*
C180.8583 (2)0.0169 (3)0.3838 (4)0.0713 (9)
H180.88140.04400.31290.086*
C190.8970 (2)0.0578 (3)0.4536 (4)0.0779 (11)
H190.94570.08170.42840.094*
C200.8647 (2)0.0972 (2)0.5595 (4)0.0667 (9)
H200.89110.14770.60680.080*
C210.79209 (18)0.06106 (17)0.5962 (3)0.0473 (6)
N10.36500 (16)0.11034 (14)0.0093 (3)0.0509 (6)
N20.47213 (14)0.06290 (13)0.2112 (2)0.0424 (5)
N30.56164 (18)0.13952 (16)0.3724 (3)0.0672 (7)
O10.55106 (12)0.17257 (11)0.3586 (2)0.0477 (5)
O20.74819 (18)0.26007 (15)0.7309 (3)0.0899 (9)
O30.77370 (14)0.11992 (14)0.7944 (2)0.0611 (6)
Cl0.75622 (6)0.11215 (5)0.73714 (9)0.0711 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.081 (2)0.0587 (19)0.072 (2)0.0163 (17)0.0101 (18)0.0144 (16)
C20.082 (2)0.0533 (18)0.065 (2)0.0039 (16)0.0092 (17)0.0108 (15)
C30.0434 (14)0.0369 (12)0.0510 (15)0.0010 (11)0.0101 (12)0.0006 (11)
C40.0383 (12)0.0324 (11)0.0448 (13)0.0027 (10)0.0137 (11)0.0002 (10)
C50.0380 (12)0.0329 (12)0.0443 (13)0.0017 (10)0.0122 (10)0.0007 (10)
C60.0420 (13)0.0377 (13)0.0485 (14)0.0014 (11)0.0054 (11)0.0003 (11)
C70.0397 (13)0.0356 (12)0.0376 (12)0.0014 (10)0.0091 (10)0.0011 (10)
C80.0416 (13)0.0394 (13)0.0425 (13)0.0029 (10)0.0143 (11)0.0086 (11)
C90.0432 (13)0.0375 (12)0.0475 (14)0.0029 (10)0.0155 (11)0.0062 (11)
C100.0623 (18)0.0346 (13)0.077 (2)0.0009 (12)0.0180 (16)0.0100 (13)
C110.0519 (16)0.0524 (16)0.0514 (15)0.0016 (13)0.0155 (13)0.0158 (13)
C120.067 (2)0.103 (3)0.0459 (17)0.0102 (19)0.0028 (15)0.0148 (18)
C130.073 (3)0.203 (6)0.083 (3)0.002 (3)0.003 (2)0.047 (3)
C140.078 (3)0.288 (9)0.105 (4)0.023 (4)0.012 (3)0.078 (5)
C150.090 (3)0.197 (6)0.117 (4)0.002 (4)0.027 (3)0.057 (4)
C160.0407 (13)0.0389 (12)0.0366 (12)0.0036 (10)0.0067 (10)0.0060 (10)
C170.0481 (15)0.0588 (17)0.0477 (15)0.0009 (13)0.0142 (12)0.0013 (13)
C180.0573 (19)0.102 (3)0.0607 (19)0.0026 (19)0.0263 (16)0.0055 (19)
C190.0530 (19)0.107 (3)0.076 (2)0.0185 (19)0.0200 (17)0.019 (2)
C200.0556 (18)0.068 (2)0.070 (2)0.0194 (15)0.0043 (16)0.0088 (17)
C210.0467 (14)0.0450 (14)0.0462 (14)0.0031 (11)0.0049 (11)0.0036 (11)
N10.0532 (13)0.0436 (12)0.0497 (13)0.0018 (10)0.0022 (11)0.0034 (10)
N20.0418 (11)0.0361 (11)0.0463 (12)0.0006 (9)0.0059 (9)0.0008 (9)
N30.0719 (17)0.0366 (13)0.0837 (19)0.0026 (12)0.0030 (14)0.0057 (12)
O10.0537 (11)0.0324 (9)0.0525 (10)0.0020 (8)0.0056 (8)0.0006 (8)
O20.0990 (19)0.0523 (13)0.0964 (18)0.0006 (12)0.0142 (15)0.0325 (12)
O30.0618 (12)0.0690 (14)0.0450 (11)0.0063 (10)0.0002 (9)0.0074 (10)
