organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 71| Part 2| February 2015| Pages o84-o85

Crystal structure of azilsartan methyl ester ethyl acetate hemisolvate

aJiangsu Key Laboratory of Advanced Catalytic Materials and Technology, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, Jiangsu, People's Republic of China, and bChangzhou Siyao Pharmaceuticals Co., Ltd, Changzhou 213000, Jiangsu, People's Republic of China
*Correspondence e-mail: sunxiaoqiang@yahoo.com

Edited by W. T. A. Harrison, University of Aberdeen, Scotland (Received 21 December 2014; accepted 24 December 2014; online 3 January 2015)

The title compound, C26H22N4O5 (systematic name: methyl 2-eth­oxy-1-{4-[2-(5-oxo-4,5-di­hydro-1,2,4-oxa­diazol-3-yl)phenyl]benz­yl}-1H-1,3-benzo­diazole-7-carboxyl­ate ethyl acetate hemisolvate), was obtained via cyclization of methyl (Z)-2-eth­oxy-1-{(2′-(N′-hy­droxy­carbamimido­yl)-[1,1′-biphen­yl]-4-yl)meth­yl}-1H-benzo[d]imidazole-7-carboxyl­ate with diphen­yl carbonate. There are two independent mol­ecules (A and B) with different conformations and an ethyl acetate solvent mol­ecule in the asymmetric unit. In mol­ecule A, the dihedral angle between the benzene ring and its attached oxa­diazole ring is 59.36 (17); the dihedral angle between the benzene rings is 43.89 (15) and that between the benzene ring and its attached imidazole ring system is 80.06 (11)°. The corres­ponding dihedral angles in mol­ecule B are 58.45 (18), 50.73 (16) and 85.37 (10)°, respectively. The C—O—C—Cm (m = meth­yl) torsion angles for the eth­oxy side chains attached to the imidazole rings in mol­ecules A and B are 93.9 (3) and −174.6 (3)°, respectively. In the crystal, the components are linked by N—H⋯N and C—H⋯O hydrogen bonds, generating a three-dimensional network. Aromatic ππ stacking inter­actions [shortest centroid–centroid separation = 3.536 (3)Å] are also observed.

1. Related literature

For general background to azilsartan, an angiotensin II type 1 (AT1) receptor blocker (ARB) having a perfect anti­hypertensive effect, see: Michel et al. (2013[Michel, M. C., Foster, C., Brunner, H. R. & Liu, L. (2013). Pharmacol. Rev. 65, 809-848.]); Weltman et al. (2012[Weltman, R., Brands, C. M. J., Corral, E., Desmares-Koopmans, M. J. E., Migchielsen, M. H. J., Oudhoff, K. A. & de Roode, D. F. (2012). Chemosphere, 87, 1323-1329.]); Ojima et al. (2011[Ojima, M., Igata, H., Tanaka, M., Sakamoto, H., Kuroita, T., Kohara, Y., Kubo, K., Fuse, H., Imura, Y., Kusumoto, K. & Nagaya, H. (2011). J. Pharmacol. Exp. Ther. 336, 801-808.]). For the synthesis of azilsartan methyl ester, the key synthetic inter­mediate of azilsartan, see: Kohara et al. (1996[Kohara, Y., Kubo, K., Imamiya, E., Wada, T., Inada, Y. & Naka, T. (1996). J. Med. Chem. 39, 5228-5235.]); Rádl et al. (2013[Rádl, S., Černý, J., Stach, J. & Gablíková, Z. (2013). Org. Process Res. Dev. 17, 77-86.]).

[Scheme 1]

2. Experimental

2.1. Crystal data

  • 2C26H22N4O5·C4H8O2

  • Mr = 1029.06

  • Triclinic, [P \overline 1]

  • a = 13.662 (5) Å

  • b = 14.928 (6) Å

  • c = 15.356 (10) Å

  • α = 95.459 (11)°

  • β = 106.226 (11)°

  • γ = 116.524 (8)°

  • V = 2601 (2) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 293 K

  • 0.25 × 0.20 × 0.18 mm

2.2. Data collection

  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.977, Tmax = 0.983

  • 14182 measured reflections

  • 9024 independent reflections

  • 6365 reflections with I > 2σ(I)

  • Rint = 0.030

2.3. Refinement

  • R[F2 > 2σ(F2)] = 0.064

  • wR(F2) = 0.221

  • S = 1.01

  • 9024 reflections

  • 699 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.55 e Å−3

  • Δρmin = −0.28 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N5—H5A⋯N4i 1.01 1.85 2.862 (3) 176
N7—H7⋯N2i 0.90 2.01 2.905 (3) 173
C12—H12A⋯O5ii 0.97 2.58 3.421 (4) 145
C30—H30⋯O9iii 0.93 2.58 3.484 (3) 163
Symmetry codes: (i) -x, -y+1, -z+1; (ii) -x, -y, -z+1; (iii) x-1, y-1, z.

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Azilsartan (TAK-536) as an angiotensin II type 1 (AT1) receptor blocker (ARB) has perfect antihypertensive effect (Ojima et al., 2011; Michel et al., 2013; Weltman et al., 2012). Azilsartan methyl ester, as the key synthetic intermediate of azilsartan has being paid widely attention. Although the synthesis of azilsartan methyl ester has been descripted in many literatures (Kohara et al., 1996; Rádl et al., 2013), there was no particular work on the structural characterization involving crystal structure. We herein present the crystal structure of methyl 2-ethoxy-1-((2'-(5-oxo-4,5-dihydro-1,2,4-oxadiazol-3-yl) -[1,1'-biphenyl]-4-yl)methyl)-1H-benzo[d]imidazole-7- carboxylate (I).

In the molecular structure (Fig. 1), there are two independent title molecules with different conformations and an ethyl acetate solvent molecule to form the minimum repeat unit of the crystal. The dihedral angles between the two phenyl rings (C38–C43 with C44–C49; C13–C18 with C19–C24) of phenylbenzenes are 50.7 (2)° and 43.9 (1)°, respectively. The new constructed 5-oxo-1,2,4-oxadiazole heterocycle (N5–C26–O4–N6–C25 or N7–C51–O10–N8–C50) adopts a planer structure. In the packing structure (Fig. 2), the two different title compound molecules formed a dimer through two intermolecular N–H···N hydrogen bond (N5–H5A···N4 and N7–H7···N2) between the imidazole rings and 5-oxo-1,2,4-oxadiazole rings. Then intermolecular ππ stacking (Cg1···Cg2i, 3.62 (2) Å, symmetry codes: (i), -x, 1 - y, 1 - z. Cg1 and Cg2 are the centroids of the N3–C33–C32–N4–C34 and C28–C33 rings, respectively) between the two benzo[d]imidazole rings and C–H···O weak interactions (C12–H12A···O5 and C30–H30···O9) link the adjacent dimers.

Related literature top

For general background to azilsartan, an angiotensin II type 1 (AT1) receptor blocker (ARB) having a perfect antihypertensive effect, see: Michel et al. (2013); Weltman et al. (2012); Ojima et al. (2011). For the synthesis of azilsartan methyl ester, the key synthetic intermediate of azilsartan, see: Kohara et al. (1996); Rádl et al. (2013).

Experimental top

A mixture of methyl (Z)-2-ethoxy-1-((2'-(N'-hydroxycarbamimidoyl) -[1,1'-biphenyl]-4-yl)methyl)-1H-benzo[d]imidazole-7-carboxylate (6 g, 13.5 mmol), diphenyl carbonate (4.34 g, 20.25 mmol) and K2CO3 (2.8 g, 20.25 mmol) in DMSO (150 ml) was stirred at room temperature for 5 h. After the reaction, the mixture was poured into water (400 ml) and the insoluble portion was filtered off. The aqueous solution was acidified with 1 N HCl to PH = 3–4, and the formed precipitate was filtered off, washed with sodium carbonate solution, and dried in vacuo to afford a white solid (5.28 g, 83% yield, m.p. 468–470 K). Colourless blocks were obtained by slow evaporation of an ethyl acetate solution at room temperature.

Refinement top

All the H bonded to C atoms were placed in geometrically idealized positions and constrained to ride on their parent atoms, with C—H distances of 0.93–0.97 Å, and with Uiso(H) = 1.2–1.5Ueq(C). All the H on N atoms were located in a differences Fourier map and refined isotropically.

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound. Displacement ellipsoids are drawn at the 30% probability level. All H atoms have been omitted for clarity.
[Figure 2] Fig. 2. Crystal packing of (I). Hydrogen bonds are shown as dashed lines.
Methyl 2-ethoxy-1-{4-[2-(5-oxo-4,5-dihydro-1,2,4-oxadiazol-3-yl)phenyl]benzyl}-1H-1,3-benzodiazole-7-carboxylate ethyl acetate hemisolvate top
Crystal data top
C26H22N4O5·0.5C4H8O2Z = 4
Mr = 514.53F(000) = 1080
Triclinic, P1Dx = 1.314 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 13.662 (5) ÅCell parameters from 5677 reflections
b = 14.928 (6) Åθ = 2.4–28.3°
c = 15.356 (10) ŵ = 0.09 mm1
α = 95.459 (11)°T = 293 K
β = 106.226 (11)°BLOCK, colorless
γ = 116.524 (8)°0.25 × 0.20 × 0.18 mm
V = 2601 (2) Å3
Data collection top
Bruker APEXII CCD
diffractometer
9024 independent reflections
Radiation source: fine-focus sealed tube6365 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.030
phi and ω scansθmax = 25.0°, θmin = 1.4°
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
h = 1616
Tmin = 0.977, Tmax = 0.983k = 1217
14182 measured reflectionsl = 1618
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.064Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.221H atoms treated by a mixture of independent and constrained refinement
S = 1.01 w = 1/[σ2(Fo2) + (0.1569P)2 + 0.180P]
where P = (Fo2 + 2Fc2)/3
9024 reflections(Δ/σ)max = 0.001
699 parametersΔρmax = 0.55 e Å3
0 restraintsΔρmin = 0.28 e Å3
Crystal data top
C26H22N4O5·0.5C4H8O2γ = 116.524 (8)°
Mr = 514.53V = 2601 (2) Å3
Triclinic, P1Z = 4
a = 13.662 (5) ÅMo Kα radiation
b = 14.928 (6) ŵ = 0.09 mm1
c = 15.356 (10) ÅT = 293 K
α = 95.459 (11)°0.25 × 0.20 × 0.18 mm
β = 106.226 (11)°
Data collection top
Bruker APEXII CCD
diffractometer
9024 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
6365 reflections with I > 2σ(I)
Tmin = 0.977, Tmax = 0.983Rint = 0.030
14182 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0640 restraints
wR(F2) = 0.221H atoms treated by a mixture of independent and constrained refinement
S = 1.01Δρmax = 0.55 e Å3
9024 reflectionsΔρmin = 0.28 e Å3
699 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N40.00150 (17)0.67033 (16)0.44581 (13)0.0415 (5)
C320.0207 (2)0.57119 (19)0.41187 (14)0.0369 (5)
C330.08424 (19)0.57566 (18)0.41020 (14)0.0364 (5)
N30.16847 (17)0.68218 (15)0.44370 (13)0.0385 (5)
O80.17051 (17)0.83549 (14)0.48946 (14)0.0570 (5)
C280.0874 (2)0.48615 (19)0.37778 (15)0.0395 (6)
C310.1238 (2)0.4749 (2)0.38319 (16)0.0435 (6)
H310.19240.47040.38740.052*
N70.49747 (19)1.00469 (17)0.19708 (15)0.0473 (6)
O70.18151 (18)0.41080 (18)0.31586 (14)0.0672 (6)
C420.2215 (2)0.7413 (2)0.18920 (16)0.0443 (6)
H420.15960.73470.13910.053*
C370.2891 (2)0.7362 (2)0.44727 (16)0.0428 (6)
H37A0.33010.70200.47700.051*
H37B0.32800.80650.48590.051*
C430.2089 (2)0.7316 (2)0.27565 (17)0.0438 (6)
H430.13870.71910.28240.053*
C480.4438 (3)0.8462 (3)0.0169 (2)0.0594 (8)
H480.50870.89930.02370.071*
N80.6348 (2)0.9740 (3)0.1776 (2)0.0751 (8)
C380.29870 (19)0.74027 (18)0.35088 (15)0.0376 (5)
C510.6010 (2)1.0861 (3)0.2611 (2)0.0578 (8)
C300.1222 (2)0.3874 (2)0.34885 (16)0.0452 (6)
H300.19160.32410.32660.054*
C470.3581 (3)0.7671 (3)0.0945 (2)0.0671 (9)
H470.36530.76620.15300.081*
C410.3261 (2)0.76074 (19)0.17754 (16)0.0420 (6)
O90.61870 (19)1.16176 (18)0.31497 (16)0.0799 (8)
C340.1098 (2)0.73142 (19)0.46168 (16)0.0410 (6)
O60.29152 (18)0.54126 (19)0.44628 (16)0.0711 (6)
C490.4348 (2)0.8478 (2)0.07188 (18)0.0464 (6)
C520.1984 (2)0.4840 (2)0.38488 (18)0.0459 (6)
C500.5237 (2)0.9410 (2)0.15017 (18)0.0494 (7)
C440.3379 (2)0.7675 (2)0.08353 (17)0.0448 (6)
C400.4155 (2)0.7680 (2)0.25316 (18)0.0497 (7)
H400.48580.78040.24670.060*
O100.68645 (17)1.0687 (2)0.25039 (17)0.0800 (7)
C390.4018 (2)0.7572 (2)0.33852 (17)0.0478 (6)
H390.46260.76140.38810.057*
C290.0186 (2)0.3911 (2)0.34652 (16)0.0463 (6)
H290.01980.33040.32410.056*
C450.2510 (3)0.6889 (2)0.00359 (18)0.0566 (7)
H450.18530.63560.00930.068*
C270.2871 (3)0.4091 (3)0.3154 (3)0.0810 (11)
H27A0.34250.47530.31150.121*
H27B0.26740.35640.26240.121*
H27C0.32100.39450.37210.121*
C460.2609 (3)0.6887 (3)0.0840 (2)0.0695 (9)
H460.20180.63570.13600.083*
C360.1841 (5)1.0009 (3)0.5278 (4)0.1106 (17)
H36A0.25141.02330.58360.166*
H36B0.14171.03550.53710.166*
H36C0.20931.01740.47610.166*
C350.1068 (3)0.8872 (2)0.5069 (3)0.0742 (10)
H35A0.08280.86980.55960.089*
H35B0.03690.86460.45220.089*
C60.2024 (2)0.0933 (2)1.01931 (18)0.0485 (6)
H6A0.27680.07941.01650.058*
C40.0015 (3)0.1616 (2)1.10673 (19)0.0530 (7)
H40.06300.19381.16440.064*
N20.26434 (18)0.01972 (18)0.84744 (14)0.0486 (5)
C80.0689 (2)0.08916 (19)0.94074 (16)0.0406 (6)
C130.0667 (2)0.1405 (2)0.77654 (16)0.0435 (6)
N50.1701 (2)0.28881 (17)0.50981 (15)0.0489 (6)
C20.1521 (2)0.1676 (2)1.04685 (18)0.0517 (7)
N10.08666 (17)0.05155 (17)0.84652 (14)0.0442 (5)
O30.24105 (17)0.0311 (2)0.70583 (13)0.0698 (7)
C230.4272 (2)0.5237 (2)0.6411 (2)0.0602 (8)
H230.44930.52740.58890.072*
C70.1820 (2)0.06830 (19)0.93793 (17)0.0409 (6)
C190.3071 (2)0.4216 (2)0.72559 (18)0.0483 (6)
C200.3596 (3)0.5141 (3)0.7955 (2)0.0615 (8)
H200.33710.51240.84740.074*
O20.17589 (17)0.1522 (2)0.97154 (14)0.0765 (7)
O40.2578 (2)0.22670 (19)0.44503 (18)0.0806 (7)
C100.3664 (3)0.0870 (3)0.6532 (2)0.0675 (9)
H10A0.40860.11390.69450.081*
H10B0.38600.14480.60420.081*
C170.1361 (2)0.3196 (2)0.77355 (18)0.0493 (6)
H170.13000.37890.78490.059*
C180.0615 (2)0.2311 (2)0.79280 (17)0.0464 (6)
H180.00670.23220.81710.056*
C160.2204 (2)0.3224 (2)0.73761 (16)0.0458 (6)
C260.1515 (3)0.2183 (2)0.4336 (2)0.0660 (9)
O50.0632 (2)0.1582 (2)0.36806 (18)0.0934 (9)
C240.3419 (2)0.4284 (2)0.64672 (19)0.0492 (6)
C30.0267 (2)0.13857 (19)1.02678 (17)0.0431 (6)
C90.2031 (2)0.0113 (2)0.79755 (17)0.0475 (6)
C140.1498 (2)0.1413 (2)0.73955 (19)0.0513 (7)
H140.15480.08150.72780.062*
C110.3998 (3)0.0156 (3)0.6118 (3)0.0865 (11)
H11A0.38260.04010.66090.130*
H11B0.48220.05210.57520.130*
H11C0.35630.01190.57230.130*
C120.0084 (2)0.0423 (2)0.80109 (18)0.0468 (6)
H12A0.05590.01340.74410.056*
H12B0.04290.02330.84260.056*
C250.2861 (2)0.3394 (2)0.56306 (19)0.0495 (6)
C50.1081 (3)0.1391 (2)1.10392 (19)0.0549 (7)
H50.11950.15471.15910.066*
N60.3451 (2)0.3062 (2)0.5304 (2)0.0703 (7)
C150.2251 (2)0.2304 (2)0.7201 (2)0.0537 (7)
H150.27920.22910.69520.064*
O10.2246 (2)0.1998 (3)1.12383 (17)0.1087 (11)
C210.4437 (3)0.6082 (3)0.7900 (3)0.0750 (10)
H210.47630.66790.83750.090*
C10.2946 (3)0.1770 (3)0.9835 (3)0.0774 (10)
H1A0.33830.24720.98050.116*
H1B0.29350.13100.93460.116*
H1C0.33110.16931.04340.116*
C220.4786 (3)0.6127 (3)0.7140 (3)0.0754 (10)
H220.53640.67510.71110.091*
O120.7580 (4)0.5278 (3)0.8989 (2)0.1270 (12)
O110.9139 (5)0.5926 (4)1.0263 (3)0.177 (2)
C550.8719 (6)0.5628 (3)0.9449 (3)0.1081 (17)
C560.9303 (4)0.5469 (4)0.8823 (4)0.1221 (18)
H56A0.97920.61210.87230.183*
H56B0.87220.50020.82330.183*
H56C0.97770.51800.91060.183*
C530.5742 (6)0.4463 (7)0.9154 (5)0.155 (3)
H53A0.54380.43110.84810.233*
H53B0.52180.45710.93980.233*
H53C0.58140.38920.93400.233*
C540.6848 (8)0.5360 (6)0.9508 (5)0.173 (3)
H54A0.72250.54421.01700.207*
H54B0.67610.59630.94400.207*
H5A0.109 (3)0.300 (2)0.523 (2)0.056 (8)*
H70.428 (3)1.002 (3)0.187 (2)0.077 (11)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N40.0429 (11)0.0436 (12)0.0375 (10)0.0196 (10)0.0170 (9)0.0104 (9)
C320.0370 (12)0.0442 (14)0.0270 (10)0.0173 (11)0.0119 (9)0.0113 (9)
C330.0349 (12)0.0399 (13)0.0249 (10)0.0112 (10)0.0105 (9)0.0079 (9)
N30.0388 (10)0.0372 (11)0.0351 (10)0.0133 (9)0.0161 (8)0.0105 (8)
O80.0601 (11)0.0383 (10)0.0667 (12)0.0179 (9)0.0269 (10)0.0105 (9)
C280.0426 (13)0.0478 (14)0.0285 (11)0.0216 (11)0.0146 (10)0.0106 (10)
C310.0325 (12)0.0511 (16)0.0357 (11)0.0123 (11)0.0112 (9)0.0112 (11)
N70.0376 (12)0.0498 (13)0.0492 (12)0.0155 (10)0.0188 (10)0.0125 (10)
O70.0651 (12)0.0872 (16)0.0610 (12)0.0477 (12)0.0256 (10)0.0071 (11)
C420.0390 (13)0.0466 (14)0.0389 (12)0.0161 (11)0.0103 (10)0.0139 (11)
C370.0346 (12)0.0436 (14)0.0382 (12)0.0106 (11)0.0120 (10)0.0096 (10)
C430.0335 (12)0.0492 (15)0.0442 (13)0.0156 (11)0.0147 (10)0.0158 (11)
C480.0737 (19)0.083 (2)0.0556 (16)0.0522 (18)0.0419 (15)0.0360 (16)
N80.0481 (14)0.094 (2)0.0837 (18)0.0316 (15)0.0321 (13)0.0201 (16)
C380.0341 (12)0.0331 (12)0.0367 (11)0.0103 (10)0.0116 (9)0.0081 (9)
C510.0402 (14)0.0634 (19)0.0542 (16)0.0102 (14)0.0198 (12)0.0218 (15)
C300.0388 (13)0.0422 (14)0.0365 (12)0.0087 (11)0.0094 (10)0.0056 (10)
C470.104 (2)0.085 (2)0.0452 (16)0.064 (2)0.0411 (17)0.0250 (16)
C410.0470 (14)0.0376 (13)0.0414 (12)0.0184 (11)0.0192 (11)0.0136 (10)
O90.0623 (14)0.0657 (15)0.0689 (14)0.0020 (11)0.0222 (11)0.0045 (12)
C340.0468 (14)0.0383 (13)0.0331 (11)0.0172 (11)0.0145 (10)0.0093 (10)
O60.0507 (12)0.0819 (16)0.0742 (14)0.0383 (12)0.0080 (11)0.0090 (12)
C490.0532 (15)0.0574 (16)0.0476 (14)0.0356 (13)0.0277 (12)0.0212 (12)
C520.0474 (15)0.0520 (15)0.0438 (13)0.0271 (13)0.0179 (12)0.0180 (12)
C500.0459 (14)0.0658 (18)0.0513 (14)0.0302 (13)0.0284 (12)0.0306 (13)
C440.0561 (15)0.0480 (15)0.0413 (13)0.0305 (13)0.0230 (11)0.0172 (11)
C400.0442 (14)0.0674 (18)0.0489 (14)0.0315 (13)0.0232 (12)0.0240 (13)
O100.0391 (11)0.0911 (17)0.0845 (16)0.0140 (11)0.0207 (11)0.0165 (13)
C390.0394 (13)0.0599 (17)0.0413 (13)0.0225 (12)0.0133 (10)0.0167 (12)
C290.0507 (14)0.0424 (14)0.0356 (12)0.0166 (12)0.0142 (11)0.0041 (10)
C450.0722 (19)0.0518 (17)0.0434 (14)0.0287 (15)0.0201 (13)0.0149 (12)
C270.077 (2)0.112 (3)0.083 (2)0.064 (2)0.0418 (19)0.019 (2)
C460.102 (3)0.065 (2)0.0442 (15)0.0459 (19)0.0233 (15)0.0082 (14)
C360.149 (4)0.055 (2)0.148 (4)0.045 (2)0.091 (4)0.024 (2)
C350.090 (2)0.0496 (18)0.095 (2)0.0353 (17)0.050 (2)0.0159 (17)
C60.0527 (15)0.0542 (16)0.0526 (15)0.0314 (13)0.0281 (12)0.0185 (12)
C40.0603 (17)0.0525 (16)0.0419 (13)0.0269 (14)0.0165 (12)0.0059 (12)
N20.0444 (12)0.0584 (14)0.0462 (12)0.0263 (11)0.0188 (9)0.0145 (10)
C80.0462 (13)0.0383 (13)0.0439 (13)0.0229 (11)0.0213 (11)0.0130 (10)
C130.0476 (14)0.0560 (16)0.0361 (12)0.0314 (12)0.0168 (10)0.0151 (11)
N50.0532 (13)0.0457 (13)0.0501 (12)0.0236 (11)0.0251 (11)0.0060 (10)
C20.0480 (15)0.0460 (15)0.0494 (15)0.0205 (13)0.0099 (12)0.0015 (12)
N10.0410 (11)0.0545 (13)0.0408 (11)0.0247 (10)0.0177 (9)0.0129 (9)
O30.0498 (11)0.1100 (18)0.0404 (10)0.0368 (12)0.0126 (8)0.0065 (10)
C230.0451 (15)0.0601 (18)0.0777 (19)0.0260 (14)0.0231 (14)0.0257 (16)
C70.0454 (13)0.0412 (13)0.0443 (13)0.0249 (11)0.0191 (11)0.0187 (11)
C190.0442 (14)0.0562 (16)0.0476 (14)0.0297 (13)0.0115 (11)0.0160 (12)
C200.0601 (17)0.066 (2)0.0509 (16)0.0313 (16)0.0114 (13)0.0073 (14)
O20.0433 (11)0.124 (2)0.0536 (11)0.0380 (12)0.0153 (9)0.0127 (12)
O40.0998 (18)0.0762 (16)0.0925 (17)0.0526 (14)0.0595 (15)0.0127 (13)
C100.0561 (17)0.077 (2)0.0543 (16)0.0256 (17)0.0137 (14)0.0107 (15)
C170.0638 (17)0.0565 (16)0.0459 (14)0.0404 (14)0.0254 (12)0.0171 (12)
C180.0535 (15)0.0652 (17)0.0416 (13)0.0415 (14)0.0238 (11)0.0201 (12)
C160.0490 (14)0.0590 (16)0.0368 (12)0.0329 (13)0.0142 (11)0.0152 (11)
C260.085 (2)0.0547 (18)0.0666 (19)0.0336 (17)0.0434 (18)0.0087 (16)
O50.1028 (19)0.0788 (17)0.0718 (15)0.0287 (15)0.0355 (14)0.0206 (13)
C240.0394 (13)0.0524 (16)0.0566 (15)0.0226 (12)0.0185 (11)0.0143 (13)
C30.0470 (14)0.0386 (13)0.0451 (13)0.0229 (11)0.0157 (11)0.0105 (11)
C90.0438 (14)0.0573 (16)0.0435 (13)0.0254 (13)0.0177 (11)0.0130 (12)
C140.0632 (17)0.0549 (16)0.0604 (16)0.0407 (14)0.0342 (14)0.0215 (13)
C110.065 (2)0.082 (3)0.092 (3)0.0233 (19)0.0231 (19)0.026 (2)
C120.0454 (14)0.0538 (16)0.0454 (13)0.0269 (12)0.0200 (11)0.0071 (12)
C250.0497 (15)0.0544 (16)0.0561 (15)0.0286 (13)0.0284 (13)0.0212 (13)
C50.0701 (18)0.0612 (18)0.0462 (14)0.0372 (15)0.0302 (13)0.0154 (13)
N60.0742 (17)0.0773 (18)0.0840 (18)0.0489 (15)0.0430 (15)0.0210 (15)
C150.0577 (16)0.0594 (17)0.0657 (17)0.0365 (14)0.0371 (14)0.0228 (14)
O10.0606 (15)0.167 (3)0.0615 (15)0.0483 (17)0.0000 (12)0.0188 (16)
C210.0578 (19)0.056 (2)0.083 (2)0.0224 (16)0.0038 (17)0.0044 (17)
C10.0463 (17)0.103 (3)0.080 (2)0.0350 (18)0.0241 (15)0.018 (2)
C220.0520 (18)0.055 (2)0.102 (3)0.0182 (15)0.0180 (18)0.0210 (19)
O120.140 (3)0.168 (4)0.0779 (19)0.083 (3)0.036 (2)0.029 (2)
O110.254 (5)0.171 (4)0.086 (2)0.140 (4)0.012 (3)0.009 (2)
C550.154 (5)0.068 (3)0.065 (2)0.047 (3)0.002 (3)0.015 (2)
C560.106 (4)0.123 (4)0.113 (4)0.043 (3)0.021 (3)0.053 (3)
C530.157 (6)0.219 (8)0.154 (5)0.149 (6)0.054 (5)0.034 (5)
C540.221 (8)0.181 (7)0.127 (5)0.102 (7)0.081 (6)0.015 (5)
Geometric parameters (Å, º) top
N4—C341.310 (3)N2—C71.389 (3)
N4—C321.400 (3)C8—C31.408 (4)
C32—C311.404 (3)C8—N11.412 (3)
C32—C331.412 (3)C8—C71.420 (3)
C33—C281.404 (4)C13—C181.388 (4)
C33—N31.413 (3)C13—C141.400 (3)
N3—C341.368 (3)C13—C121.524 (4)
N3—C371.458 (3)N5—C251.357 (4)
O8—C341.345 (3)N5—C261.380 (4)
O8—C351.456 (4)N5—H5A1.00 (3)
C28—C291.409 (3)C2—O11.193 (3)
C28—C521.505 (4)C2—O21.313 (3)
C31—C301.373 (4)C2—C31.495 (4)
C31—H310.9300N1—C91.359 (3)
N7—C501.367 (4)N1—C121.476 (3)
N7—C511.380 (4)O3—C91.335 (3)
N7—H70.90 (4)O3—C101.450 (4)
O7—C521.337 (3)C23—C221.399 (5)
O7—C271.456 (4)C23—C241.411 (4)
C42—C411.393 (4)C23—H230.9300
C42—C431.398 (3)C19—C201.407 (4)
C42—H420.9300C19—C241.416 (4)
C37—C381.526 (3)C19—C161.496 (4)
C37—H37A0.9700C20—C211.392 (5)
C37—H37B0.9700C20—H200.9300
C43—C381.376 (4)O2—C11.445 (4)
C43—H430.9300O4—C261.359 (4)
C48—C471.379 (5)O4—N61.454 (4)
C48—C491.402 (4)C10—C111.465 (6)
C48—H480.9300C10—H10A0.9700
N8—C501.288 (4)C10—H10B0.9700
N8—O101.454 (4)C17—C181.383 (4)
C38—C391.388 (3)C17—C161.396 (4)
C51—O91.219 (4)C17—H170.9300
C51—O101.352 (4)C18—H180.9300
C30—C291.403 (4)C16—C151.407 (4)
C30—H300.9300C26—O51.206 (4)
C47—C461.388 (5)C24—C251.490 (4)
C47—H470.9300C14—C151.394 (4)
C41—C401.384 (4)C14—H140.9300
C41—C441.504 (3)C11—H11A0.9600
O6—C521.201 (3)C11—H11B0.9600
C49—C441.407 (4)C11—H11C0.9600
C49—C501.487 (4)C12—H12A0.9700
C44—C451.400 (4)C12—H12B0.9700
C40—C391.389 (4)C25—N61.298 (4)
C40—H400.9300C5—H50.9300
C39—H390.9300C15—H150.9300
C29—H290.9300C21—C221.373 (5)
C45—C461.388 (4)C21—H210.9300
C45—H450.9300C1—H1A0.9600
C27—H27A0.9600C1—H1B0.9600
C27—H27B0.9600C1—H1C0.9600
C27—H27C0.9600C22—H220.9300
C46—H460.9300O12—C551.336 (6)
C36—C351.485 (5)O12—C541.478 (8)
C36—H36A0.9600O11—C551.164 (5)
C36—H36B0.9600C55—C561.474 (8)
C36—H36C0.9600C56—H56A0.9600
C35—H35A0.9700C56—H56B0.9600
C35—H35B0.9700C56—H56C0.9600
C6—C51.387 (4)C53—C541.403 (9)
C6—C71.406 (4)C53—H53A0.9600
C6—H6A0.9300C53—H53B0.9600
C4—C51.367 (4)C53—H53C0.9600
C4—C31.416 (4)C54—H54A0.9700
C4—H40.9300C54—H54B0.9700
N2—C91.318 (3)
C34—N4—C32104.0 (2)C18—C13—C12123.8 (2)
N4—C32—C31129.7 (2)C14—C13—C12118.3 (2)
N4—C32—C33110.76 (19)C25—N5—C26108.1 (3)
C31—C32—C33119.5 (2)C25—N5—H5A126.5 (16)
C28—C33—C32121.6 (2)C26—N5—H5A125.4 (17)
C28—C33—N3134.1 (2)O1—C2—O2122.1 (3)
C32—C33—N3104.3 (2)O1—C2—C3124.0 (3)
C34—N3—C33105.87 (19)O2—C2—C3113.9 (2)
C34—N3—C37123.7 (2)C9—N1—C8106.07 (19)
C33—N3—C37129.9 (2)C9—N1—C12121.2 (2)
C34—O8—C35116.7 (2)C8—N1—C12132.5 (2)
C33—C28—C29117.4 (2)C9—O3—C10118.6 (2)
C33—C28—C52124.0 (2)C22—C23—C24120.0 (3)
C29—C28—C52118.2 (2)C22—C23—H23120.0
C30—C31—C32119.2 (2)C24—C23—H23120.0
C30—C31—H31120.4N2—C7—C6127.0 (2)
C32—C31—H31120.4N2—C7—C8111.1 (2)
C50—N7—C51108.3 (2)C6—C7—C8121.9 (2)
C50—N7—H7129 (2)C20—C19—C24116.7 (3)
C51—N7—H7122 (2)C20—C19—C16119.8 (2)
C52—O7—C27115.1 (2)C24—C19—C16123.4 (2)
C41—C42—C43120.5 (2)C21—C20—C19122.6 (3)
C41—C42—H42119.7C21—C20—H20118.7
C43—C42—H42119.7C19—C20—H20118.7
N3—C37—C38113.43 (18)C2—O2—C1118.2 (2)
N3—C37—H37A108.9C26—O4—N6109.2 (2)
C38—C37—H37A108.9O3—C10—C11108.5 (3)
N3—C37—H37B108.9O3—C10—H10A110.0
C38—C37—H37B108.9C11—C10—H10A110.0
H37A—C37—H37B107.7O3—C10—H10B110.0
C38—C43—C42121.1 (2)C11—C10—H10B110.0
C38—C43—H43119.5H10A—C10—H10B108.4
C42—C43—H43119.5C18—C17—C16121.8 (3)
C47—C48—C49121.1 (3)C18—C17—H17119.1
C47—C48—H48119.4C16—C17—H17119.1
C49—C48—H48119.4C17—C18—C13121.2 (2)
C50—N8—O10104.1 (3)C17—C18—H18119.4
C43—C38—C39118.3 (2)C13—C18—H18119.4
C43—C38—C37121.8 (2)C17—C16—C15117.1 (2)
C39—C38—C37119.8 (2)C17—C16—C19120.7 (3)
O9—C51—O10124.3 (3)C15—C16—C19122.0 (2)
O9—C51—N7130.4 (3)O5—C26—O4123.2 (3)
O10—C51—N7105.3 (3)O5—C26—N5131.0 (3)
C31—C30—C29121.6 (2)O4—C26—N5105.8 (3)
C31—C30—H30119.2C23—C24—C19120.7 (3)
C29—C30—H30119.2C23—C24—C25116.2 (2)
C48—C47—C46119.0 (3)C19—C24—C25122.9 (2)
C48—C47—H47120.5C8—C3—C4116.5 (2)
C46—C47—H47120.5C8—C3—C2129.0 (2)
C40—C41—C42118.1 (2)C4—C3—C2114.5 (2)
C40—C41—C44121.5 (2)N2—C9—O3128.1 (2)
C42—C41—C44120.3 (2)N2—C9—N1115.2 (2)
N4—C34—O8127.7 (3)O3—C9—N1116.7 (2)
N4—C34—N3115.0 (2)C15—C14—C13120.9 (3)
O8—C34—N3117.2 (2)C15—C14—H14119.5
C48—C49—C44120.2 (3)C13—C14—H14119.5
C48—C49—C50118.1 (2)C10—C11—H11A109.5
C44—C49—C50121.4 (2)C10—C11—H11B109.5
O6—C52—O7123.9 (3)H11A—C11—H11B109.5
O6—C52—C28123.6 (2)C10—C11—H11C109.5
O7—C52—C28112.5 (2)H11A—C11—H11C109.5
N8—C50—N7112.5 (3)H11B—C11—H11C109.5
N8—C50—C49123.6 (3)N1—C12—C13114.3 (2)
N7—C50—C49123.8 (2)N1—C12—H12A108.7
C45—C44—C49117.7 (2)C13—C12—H12A108.7
C45—C44—C41119.2 (2)N1—C12—H12B108.7
C49—C44—C41123.1 (2)C13—C12—H12B108.7
C41—C40—C39121.0 (2)H12A—C12—H12B107.6
C41—C40—H40119.5N6—C25—N5112.9 (3)
C39—C40—H40119.5N6—C25—C24123.1 (3)
C51—O10—N8109.8 (2)N5—C25—C24123.9 (2)
C38—C39—C40120.9 (2)C4—C5—C6120.4 (2)
C38—C39—H39119.5C4—C5—H5119.8
C40—C39—H39119.5C6—C5—H5119.8
C30—C29—C28120.6 (2)C25—N6—O4104.0 (2)
C30—C29—H29119.7C14—C15—C16121.0 (2)
C28—C29—H29119.7C14—C15—H15119.5
C46—C45—C44121.4 (3)C16—C15—H15119.5
C46—C45—H45119.3C22—C21—C20119.8 (3)
C44—C45—H45119.3C22—C21—H21120.1
O7—C27—H27A109.5C20—C21—H21120.1
O7—C27—H27B109.5O2—C1—H1A109.5
H27A—C27—H27B109.5O2—C1—H1B109.5
O7—C27—H27C109.5H1A—C1—H1B109.5
H27A—C27—H27C109.5O2—C1—H1C109.5
H27B—C27—H27C109.5H1A—C1—H1C109.5
C45—C46—C47120.5 (3)H1B—C1—H1C109.5
C45—C46—H46119.7C21—C22—C23120.2 (3)
C47—C46—H46119.7C21—C22—H22119.9
C35—C36—H36A109.5C23—C22—H22119.9
C35—C36—H36B109.5C55—O12—C54119.6 (5)
H36A—C36—H36B109.5O11—C55—O12121.7 (6)
C35—C36—H36C109.5O11—C55—C56125.8 (6)
H36A—C36—H36C109.5O12—C55—C56112.1 (4)
H36B—C36—H36C109.5C55—C56—H56A109.5
O8—C35—C36109.0 (3)C55—C56—H56B109.5
O8—C35—H35A109.9H56A—C56—H56B109.5
C36—C35—H35A109.9C55—C56—H56C109.5
O8—C35—H35B109.9H56A—C56—H56C109.5
C36—C35—H35B109.9H56B—C56—H56C109.5
H35A—C35—H35B108.3C54—C53—H53A109.5
C5—C6—C7118.0 (2)C54—C53—H53B109.5
C5—C6—H6A121.0H53A—C53—H53B109.5
C7—C6—H6A121.0C54—C53—H53C109.5
C5—C4—C3123.7 (3)H53A—C53—H53C109.5
C5—C4—H4118.1H53B—C53—H53C109.5
C3—C4—H4118.1C53—C54—O12109.4 (6)
C9—N2—C7103.8 (2)C53—C54—H54A109.8
C3—C8—N1136.7 (2)O12—C54—H54A109.8
C3—C8—C7119.5 (2)C53—C54—H54B109.8
N1—C8—C7103.9 (2)O12—C54—H54B109.8
C18—C13—C14117.9 (2)H54A—C54—H54B108.2
C34—N4—C32—C31180.0 (2)C3—C8—N1—C125.7 (5)
C34—N4—C32—C331.3 (2)C7—C8—N1—C12175.2 (3)
N4—C32—C33—C28179.2 (2)C9—N2—C7—C6178.2 (3)
C31—C32—C33—C282.0 (3)C9—N2—C7—C80.2 (3)
N4—C32—C33—N30.6 (2)C5—C6—C7—N2178.0 (3)
C31—C32—C33—N3179.5 (2)C5—C6—C7—C80.2 (4)
C28—C33—N3—C34178.0 (2)C3—C8—C7—N2179.9 (2)
C32—C33—N3—C340.3 (2)N1—C8—C7—N20.6 (3)
C28—C33—N3—C376.6 (4)C3—C8—C7—C61.6 (4)
C32—C33—N3—C37171.7 (2)N1—C8—C7—C6179.1 (2)
C32—C33—C28—C290.2 (3)C24—C19—C20—C211.5 (5)
N3—C33—C28—C29177.9 (2)C16—C19—C20—C21177.8 (3)
C32—C33—C28—C52172.4 (2)O1—C2—O2—C11.0 (5)
N3—C33—C28—C529.5 (4)C3—C2—O2—C1179.5 (3)
N4—C32—C31—C30177.6 (2)C9—O3—C10—C1193.9 (3)
C33—C32—C31—C303.8 (3)C16—C17—C18—C130.4 (4)
C34—N3—C37—C3899.7 (3)C14—C13—C18—C170.3 (4)
C33—N3—C37—C3870.3 (3)C12—C13—C18—C17176.6 (2)
C41—C42—C43—C380.5 (4)C18—C17—C16—C151.1 (4)
C42—C43—C38—C391.0 (4)C18—C17—C16—C19174.4 (2)
C42—C43—C38—C37176.4 (2)C20—C19—C16—C1741.4 (4)
N3—C37—C38—C4323.8 (3)C24—C19—C16—C17139.3 (3)
N3—C37—C38—C39158.9 (2)C20—C19—C16—C15133.8 (3)
C50—N7—C51—O9177.4 (3)C24—C19—C16—C1545.4 (4)
C50—N7—C51—O100.1 (3)N6—O4—C26—O5179.7 (3)
C32—C31—C30—C293.6 (4)N6—O4—C26—N50.9 (3)
C49—C48—C47—C460.8 (5)C25—N5—C26—O5178.9 (4)
C43—C42—C41—C401.3 (4)C25—N5—C26—O41.8 (3)
C43—C42—C41—C44177.9 (2)C22—C23—C24—C190.2 (4)
C32—N4—C34—O8175.5 (2)C22—C23—C24—C25175.9 (3)
C32—N4—C34—N31.6 (3)C20—C19—C24—C231.5 (4)
C35—O8—C34—N42.0 (4)C16—C19—C24—C23177.8 (3)
C35—O8—C34—N3179.0 (2)C20—C19—C24—C25174.0 (3)
C33—N3—C34—N41.2 (3)C16—C19—C24—C256.7 (4)
C37—N3—C34—N4173.32 (19)N1—C8—C3—C4179.2 (3)
C33—N3—C34—O8176.2 (2)C7—C8—C3—C41.9 (4)
C37—N3—C34—O84.1 (3)N1—C8—C3—C21.5 (5)
C47—C48—C49—C440.7 (5)C7—C8—C3—C2179.6 (3)
C47—C48—C49—C50173.5 (3)C5—C4—C3—C80.4 (4)
C27—O7—C52—O64.3 (4)C5—C4—C3—C2178.5 (3)
C27—O7—C52—C28176.3 (2)O1—C2—C3—C8172.0 (3)
C33—C28—C52—O630.0 (4)O2—C2—C3—C86.5 (4)
C29—C28—C52—O6142.6 (3)O1—C2—C3—C45.8 (5)
C33—C28—C52—O7150.6 (2)O2—C2—C3—C4175.8 (3)
C29—C28—C52—O736.8 (3)C7—N2—C9—O3179.3 (3)
O10—N8—C50—N70.4 (3)C7—N2—C9—N11.1 (3)
O10—N8—C50—C49176.6 (2)C10—O3—C9—N28.4 (5)
C51—N7—C50—N80.3 (3)C10—O3—C9—N1172.0 (3)
C51—N7—C50—C49176.5 (2)C8—N1—C9—N21.5 (3)
C48—C49—C50—N858.7 (4)C12—N1—C9—N2176.4 (2)
C44—C49—C50—N8127.2 (3)C8—N1—C9—O3178.8 (2)
C48—C49—C50—N7117.1 (3)C12—N1—C9—O33.9 (4)
C44—C49—C50—N757.0 (4)C18—C13—C14—C150.3 (4)
C48—C49—C44—C451.7 (4)C12—C13—C14—C15176.8 (2)
C50—C49—C44—C45172.3 (3)C9—N1—C12—C13102.2 (3)
C48—C49—C44—C41176.1 (3)C8—N1—C12—C1384.5 (3)
C50—C49—C44—C419.9 (4)C18—C13—C12—N11.5 (4)
C40—C41—C44—C45126.8 (3)C14—C13—C12—N1175.4 (2)
C42—C41—C44—C4549.7 (4)C26—N5—C25—N62.1 (3)
C40—C41—C44—C4950.9 (4)C26—N5—C25—C24174.1 (3)
C42—C41—C44—C49132.6 (3)C23—C24—C25—N658.8 (4)
C42—C41—C40—C390.6 (4)C19—C24—C25—N6125.5 (3)
C44—C41—C40—C39177.2 (3)C23—C24—C25—N5117.0 (3)
O9—C51—O10—N8177.4 (3)C19—C24—C25—N558.7 (4)
N7—C51—O10—N80.1 (3)C3—C4—C5—C61.5 (5)
C50—N8—O10—C510.3 (3)C7—C6—C5—C41.8 (4)
C43—C38—C39—C401.7 (4)N5—C25—N6—O41.4 (3)
C37—C38—C39—C40175.7 (3)C24—C25—N6—O4174.8 (3)
C41—C40—C39—C380.9 (4)C26—O4—N6—C250.3 (3)
C31—C30—C29—C281.4 (4)C13—C14—C15—C160.4 (4)
C33—C28—C29—C300.5 (3)C17—C16—C15—C141.1 (4)
C52—C28—C29—C30172.6 (2)C19—C16—C15—C14174.4 (3)
C49—C44—C45—C461.3 (5)C19—C20—C21—C220.2 (5)
C41—C44—C45—C46176.6 (3)C20—C21—C22—C231.9 (5)
C44—C45—C46—C470.2 (5)C24—C23—C22—C211.9 (5)
C48—C47—C46—C451.2 (5)C54—O12—C55—O115.9 (8)
C34—O8—C35—C36174.6 (3)C54—O12—C55—C56179.2 (6)
C3—C8—N1—C9179.8 (3)C55—O12—C54—C53140.9 (6)
C7—C8—N1—C91.2 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N5—H5A···N4i1.011.852.862 (3)176
N7—H7···N2i0.902.012.905 (3)173
C12—H12A···O5ii0.972.583.421 (4)145
C30—H30···O9iii0.932.583.484 (3)163
Symmetry codes: (i) x, y+1, z+1; (ii) x, y, z+1; (iii) x1, y1, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N5—H5A···N4i1.011.852.862 (3)176
N7—H7···N2i0.902.012.905 (3)173
C12—H12A···O5ii0.972.583.421 (4)145
C30—H30···O9iii0.932.583.484 (3)163
Symmetry codes: (i) x, y+1, z+1; (ii) x, y, z+1; (iii) x1, y1, z.
 

Acknowledgements

We gratefully acknowledge financial support from the NSFC (No. 21002009), the Scientific and Technological Project of Jiangsu Province (BY2014037–01), the Major Program for Natural Science Research of Jiangsu Colleges and Universities (12 K J A150002, 14 K J A150002) and the Qing Lan Project of Jiangsu Province.

References

First citationBruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationKohara, Y., Kubo, K., Imamiya, E., Wada, T., Inada, Y. & Naka, T. (1996). J. Med. Chem. 39, 5228–5235.  CrossRef CAS PubMed Web of Science Google Scholar
First citationMichel, M. C., Foster, C., Brunner, H. R. & Liu, L. (2013). Pharmacol. Rev. 65, 809–848.  CrossRef PubMed Google Scholar
First citationOjima, M., Igata, H., Tanaka, M., Sakamoto, H., Kuroita, T., Kohara, Y., Kubo, K., Fuse, H., Imura, Y., Kusumoto, K. & Nagaya, H. (2011). J. Pharmacol. Exp. Ther. 336, 801–808.  CrossRef CAS PubMed Google Scholar
First citationRádl, S., Černý, J., Stach, J. & Gablíková, Z. (2013). Org. Process Res. Dev. 17, 77–86.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWeltman, R., Brands, C. M. J., Corral, E., Desmares-Koopmans, M. J. E., Migchielsen, M. H. J., Oudhoff, K. A. & de Roode, D. F. (2012). Chemosphere, 87, 1323–1329.  CrossRef CAS PubMed Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 71| Part 2| February 2015| Pages o84-o85
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds