organic compounds
of 4-aminobenzoic acid–4-methylpyridine (1/1)
aDepartment of Physics, Presidency College, Chennai 600 005, India, bDepartment of Physics, Panimalar Engineering College, Chennai 600 123, India, and cDepartment of Physics, CPCL Polytechnic College, Chennai 600 068, India
*Correspondence e-mail: chakkaravarthi_2005@yahoo.com, mohan66@hotmail.com
In the title 1:1 adduct, C6H7N·C7H7NO2, the carboxylic acid group is twisted at an angle of 4.32 (18)° with respect to the attached benzene ring. In the crystal, the carboxylic acid group is linked to the pyridine ring by an O—H⋯N hydrogen bond, forming a dimer. The dimers are linked by N—H⋯O hydrogen bonds, generating (010) sheets.
CCDC reference: 1043592
1. Related literature
For background to pyridine derivatives, see: Tomaru et al. (1991). Katritzky et al. (1996); Akkurt et al. (2005). For related structures, see: Smith & Wermuth (2010); Hemamalini & Fun (2010); Kannan et al. (2012); Thanigaimani et al. (2012); Muralidharan et al. (2013).
2. Experimental
2.1. Crystal data
|
2.3. Refinement
|
|
Data collection: APEX2 (Bruker, 2004); cell SAINT (Bruker, 2004); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2015); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97.
Supporting information
CCDC reference: 1043592
10.1107/S2056989015000791/hb7348sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: 10.1107/S2056989015000791/hb7348Isup2.hkl
Aminopyridine and its derivatives play an important role in heterocyclic chemistry (Katritzky et al., 1996). Some pyridine derivatives possess nonlinear optical (NLO) properties (Tomaru et al., 1991) and possess antibacterial and antifungal activities (Akkurt et al., 2005). we herewith, report the synthesis and the
of (I) (Fig. 1).The molecular structure of the title compound (I) is shown in (Fig. 1). It consists of two independent molecules in the assymetric unit. In the 4-aminobenzoic acid molecule, the carboxyl group is twisted at an angle of 4.32 (18)° with respect to the aromatic ring. In the 4-methylpyridine molecule, the pyridine ring (C8—C12/N2) is almost planar [maximum deviation 0.002 (3) Å]. The dihedral angle between the benzene ring (C1—C6) and pyridine ring (C8—C12/N2) is 57.11 (14)°.
In the
4-aminobenzoate and 4-methylpyridine molecules are linked by weak intermolecular O—H···N hydrogen bonds and forms infinite one-dimensional chain along [0 0 1]. The adjacent 4-aminobenzoate molecules are connected by weak intermolecular N—H···O hydrogen bonds, forming R22(12) ring motif in a two-dimensional network in the (010) plane (Table 2 & Fig. 2).Several similar structures containing methylpyridinium and nitrobenzoate molecules have been reported earlier: i.e., 2-Amino-5-methylpyridinium 2-aminobenzoate (Thanigaimani et al., 2012); 2-Amino-5-chloropyridinium 4-aminobenzoate (Kannan et al., 2012); 2-Amino-4-methylpyridinium 2-nitrobenzoate (Muralidharan et al., 2013); 4-Methylpyridinium 2-carboxy-4,5-dichlorobenzoate monohydrate [Smith & Wermuth, (2010)]; 2-Amino-4-methylpyridinium 2-hydroxybenzoate [Hemamalini & Fun (2010)].
Equimolar quantity of 4-methylpyridine and 4-aminobenzoic acid were dissolved in methanol-water mixed solvent and colourless blocks of the title adduct were grown by slow evaporation of the solvents.
Crystal data, data collection and structure
details are summarized in Table 1. The hydrogen atoms attached to C atoms and N atom were fixed geometrically and treated as riding with C—H = 0.93 Å (aromatic) or 0.96 Å (methyl) and N—H = 0.86 Å with Uiso(H) = 1.2 Ueq(C or N) or 1.5 Ueq(C) The hydroxyl H atom was located in a difference Fourier map, and refined with Uiso(H) = 1.2 Ueq(O) and distance restraint O—H = 0.82 Å.Data collection: APEX2 (Bruker, 2004); cell
SAINT (Bruker, 2004); data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2015); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97 (Sheldrick, 2015).Fig. 1. The molecular structure of (I), with 30% probability displacement ellipsoids for non-H atoms. |
C6H7N·C7H7NO2 | F(000) = 244 |
Mr = 230.26 | Dx = 1.232 Mg m−3 |
Monoclinic, Pc | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: P -2yc | Cell parameters from 2749 reflections |
a = 7.5970 (7) Å | θ = 3.4–21.8° |
b = 11.6665 (12) Å | µ = 0.09 mm−1 |
c = 7.6754 (8) Å | T = 295 K |
β = 114.200 (3)° | Block, colourless |
V = 620.49 (11) Å3 | 0.28 × 0.24 × 0.20 mm |
Z = 2 |
Bruker Kappa APEXII CCD diffractometer | 2144 independent reflections |
Radiation source: fine-focus sealed tube | 1458 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.030 |
ω and ϕ scan | θmax = 26.7°, θmin = 3.4° |
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) | h = −9→8 |
Tmin = 0.977, Tmax = 0.983 | k = −14→14 |
10064 measured reflections | l = −9→9 |
Refinement on F2 | Secondary atom site location: difference Fourier map |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.038 | H atoms treated by a mixture of independent and constrained refinement |
wR(F2) = 0.108 | w = 1/[σ2(Fo2) + (0.0554P)2 + 0.0229P] where P = (Fo2 + 2Fc2)/3 |
S = 1.03 | (Δ/σ)max < 0.001 |
2144 reflections | Δρmax = 0.12 e Å−3 |
159 parameters | Δρmin = −0.13 e Å−3 |
3 restraints | Extinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 |
Primary atom site location: structure-invariant direct methods | Extinction coefficient: 0.013 (4) |
C6H7N·C7H7NO2 | V = 620.49 (11) Å3 |
Mr = 230.26 | Z = 2 |
Monoclinic, Pc | Mo Kα radiation |
a = 7.5970 (7) Å | µ = 0.09 mm−1 |
b = 11.6665 (12) Å | T = 295 K |
c = 7.6754 (8) Å | 0.28 × 0.24 × 0.20 mm |
β = 114.200 (3)° |
Bruker Kappa APEXII CCD diffractometer | 2144 independent reflections |
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) | 1458 reflections with I > 2σ(I) |
Tmin = 0.977, Tmax = 0.983 | Rint = 0.030 |
10064 measured reflections |
R[F2 > 2σ(F2)] = 0.038 | 3 restraints |
wR(F2) = 0.108 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.03 | Δρmax = 0.12 e Å−3 |
2144 reflections | Δρmin = −0.13 e Å−3 |
159 parameters |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
C1 | 0.3693 (4) | 0.1034 (2) | 0.7149 (4) | 0.0567 (6) | |
C2 | 0.4434 (4) | 0.2029 (2) | 0.6722 (4) | 0.0591 (7) | |
H2 | 0.3671 | 0.2471 | 0.5675 | 0.071* | |
C3 | 0.6273 (4) | 0.2362 (2) | 0.7829 (3) | 0.0558 (6) | |
H3 | 0.6737 | 0.3037 | 0.7529 | 0.067* | |
C4 | 0.7475 (4) | 0.1730 (2) | 0.9383 (4) | 0.0508 (6) | |
C5 | 0.6737 (4) | 0.0738 (2) | 0.9798 (4) | 0.0594 (7) | |
H5 | 0.7516 | 0.0294 | 1.0835 | 0.071* | |
C6 | 0.4892 (4) | 0.0392 (2) | 0.8724 (4) | 0.0629 (7) | |
H6 | 0.4429 | −0.0278 | 0.9043 | 0.076* | |
C7 | 0.9416 (4) | 0.2104 (2) | 1.0596 (4) | 0.0587 (7) | |
C8 | 0.4371 (5) | 0.4546 (2) | 1.3188 (5) | 0.0729 (8) | |
H8 | 0.3567 | 0.5148 | 1.3183 | 0.087* | |
C9 | 0.6306 (4) | 0.4655 (2) | 1.4263 (4) | 0.0693 (8) | |
H9 | 0.6791 | 0.5319 | 1.4967 | 0.083* | |
C10 | 0.7534 (4) | 0.3784 (2) | 1.4304 (4) | 0.0639 (7) | |
C11 | 0.6716 (4) | 0.2836 (2) | 1.3242 (4) | 0.0718 (8) | |
H11 | 0.7487 | 0.2220 | 1.3229 | 0.086* | |
C12 | 0.4767 (5) | 0.2790 (3) | 1.2196 (4) | 0.0766 (9) | |
H12 | 0.4249 | 0.2135 | 1.1479 | 0.092* | |
C13 | 0.9658 (5) | 0.3866 (3) | 1.5468 (6) | 0.0954 (11) | |
H13A | 1.0310 | 0.3941 | 1.4635 | 0.143* | |
H13B | 1.0099 | 0.3186 | 1.6229 | 0.143* | |
H13C | 0.9930 | 0.4524 | 1.6289 | 0.143* | |
N1 | 0.1840 (4) | 0.0710 (2) | 0.6087 (4) | 0.0827 (8) | |
H1A | 0.1113 | 0.1124 | 0.5137 | 0.099* | |
H1B | 0.1395 | 0.0092 | 0.6364 | 0.099* | |
N2 | 0.3582 (3) | 0.3627 (2) | 1.2152 (4) | 0.0722 (6) | |
O1 | 0.9921 (3) | 0.30989 (17) | 1.0123 (3) | 0.0808 (6) | |
H1 | 1.109 (2) | 0.324 (3) | 1.076 (5) | 0.121* | |
O2 | 1.0516 (3) | 0.15755 (17) | 1.1996 (3) | 0.0778 (6) |
U11 | U22 | U33 | U12 | U13 | U23 | |
C1 | 0.0545 (16) | 0.0584 (15) | 0.0526 (15) | −0.0071 (14) | 0.0173 (13) | −0.0070 (14) |
C2 | 0.0599 (17) | 0.0581 (15) | 0.0489 (15) | 0.0009 (12) | 0.0118 (13) | 0.0088 (12) |
C3 | 0.0582 (16) | 0.0536 (13) | 0.0509 (15) | −0.0050 (13) | 0.0175 (13) | 0.0058 (12) |
C4 | 0.0529 (14) | 0.0490 (12) | 0.0442 (13) | 0.0040 (12) | 0.0135 (12) | 0.0026 (12) |
C5 | 0.0671 (18) | 0.0516 (14) | 0.0484 (16) | 0.0021 (13) | 0.0124 (14) | 0.0046 (12) |
C6 | 0.077 (2) | 0.0518 (14) | 0.0590 (17) | −0.0076 (14) | 0.0273 (15) | 0.0048 (13) |
C7 | 0.0563 (17) | 0.0532 (13) | 0.0583 (17) | 0.0045 (13) | 0.0150 (14) | 0.0003 (14) |
C8 | 0.0630 (18) | 0.0626 (16) | 0.081 (2) | 0.0031 (15) | 0.0172 (16) | 0.0007 (16) |
C9 | 0.068 (2) | 0.0617 (17) | 0.0665 (19) | −0.0085 (14) | 0.0150 (16) | −0.0042 (13) |
C10 | 0.0579 (18) | 0.0740 (17) | 0.0585 (17) | −0.0045 (16) | 0.0225 (14) | 0.0063 (15) |
C11 | 0.0680 (19) | 0.0723 (18) | 0.078 (2) | 0.0015 (15) | 0.0325 (18) | −0.0048 (16) |
C12 | 0.077 (2) | 0.0747 (19) | 0.074 (2) | −0.0158 (17) | 0.0260 (17) | −0.0171 (16) |
C13 | 0.0604 (19) | 0.105 (2) | 0.104 (3) | −0.0070 (17) | 0.0163 (18) | 0.002 (2) |
N1 | 0.0655 (16) | 0.0852 (18) | 0.0809 (18) | −0.0163 (13) | 0.0132 (14) | 0.0063 (15) |
N2 | 0.0567 (14) | 0.0719 (15) | 0.0766 (16) | −0.0059 (13) | 0.0157 (12) | −0.0023 (13) |
O1 | 0.0588 (11) | 0.0691 (12) | 0.0883 (16) | −0.0105 (10) | 0.0035 (11) | 0.0130 (11) |
O2 | 0.0678 (13) | 0.0726 (12) | 0.0665 (12) | 0.0068 (10) | 0.0006 (10) | 0.0090 (10) |
C1—N1 | 1.359 (4) | C8—H8 | 0.9300 |
C1—C2 | 1.387 (3) | C9—C10 | 1.371 (4) |
C1—C6 | 1.397 (4) | C9—H9 | 0.9300 |
C2—C3 | 1.361 (4) | C10—C11 | 1.363 (4) |
C2—H2 | 0.9300 | C10—C13 | 1.493 (5) |
C3—C4 | 1.380 (3) | C11—C12 | 1.366 (4) |
C3—H3 | 0.9300 | C11—H11 | 0.9300 |
C4—C5 | 1.379 (3) | C12—N2 | 1.319 (4) |
C4—C7 | 1.452 (3) | C12—H12 | 0.9300 |
C5—C6 | 1.364 (4) | C13—H13A | 0.9600 |
C5—H5 | 0.9300 | C13—H13B | 0.9600 |
C6—H6 | 0.9300 | C13—H13C | 0.9600 |
C7—O2 | 1.224 (3) | N1—H1A | 0.8600 |
C7—O1 | 1.319 (3) | N1—H1B | 0.8600 |
C8—N2 | 1.323 (3) | O1—H1 | 0.836 (10) |
C8—C9 | 1.365 (4) | ||
N1—C1—C2 | 120.8 (2) | C8—C9—C10 | 119.9 (3) |
N1—C1—C6 | 121.2 (2) | C8—C9—H9 | 120.0 |
C2—C1—C6 | 118.0 (2) | C10—C9—H9 | 120.0 |
C3—C2—C1 | 120.2 (2) | C11—C10—C9 | 116.6 (3) |
C3—C2—H2 | 119.9 | C11—C10—C13 | 121.7 (3) |
C1—C2—H2 | 119.9 | C9—C10—C13 | 121.7 (3) |
C2—C3—C4 | 122.2 (2) | C10—C11—C12 | 120.2 (3) |
C2—C3—H3 | 118.9 | C10—C11—H11 | 119.9 |
C4—C3—H3 | 118.9 | C12—C11—H11 | 119.9 |
C5—C4—C3 | 117.4 (2) | N2—C12—C11 | 123.4 (3) |
C5—C4—C7 | 120.4 (2) | N2—C12—H12 | 118.3 |
C3—C4—C7 | 122.1 (2) | C11—C12—H12 | 118.3 |
C6—C5—C4 | 121.5 (2) | C10—C13—H13A | 109.5 |
C6—C5—H5 | 119.2 | C10—C13—H13B | 109.5 |
C4—C5—H5 | 119.2 | H13A—C13—H13B | 109.5 |
C5—C6—C1 | 120.6 (2) | C10—C13—H13C | 109.5 |
C5—C6—H6 | 119.7 | H13A—C13—H13C | 109.5 |
C1—C6—H6 | 119.7 | H13B—C13—H13C | 109.5 |
O2—C7—O1 | 120.9 (3) | C1—N1—H1A | 120.0 |
O2—C7—C4 | 124.1 (2) | C1—N1—H1B | 120.0 |
O1—C7—C4 | 115.0 (2) | H1A—N1—H1B | 120.0 |
N2—C8—C9 | 123.3 (3) | C12—N2—C8 | 116.6 (3) |
N2—C8—H8 | 118.4 | C7—O1—H1 | 112 (3) |
C9—C8—H8 | 118.4 | ||
N1—C1—C2—C3 | 178.1 (3) | C3—C4—C7—O2 | 179.2 (3) |
C6—C1—C2—C3 | −0.5 (4) | C5—C4—C7—O1 | −176.1 (2) |
C1—C2—C3—C4 | 0.9 (4) | C3—C4—C7—O1 | 1.3 (3) |
C2—C3—C4—C5 | −0.5 (4) | N2—C8—C9—C10 | 0.0 (5) |
C2—C3—C4—C7 | −178.1 (2) | C8—C9—C10—C11 | −0.2 (4) |
C3—C4—C5—C6 | −0.2 (4) | C8—C9—C10—C13 | −179.7 (3) |
C7—C4—C5—C6 | 177.4 (2) | C9—C10—C11—C12 | 0.4 (4) |
C4—C5—C6—C1 | 0.5 (4) | C13—C10—C11—C12 | 179.9 (3) |
N1—C1—C6—C5 | −178.8 (3) | C10—C11—C12—N2 | −0.4 (5) |
C2—C1—C6—C5 | −0.2 (4) | C11—C12—N2—C8 | 0.1 (5) |
C5—C4—C7—O2 | 1.7 (4) | C9—C8—N2—C12 | 0.1 (5) |
D—H···A | D—H | H···A | D···A | D—H···A |
O1—H1···N2i | 0.84 (1) | 1.81 (1) | 2.644 (3) | 177 (4) |
N1—H1A···O2ii | 0.86 | 2.32 | 3.049 (3) | 142 |
N1—H1B···O2iii | 0.86 | 2.17 | 3.031 (3) | 174 |
Symmetry codes: (i) x+1, y, z; (ii) x−1, y, z−1; (iii) x−1, −y, z−1/2. |
D—H···A | D—H | H···A | D···A | D—H···A |
O1—H1···N2i | 0.836 (10) | 1.809 (11) | 2.644 (3) | 177 (4) |
N1—H1A···O2ii | 0.86 | 2.32 | 3.049 (3) | 142 |
N1—H1B···O2iii | 0.86 | 2.17 | 3.031 (3) | 174 |
Symmetry codes: (i) x+1, y, z; (ii) x−1, y, z−1; (iii) x−1, −y, z−1/2. |
Acknowledgements
The authors wish to acknowledge the SAIF, IIT, Madras, for the data collection.
References
Akkurt, M., Karaca, S., Jarrahpour, A. A., Zarei, M. & Büyükgüngör, O. (2005). Acta Cryst. E61, o776–o778. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Hemamalini, M. & Fun, H.-K. (2010). Acta Cryst. E66, o2151–o2152. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Kannan, V., Sugumar, P., Brahadeeswaran, S. & Ponnuswamy, M. N. (2012). Acta Cryst. E68, o3187. Google Scholar
Katritzky, A. R., Rees, C. W. & Scriven, E. F. V. (1996). In Comprehensive Heterocyclic Chemistry II. Oxford: Pergamon Press. Google Scholar
Muralidharan, S., Elavarasu, N., Srinivasan, T., Gopalakrishnan, R. & Velmurugan, D. (2013). Acta Cryst. E69, o910. Google Scholar
Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Smith, G. & Wermuth, U. D. (2010). Acta Cryst. E66, o1254. Google Scholar
Spek, A. L. (2009). Acta Cryst. D65, 148–155. Web of Science CrossRef CAS IUCr Journals Google Scholar
Thanigaimani, K., Farhadikoutenaei, A., Khalib, N. C., Arshad, S. & Razak, I. A. (2012). Acta Cryst. E68, o3196–o3197. Google Scholar
Tomaru, S., Matsumoto, S., Kurihara, T., Suzuki, H., Ooba, N. & Kaino, T. (1991). Appl. Phys. Lett. 58, 2583–2585. CrossRef CAS Web of Science Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.