Cl0.0811 (6)0.0592 (5)0.0707 (5)0.0063 (4)0.0155 (4)0.0217 (4)
Geometric parameters (Å, º) top
C1—N11.448 (4)C11—O21.201 (3)
C1—H1A0.9600C11—O31.339 (4)
C1—H1B0.9600C12—C131.433 (6)
C1—H1C0.9600C12—O31.447 (3)
C2—N11.449 (4)C12—H12A0.9700
C2—H2A0.9600C12—H12B0.9700
C2—H2B0.9600C13—C151.411 (7)
C2—H2C0.9600C13—C141.531 (6)
C3—N21.306 (3)C13—H130.9800
C3—N11.321 (3)C14—H14A0.9600
C3—H30.9300C14—H14B0.9600
C4—C51.349 (3)C14—H14C0.9600
C4—N21.355 (3)C15—H15A0.9600
C4—O11.374 (3)C15—H15B0.9600
C5—C61.429 (3)C15—H15C0.9600
C5—C71.510 (3)C16—C211.385 (4)
C6—N31.143 (3)C16—C171.389 (4)
C7—C81.513 (3)C17—C181.385 (4)
C7—C161.532 (3)C17—H170.9300
C7—H70.9800C18—C191.373 (5)
C8—C91.337 (4)C18—H180.9300
C8—C111.476 (4)C19—C201.361 (5)
C9—O11.370 (3)C19—H190.9300
C9—C101.491 (4)C20—C211.385 (4)
C10—H10A0.9600C20—H200.9300
C10—H10B0.9600C21—Cl1.742 (3)
C10—H10C0.9600
N1—C1—H1A109.5C13—C12—H12B108.5
N1—C1—H1B109.5O3—C12—H12B108.5
H1A—C1—H1B109.5H12A—C12—H12B107.5
N1—C1—H1C109.5C15—C13—C12121.7 (5)
H1A—C1—H1C109.5C15—C13—C14112.2 (5)
H1B—C1—H1C109.5C12—C13—C14109.4 (4)
N1—C2—H2A109.5C15—C13—H13103.8
N1—C2—H2B109.5C12—C13—H13103.8
H2A—C2—H2B109.5C14—C13—H13103.8
N1—C2—H2C109.5C13—C14—H14A109.5
H2A—C2—H2C109.5C13—C14—H14B109.5
H2B—C2—H2C109.5H14A—C14—H14B109.5
N2—C3—N1121.5 (2)C13—C14—H14C109.5
N2—C3—H3119.2H14A—C14—H14C109.5
N1—C3—H3119.2H14B—C14—H14C109.5
C5—C4—N2124.0 (2)C13—C15—H15A109.5
C5—C4—O1120.3 (2)C13—C15—H15B109.5
N2—C4—O1115.7 (2)H15A—C15—H15B109.5
C4—C5—C6118.2 (2)C13—C15—H15C109.5
C4—C5—C7123.8 (2)H15A—C15—H15C109.5
C6—C5—C7117.9 (2)H15B—C15—H15C109.5
N3—C6—C5176.4 (3)C21—C16—C17117.1 (2)
C5—C7—C8109.67 (19)C21—C16—C7123.3 (2)
C5—C7—C16108.51 (19)C17—C16—C7119.5 (2)
C8—C7—C16112.41 (19)C18—C17—C16121.1 (3)
C5—C7—H7108.7C18—C17—H17119.5
C8—C7—H7108.7C16—C17—H17119.5
C16—C7—H7108.7C19—C18—C17119.9 (3)
C9—C8—C11119.4 (2)C19—C18—H18120.1
C9—C8—C7122.7 (2)C17—C18—H18120.1
C11—C8—C7117.9 (2)C20—C19—C18120.5 (3)
C8—C9—O1122.2 (2)C20—C19—H19119.7
C8—C9—C10129.5 (2)C18—C19—H19119.7
O1—C9—C10108.3 (2)C19—C20—C21119.2 (3)
C9—C10—H10A109.5C19—C20—H20120.4
C9—C10—H10B109.5C21—C20—H20120.4
H10A—C10—H10B109.5C20—C21—C16122.1 (3)
C9—C10—H10C109.5C20—C21—Cl117.1 (2)
H10A—C10—H10C109.5C16—C21—Cl120.8 (2)
H10B—C10—H10C109.5C3—N1—C1121.2 (2)
O2—C11—O3122.4 (3)C3—N1—C2120.6 (2)
O2—C11—C8126.3 (3)C1—N1—C2118.1 (2)
O3—C11—C8111.3 (2)C3—N2—C4118.2 (2)
C13—C12—O3114.9 (3)C9—O1—C4120.97 (19)
C13—C12—H12A108.5C11—O3—C12117.1 (3)
O3—C12—H12A108.5
N2—C4—C5—C60.7 (4)C5—C7—C16—C1772.4 (3)
O1—C4—C5—C6179.6 (2)C8—C7—C16—C1749.1 (3)
N2—C4—C5—C7176.7 (2)C21—C16—C17—C181.0 (4)
O1—C4—C5—C73.0 (4)C7—C16—C17—C18175.6 (3)
C4—C5—C6—N3175 (5)C16—C17—C18—C190.7 (5)
C7—C5—C6—N33 (5)C17—C18—C19—C201.2 (5)
C4—C5—C7—C86.1 (3)C18—C19—C20—C210.0 (5)
C6—C5—C7—C8176.4 (2)C19—C20—C21—C161.8 (5)
C4—C5—C7—C16117.0 (3)C19—C20—C21—Cl177.8 (3)
C6—C5—C7—C1660.5 (3)C17—C16—C21—C202.3 (4)
C5—C7—C8—C94.2 (3)C7—C16—C21—C20174.2 (2)
C16—C7—C8—C9116.6 (3)C17—C16—C21—Cl177.3 (2)
C5—C7—C8—C11174.5 (2)C7—C16—C21—Cl6.3 (3)
C16—C7—C8—C1164.7 (3)N2—C3—N1—C1179.2 (3)
C11—C8—C9—O1179.6 (2)N2—C3—N1—C20.5 (4)
C7—C8—C9—O10.9 (4)N1—C3—N2—C4177.1 (2)
C11—C8—C9—C100.3 (4)C5—C4—N2—C3179.5 (2)
C7—C8—C9—C10178.4 (3)O1—C4—N2—C30.8 (3)
C9—C8—C11—O27.4 (5)C8—C9—O1—C45.0 (4)
C7—C8—C11—O2173.9 (3)C10—C9—O1—C4174.5 (2)
C9—C8—C11—O3172.5 (2)C5—C4—O1—C93.0 (3)
C7—C8—C11—O36.3 (3)N2—C4—O1—C9177.3 (2)
O3—C12—C13—C1541.0 (7)O2—C11—O3—C121.1 (4)
O3—C12—C13—C14174.6 (5)C8—C11—O3—C12178.7 (2)
C5—C7—C16—C21104.0 (3)C13—C12—O3—C1186.1 (5)
C8—C7—C16—C21134.5 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C17—H17···O2i0.932.463.3368157
Symmetry code: (i) x, y+1/2, z1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C17—H17···O2i0.932.463.3368157
Symmetry code: (i) x, y+1/2, z1/2.
 

Acknowledgements

The authors thank Dr Babu Varghese, Senior Scientific Officer SAIF, IIT Madras, India, for carrying out the data collection.

References

First citationBruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCocco, M. T., Congiu, C. & Onnis, V. (2003). Bioorg. Med. Chem. 11, 495–503.  Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationPark, D. H., Ramkumar, V. & Parthiban, P. (2012a). Acta Cryst. E68, o524.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationPark, D. H., Ramkumar, V. & Parthiban, P. (2012b). Acta Cryst. E68, o525.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationKitamura, R. O. S., Romoff, P., Young, M. C. M., Kato, M. J. & Lago, J. H. G. (2006). Phytochemistry, 67, 2398–2402.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTangmouo, J. G., Meli, A. L., Komguem, J., Kuete, V., Ngounou, F. N., Lontsi, D., Beng, V. P., Choudhary, M. I. & Sondengam, B. L. (2006). Tetrahedron Lett. 47, 3067–3070.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 71| Part 2| February 2015| Pages o101-o102
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds