research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 71| Part 2| February 2015| Pages 220-222

Crystal structure of bis­­(thio­urea-κS)bis­­(tri­phenylphosphane-κP)silver(I) nitrate

aDepartment of Chemistry, University of Engineering and Technology, Lahore 54890, Pakistan, and bDepartment of physics, University of Sargodha, Sargodha, Punjab, Pakistan
*Correspondence e-mail: dmntahir_uos@yahoo.com

Edited by W. T. A. Harrison, University of Aberdeen, Scotland (Received 14 January 2015; accepted 22 January 2015; online 28 January 2015)

In the title salt, [Ag(CH4N2S)2(PPh3)2]NO3, the AgI atom is coordinated by two thio­urea S atoms and two tri­phenyl­phosphane P atoms in a distorted tetra­hedral geometry, with bond angles in the range 102.90 (4)–123.29 (4)°. The Ag—S=C bond angles are 101.75 (19) and 111.29 (18)°. In the crystal, the component ions are linked by C—H⋯O, C—H⋯S, N—H⋯O and N—H⋯S hydrogen bonds, generating (10-1) sheets.

1. Chemical context

Silver(I) forms relatively stable compounds with phosphanes and sulfur donor thione ligands due to favorable soft acid–soft base inter­actions (Ferrari et al., 2007[Ferrari, M., Bisceglie, F., Cavalli, E., Pelosi, G., Tarasconi, P. & Verdolino, V. (2007). Inorg. Chim. Acta, 360, 3233-3240.]; Isab et al. 2010[Isab, A. A., Nawaz, S., Saleem, M., Altaf, M., Monim-ul-Mehboob, M., Ahmad, S. & Stoeckli-Evans, H. (2010). Polyhedron, 29, 1251-1256.]; Karagiannidis et al., 1990[Karagiannidis, P., Aslanidis, P., Kokkou, S. & Cheer, C. J. (1990). Inorg. Chim. Acta, 172, 247-251.]; Nawaz et al., 2011[Nawaz, S., Isab, A. A., Merz, K., Vasylyeva, V., Metzler-Nolte, N., Saleem, M. & Ahmad, S. (2011). Polyhedron, 30, 1502-1506.]; Rüffer et al., 2011[Rüffer, T., Lang, H., Nawaz, S., Isab, A. A., Ahmad, S. & Athar, M. M. (2011). J. Struct. Chem. 52, 1025-1029.]). Inter­est in these complexes arises from their luminescent (Ferrari et al., 2007[Ferrari, M., Bisceglie, F., Cavalli, E., Pelosi, G., Tarasconi, P. & Verdolino, V. (2007). Inorg. Chim. Acta, 360, 3233-3240.]), anti­microbial (Ruan et al., 2009[Ruan, B., Tian, Y., Zhou, H., Wu, J., Liu, Z., Zhu, C., Yang, J. & Zhu, H. (2009). J. Organomet. Chem. 694, 2883-2887.]) and anti­tumor properties (Liu et al., 2008[Liu, J. J., Galettis, P., Farr, A., Maharaj, L., Samarasinha, H., McGechan, A. C., Baguley, B. C., Bowen, R. J., Berners-Price, S. J. & McKeage, M. J. (2008). J. Inorg. Biochem. 102, 303-310.]). In the light of this, the crystal structures of several silver(I) complexes of phosphanes and thio­nes have been reported in the literature (Ferrari et al., 2007[Ferrari, M., Bisceglie, F., Cavalli, E., Pelosi, G., Tarasconi, P. & Verdolino, V. (2007). Inorg. Chim. Acta, 360, 3233-3240.]; Isab et al., 2010[Isab, A. A., Nawaz, S., Saleem, M., Altaf, M., Monim-ul-Mehboob, M., Ahmad, S. & Stoeckli-Evans, H. (2010). Polyhedron, 29, 1251-1256.]; Karagiannidis et al., 1990[Karagiannidis, P., Aslanidis, P., Kokkou, S. & Cheer, C. J. (1990). Inorg. Chim. Acta, 172, 247-251.]; Nawaz et al., 2011[Nawaz, S., Isab, A. A., Merz, K., Vasylyeva, V., Metzler-Nolte, N., Saleem, M. & Ahmad, S. (2011). Polyhedron, 30, 1502-1506.]; Rüffer et al., 2011[Rüffer, T., Lang, H., Nawaz, S., Isab, A. A., Ahmad, S. & Athar, M. M. (2011). J. Struct. Chem. 52, 1025-1029.]). Here, we report the crystal structure of a new silver(I) complex of tri­phenyl­phosphane (PPh3) and thio­urea (tu), (I)[link] (Fig. 1[link]).

[Scheme 1]
[Figure 1]
Figure 1
View of the title compound with displacement ellipsoids drawn at the 50% probability level.

2. Structural commentary

The crystal structure of the title complex consists of [Ag(PPh3)2(tu)2]+ cations and NO3 counter-ions. In the cationic complex, [Ag(PPh3)2(tu)2]+, the silver(I) atom is bound to two P atoms of PPh3 and two sulfur atoms of thio­urea, assuming a slightly distorted tetra­hedral geometry (Fig. 1[link]). The spread of bond angles around the Ag atom is 102.90 (4)–123.29 (4)°. The high value of the P1—Ag1—P2 angle [123.29 (4)°] is counterbalanced by the smaller S1—Ag1—S2 bond angle [102.90 (4)°]. The deviation from a tetra­hedral geometry is apparently due to steric inter­action between the bulky phosphane ligands. The Ag—S, Ag—P and other bond lengths (Table 1[link]) are in agreement with those observed in other reported complexes (Ferrari et al., 2007[Ferrari, M., Bisceglie, F., Cavalli, E., Pelosi, G., Tarasconi, P. & Verdolino, V. (2007). Inorg. Chim. Acta, 360, 3233-3240.]; Isab et al., 2010[Isab, A. A., Nawaz, S., Saleem, M., Altaf, M., Monim-ul-Mehboob, M., Ahmad, S. & Stoeckli-Evans, H. (2010). Polyhedron, 29, 1251-1256.]; Karagiannidis et al., 1990[Karagiannidis, P., Aslanidis, P., Kokkou, S. & Cheer, C. J. (1990). Inorg. Chim. Acta, 172, 247-251.]; Nawaz et al., 2011[Nawaz, S., Isab, A. A., Merz, K., Vasylyeva, V., Metzler-Nolte, N., Saleem, M. & Ahmad, S. (2011). Polyhedron, 30, 1502-1506.]; Rüffer et al., 2011[Rüffer, T., Lang, H., Nawaz, S., Isab, A. A., Ahmad, S. & Athar, M. M. (2011). J. Struct. Chem. 52, 1025-1029.]). The nitrate ion is planar, but exhibits low symmetry due to rather strong hydrogen-bonding inter­actions with the NH group of the tu ligand.

Table 1
Selected bond lengths (Å)

Ag1—P2 2.4888 (13) Ag1—S1 2.6263 (13)
Ag1—P1 2.5078 (12) Ag1—S2 2.6683 (13)

In (I)[link], the dihedral angle between the phenyl rings A (C1–C6), B (C7–C12), C (C13–C18), D (C19–C24), E (C25–C30) and F (C31–C36) are as follows: A/B, A/C, B/C, D/E, D/F and E/F = 82.67 (15), 62.77 (17), 86.59 (14), 73.72 (14), 85.01 (16) and 84.06 (17)°, respectively. The thio­urea units G (S1/C37/N1/N2) and H (S2/C38/N3/N4) are almost planar with r.m.s. deviations of 0.0031 and 0.0007 Å, respectively, and are oriented at a dihedral angle of 76.82 (11)° to each other.

3. Supra­molecular features

In the asymmetric unit, strong N—H⋯S, N—H⋯O hydrogen bonds complete distorted S(6) and R22(8) loops. The other hydrogen-bonding inter­actions are of the C—H⋯O, C—H⋯S, N—H⋯O and N—H⋯S types (Table 2[link], Fig. 2[link]) and lead to a two-dimensional polymeric network in the (10[\overline{1}]) plane.

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1A⋯O2i 0.86 2.07 2.899 (5) 161
N1—H1B⋯S2 0.86 2.57 3.417 (4) 169
N2—H2A⋯O2i 0.86 2.54 3.255 (5) 141
N2—H2A⋯O3i 0.86 2.24 2.992 (5) 147
N2—H2B⋯S1ii 0.86 2.66 3.453 (4) 154
N3—H3A⋯O1 0.86 2.09 2.946 (6) 171
N3—H3B⋯S1 0.86 2.91 3.759 (5) 169
N4—H4A⋯O3 0.86 2.26 2.976 (6) 140
C2—H2⋯O1iii 0.93 2.53 3.174 (6) 126
C14—H14⋯S1 0.93 2.92 3.520 (5) 124
Symmetry codes: (i) [-x+{\script{1\over 2}}, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) -x+1, -y, -z+1; (iii) [-x+{\script{1\over 2}}, y+{\script{1\over 2}}, -z+{\script{1\over 2}}].
[Figure 2]
Figure 2
A partial packing diagram (PLATON; Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]) illustrating the formation of sheets of mol­ecules with various loops via hydrogen-bonding inter­actions (shown as dashed lines).

4. Synthesis and crystallization

The title complex was prepared by adding one equivalent of thio­urea dissolved in 10 ml methanol to a 1:1 mixture of AgNO3 and PPh3 in a methanol–aceto­nitrile medium (10 ml and 15 ml, respectively). Mixing resulted in the formation of a white precipitate. After stirring for half an hour, the mixture was filtered and the filtrate was left for crystallization. Colorless crystals of (I)[link] were isolated from the filtrate. The crystal structure of the product obtained by adding two equivalents of thio­urea has already been reported (Isab et al., 2010[Isab, A. A., Nawaz, S., Saleem, M., Altaf, M., Monim-ul-Mehboob, M., Ahmad, S. & Stoeckli-Evans, H. (2010). Polyhedron, 29, 1251-1256.]).

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3[link]. H atoms were positioned geometrically (C—H = 0.93, N—H = 0.86 Å) and refined as riding with Uiso(H) = 1.2Ueq(C, N).

Table 3
Experimental details

Crystal data
Chemical formula [Ag(CH4N2S)2(C18H15P)2]NO3
Mr 846.66
Crystal system, space group Monoclinic, P21/n
Temperature (K) 296
a, b, c (Å) 15.0519 (6), 15.1758 (5), 17.9186 (8)
β (°) 107.886 (2)
V3) 3895.2 (3)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.75
Crystal size (mm) 0.32 × 0.26 × 0.16
 
Data collection
Diffractometer Bruker Kappa APEXII CCD
Absorption correction Multi-scan (SADABS; Bruker, 2005[Bruker (2005). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.798, 0.892
No. of measured, independent and observed [I > 2σ(I)] reflections 30110, 7659, 3813
Rint 0.100
(sin θ/λ)max−1) 0.617
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.051, 0.088, 0.98
No. of reflections 7659
No. of parameters 460
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.47, −0.49
Computer programs: APEX2 and SAINT (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL97 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), ORTEP-3 for Windows and WinGX (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Chemical context top

Silver(I) forms relatively stable compounds with phosphanes and sulfur donor thione ligands due to favorable soft acid–soft base inter­actions (Ferrari et al. 2007; Isab et al. 2010; Karagiannidis et al. 1990; Nawaz et al. 2011; Rüffer et al. 2011). Inter­est in these complexes arises from their luminescent (Ferrari et al. 2007), anti­microbial (Ruan et al. 2009) and anti­tumor properties (Liu et al. 2008). In the light of this, the crystal structures of several silver(I) complexes of phosphanes and thio­nes have been reported in the literature (Ferrari et al. 2007; Isab et al. 2010; Karagiannidis et al. 1990; Nawaz et al. 2011; Rüffer et al. 2011). Here, we report the crystal structure of a new silver(I) complex of tri­phenyl­phosphane (PPh3) and thio­urea (tu), (I) (Fig. 1).

Structural commentary top

The crystal structure of the title complex consists of [Ag(PPh3)2(tu)2]+ cations and NO3- counter-ions. In the cationic complex, [Ag(PPh3)2(tu)2]+, the silver(I) atom is bound to two P atoms of PPh3 and two sulfur atoms of thio­urea assuming a slightly distorted tetra­hedral geometry (Fig. 1). The spread of bond angles around the Ag atom is 102.90 (4)–123.29 (4)°. The high value of the P1—Ag1—P2 angle [123.29 (4)°] is counterbalanced by the smaller S1—Ag1—S2 bond angle [102.90 (4)°]. The deviation from a tetra­hedral geometry is apparently due to steric inter­action between the bulky phosphane ligands. The Ag—S, Ag—P and other bond lengths (Table 1) are in agreement with those observed in other reported complexes (Ferrari et al. 2007; Isab et al. 2010; Karagiannidis et al. 1990; Nawaz et al. 2011; Rüffer et al. 2011). The nitrate ion is planar, but exhibits low symmetry due to rather strong hydrogen-bonding inter­actions with the NH group of the tu ligand.

In (I), the dihedral angle between the phenyl rings A (C1–C6), B (C7–C12), C (C13–C18), D (C19–C24), E (C25–C30) and F (C31–C36) are as follows: A/B, A/C, B/C, D/E, D/F and E/F = 82.67 (15), 62.77 (17), 86.59 (14), 73.72 (14), 85.01 (16) and 84.06 (17)°, respectively. The thio­urea moieties G (S1/C37/N1/N2) and H (S2/C38/N3/N4) are almost planar, with r.m.s. deviations of 0.0031 and 0.0007 Å, respectively, and are oriented at dihedral angle of 76.82 (11)° to each other.

Supra­molecular features top

In the asymmetric unit, there exist strong N—H···S, N—H···O hydrogen bonds which complete distorted S(6) and R22(8) loops. The other hydrogen-bonding inter­actions are of the C—H···O, C—H···S, N—H···O and N—H···S types(Table 1, Fig. 2) and lead to a two-dimensional polymeric network in the (101) plane.

Synthesis and crystallization top

The title complex was prepared by adding one equivalent of thio­urea dissolved in 10 ml methanol to a 1:1 mixture of AgNO3 and PPh3 in a methanol–aceto­nitrile medium (10 ml and 15 ml, respectively). Mixing resulted in the formation of a white precipitate. After stirring for half an hour, the mixture was filtered and the filtrate was left for crystallization. Colorless crystals of (I) were isolated from the filtrate. The crystal structure of the product obtained by adding two equivalents of thio­urea has already been reported (Isab et al., 2010).

Refinement top

Crystal data, data collection and structure refinement details are summarized in Table 3. H atoms were positioned geometrically (C—H = 0.93, N—H = 0.86 Å) and refined as riding with Uiso(H) = 1.2Ueq(C, N).

Related literature top

For the structures and properties of related silver salts, see: Ferrari et al. (2007); Isab et al. (2010); Karagiannidis et al. (1990); Liu, (2008); Nawaz et al. (2011); Ruan et al. (2009); Rüffer et al. (2011).

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2015); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and PLATON (Spek, 2009); software used to prepare material for publication: WinGX (Farrugia, 2012) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. View of the title compound with displacement ellipsoids drawn at the 50% probability level.
[Figure 2] Fig. 2. A partial packing diagram (PLATON; Spek, 2009) illustrating the formation of sheets of molecules with various loops via hydrogen-bonding interactions (shown as dashed lines).
Bis(thiourea-κS)bis(triphenylphosphane-κP)silver(I) nitrate top
Crystal data top
[Ag(CH4N2S)2(C18H15P)2]NO3F(000) = 1736
Mr = 846.66Dx = 1.444 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 15.0519 (6) ÅCell parameters from 3813 reflections
b = 15.1758 (5) Åθ = 2.4–26.0°
c = 17.9186 (8) ŵ = 0.75 mm1
β = 107.886 (2)°T = 296 K
V = 3895.2 (3) Å3Plate, colorless
Z = 40.32 × 0.26 × 0.16 mm
Data collection top
Bruker Kappa APEXII CCD
diffractometer
7659 independent reflections
Radiation source: fine-focus sealed tube3813 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.100
Detector resolution: 8.00 pixels mm-1θmax = 26.0°, θmin = 2.4°
ω scansh = 1818
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
k = 1818
Tmin = 0.798, Tmax = 0.892l = 2218
30110 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.051Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.088H-atom parameters constrained
S = 0.98 w = 1/[σ2(Fo2) + (0.0192P)2]
where P = (Fo2 + 2Fc2)/3
7659 reflections(Δ/σ)max = 0.001
460 parametersΔρmax = 0.47 e Å3
0 restraintsΔρmin = 0.49 e Å3
Crystal data top
[Ag(CH4N2S)2(C18H15P)2]NO3V = 3895.2 (3) Å3
Mr = 846.66Z = 4
Monoclinic, P21/nMo Kα radiation
a = 15.0519 (6) ŵ = 0.75 mm1
b = 15.1758 (5) ÅT = 296 K
c = 17.9186 (8) Å0.32 × 0.26 × 0.16 mm
β = 107.886 (2)°
Data collection top
Bruker Kappa APEXII CCD
diffractometer
7659 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
3813 reflections with I > 2σ(I)
Tmin = 0.798, Tmax = 0.892Rint = 0.100
30110 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0510 restraints
wR(F2) = 0.088H-atom parameters constrained
S = 0.98Δρmax = 0.47 e Å3
7659 reflectionsΔρmin = 0.49 e Å3
460 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ag10.49184 (3)0.18428 (2)0.27125 (2)0.04076 (12)
P10.41457 (8)0.32439 (7)0.29245 (7)0.0352 (3)
P20.63642 (9)0.18065 (8)0.23159 (7)0.0387 (3)
S10.49005 (11)0.08173 (7)0.38885 (7)0.0603 (5)
S20.38377 (10)0.09742 (8)0.14694 (8)0.0520 (4)
N10.4763 (3)0.0525 (2)0.2923 (2)0.0533 (12)
H1A0.47990.10750.28200.064*
H1B0.46090.01470.25470.064*
N20.5177 (3)0.0867 (2)0.4206 (2)0.0532 (12)
H2A0.52060.14120.40830.064*
H2B0.53000.07190.46910.064*
N30.2637 (3)0.1110 (3)0.2272 (3)0.0677 (14)
H3A0.20840.11770.23080.081*
H3B0.31040.10490.26890.081*
N40.2023 (3)0.1198 (3)0.0959 (3)0.0744 (15)
H4A0.14800.12630.10170.089*
H4B0.20820.11950.04960.089*
C10.3488 (3)0.3837 (3)0.2050 (3)0.0334 (12)
C20.3714 (4)0.4676 (3)0.1868 (3)0.0495 (14)
H20.42200.49680.22090.059*
C30.3192 (4)0.5089 (3)0.1181 (3)0.0651 (17)
H30.33530.56520.10650.078*
C40.2445 (4)0.4671 (4)0.0676 (3)0.0652 (17)
H40.20960.49530.02200.078*
C50.2209 (4)0.3842 (4)0.0839 (3)0.0628 (17)
H50.17000.35570.04940.075*
C60.2728 (3)0.3430 (3)0.1515 (3)0.0525 (15)
H60.25650.28620.16190.063*
C70.4982 (3)0.4059 (3)0.3462 (3)0.0362 (12)
C80.5859 (4)0.4048 (3)0.3392 (3)0.0705 (18)
H80.60270.36000.31080.085*
C90.6508 (4)0.4701 (4)0.3740 (4)0.096 (2)
H90.70970.46990.36750.116*
C100.6269 (4)0.5338 (4)0.4176 (4)0.0743 (19)
H100.67060.57610.44270.089*
C110.5400 (4)0.5362 (3)0.4245 (3)0.0619 (17)
H110.52390.58070.45350.074*
C120.4752 (4)0.4727 (3)0.3887 (3)0.0519 (15)
H120.41540.47530.39340.062*
C130.3344 (3)0.3126 (3)0.3499 (3)0.0355 (11)
C140.3658 (4)0.2674 (3)0.4199 (3)0.0581 (16)
H140.42740.24820.43710.070*
C150.3088 (5)0.2502 (3)0.4649 (3)0.0699 (18)
H150.33210.21960.51180.084*
C160.2181 (4)0.2777 (3)0.4412 (3)0.0617 (16)
H160.17840.26460.47050.074*
C170.1874 (4)0.3246 (4)0.3739 (4)0.090 (2)
H170.12610.34490.35790.108*
C180.2442 (4)0.3433 (4)0.3282 (3)0.0687 (18)
H180.22140.37670.28280.082*
C190.7498 (3)0.1714 (3)0.3064 (3)0.0412 (13)
C200.7566 (4)0.1962 (3)0.3825 (3)0.0548 (15)
H200.70290.21160.39480.066*
C210.8416 (5)0.1982 (4)0.4402 (4)0.0734 (19)
H210.84550.21460.49110.088*
C220.9209 (5)0.1758 (4)0.4214 (4)0.082 (2)
H220.97880.17880.45970.098*
C230.9158 (4)0.1494 (4)0.3484 (4)0.080 (2)
H230.96990.13350.33690.096*
C240.8308 (4)0.1458 (3)0.2907 (3)0.0594 (16)
H240.82750.12610.24080.071*
C250.6492 (4)0.2776 (3)0.1747 (3)0.0388 (13)
C260.5705 (4)0.3294 (3)0.1437 (3)0.0503 (14)
H260.51410.31250.15050.060*
C270.5749 (4)0.4057 (3)0.1031 (3)0.0648 (17)
H270.52160.43960.08240.078*
C280.6582 (5)0.4316 (3)0.0931 (3)0.0632 (18)
H280.66160.48370.06680.076*
C290.7358 (4)0.3803 (4)0.1219 (3)0.0628 (17)
H290.79170.39660.11380.075*
C300.7314 (3)0.3043 (3)0.1632 (3)0.0500 (14)
H300.78510.27060.18360.060*
C310.6328 (3)0.0869 (3)0.1666 (3)0.0395 (13)
C320.6316 (4)0.0032 (3)0.1975 (3)0.0581 (16)
H320.63920.00350.25070.070*
C330.6189 (4)0.0706 (3)0.1495 (4)0.0638 (17)
H330.61670.12660.16990.077*
C340.6098 (4)0.0596 (4)0.0717 (4)0.0653 (18)
H340.60140.10870.03920.078*
C350.6127 (4)0.0224 (4)0.0410 (3)0.0636 (17)
H350.60770.02880.01180.076*
C360.6233 (3)0.0960 (3)0.0886 (3)0.0486 (14)
H360.62400.15190.06740.058*
C370.4944 (3)0.0262 (3)0.3655 (3)0.0411 (13)
C380.2767 (4)0.1101 (3)0.1581 (4)0.0501 (15)
N50.0359 (4)0.2164 (3)0.1905 (3)0.0634 (15)
O10.0756 (3)0.1552 (2)0.2336 (2)0.0767 (13)
O20.0238 (3)0.2622 (2)0.2067 (3)0.0906 (15)
O30.0575 (3)0.2328 (2)0.1292 (3)0.0802 (13)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ag10.0430 (2)0.03710 (19)0.0476 (2)0.0009 (2)0.0218 (2)0.0015 (2)
P10.0355 (8)0.0314 (7)0.0395 (8)0.0020 (6)0.0128 (7)0.0002 (6)
P20.0383 (8)0.0434 (7)0.0382 (8)0.0034 (7)0.0173 (7)0.0006 (7)
S10.1117 (14)0.0337 (7)0.0409 (8)0.0012 (8)0.0313 (9)0.0007 (6)
S20.0517 (10)0.0620 (9)0.0426 (9)0.0022 (7)0.0148 (8)0.0110 (7)
N10.089 (4)0.037 (2)0.041 (3)0.001 (2)0.030 (3)0.000 (2)
N20.083 (4)0.036 (2)0.038 (3)0.007 (2)0.013 (3)0.000 (2)
N30.056 (3)0.078 (3)0.077 (4)0.002 (2)0.032 (3)0.007 (3)
N40.045 (3)0.087 (3)0.079 (4)0.007 (3)0.001 (3)0.003 (3)
C10.037 (3)0.036 (3)0.032 (3)0.005 (2)0.018 (3)0.001 (2)
C20.058 (4)0.045 (3)0.044 (3)0.002 (3)0.014 (3)0.005 (3)
C30.072 (5)0.057 (4)0.067 (4)0.004 (3)0.021 (4)0.020 (3)
C40.069 (5)0.079 (4)0.043 (4)0.016 (4)0.011 (4)0.018 (3)
C50.048 (4)0.071 (4)0.057 (4)0.007 (3)0.004 (3)0.001 (3)
C60.050 (4)0.051 (3)0.049 (4)0.001 (3)0.004 (3)0.007 (3)
C70.037 (3)0.035 (3)0.034 (3)0.001 (2)0.008 (3)0.001 (2)
C80.050 (4)0.075 (4)0.095 (5)0.014 (3)0.034 (4)0.042 (4)
C90.049 (4)0.122 (6)0.128 (6)0.028 (4)0.042 (5)0.055 (5)
C100.065 (5)0.078 (4)0.081 (5)0.028 (4)0.023 (4)0.028 (4)
C110.073 (5)0.047 (3)0.060 (4)0.001 (3)0.012 (4)0.015 (3)
C120.051 (4)0.040 (3)0.061 (4)0.006 (3)0.012 (3)0.012 (3)
C130.038 (3)0.033 (2)0.038 (3)0.003 (2)0.017 (3)0.001 (2)
C140.060 (4)0.063 (3)0.061 (4)0.021 (3)0.032 (4)0.012 (3)
C150.098 (6)0.063 (4)0.066 (4)0.023 (4)0.050 (5)0.024 (3)
C160.068 (5)0.071 (4)0.062 (4)0.004 (3)0.042 (4)0.006 (3)
C170.048 (4)0.159 (6)0.068 (5)0.022 (5)0.026 (4)0.015 (5)
C180.051 (4)0.109 (5)0.052 (4)0.020 (4)0.025 (4)0.027 (3)
C190.040 (3)0.041 (3)0.043 (3)0.001 (3)0.013 (3)0.007 (2)
C200.056 (4)0.063 (4)0.044 (4)0.001 (3)0.014 (3)0.004 (3)
C210.086 (5)0.074 (4)0.053 (4)0.016 (4)0.011 (4)0.001 (3)
C220.065 (5)0.085 (5)0.071 (5)0.020 (4)0.016 (5)0.032 (4)
C230.048 (5)0.095 (5)0.093 (6)0.016 (4)0.015 (5)0.040 (4)
C240.048 (4)0.075 (4)0.058 (4)0.011 (3)0.019 (4)0.013 (3)
C250.036 (3)0.049 (3)0.031 (3)0.004 (3)0.010 (3)0.001 (2)
C260.052 (4)0.061 (3)0.045 (3)0.002 (3)0.026 (3)0.004 (3)
C270.072 (5)0.064 (4)0.062 (4)0.022 (3)0.025 (4)0.025 (3)
C280.097 (6)0.044 (3)0.055 (4)0.013 (4)0.033 (4)0.001 (3)
C290.074 (5)0.058 (4)0.070 (4)0.019 (3)0.043 (4)0.000 (3)
C300.040 (3)0.060 (4)0.057 (4)0.007 (3)0.025 (3)0.008 (3)
C310.037 (3)0.048 (3)0.040 (3)0.002 (2)0.022 (3)0.000 (3)
C320.074 (5)0.050 (3)0.058 (4)0.004 (3)0.031 (4)0.007 (3)
C330.071 (5)0.040 (3)0.085 (5)0.003 (3)0.030 (4)0.003 (3)
C340.059 (4)0.059 (4)0.074 (5)0.002 (3)0.016 (4)0.021 (4)
C350.068 (5)0.074 (4)0.047 (4)0.014 (3)0.015 (3)0.008 (3)
C360.046 (4)0.050 (3)0.050 (4)0.008 (3)0.015 (3)0.002 (3)
C370.050 (4)0.036 (3)0.039 (3)0.002 (2)0.016 (3)0.008 (3)
C380.049 (4)0.039 (3)0.061 (4)0.001 (3)0.015 (4)0.007 (3)
N50.059 (4)0.033 (3)0.106 (5)0.008 (3)0.036 (4)0.002 (3)
O10.079 (3)0.051 (2)0.103 (3)0.016 (2)0.032 (3)0.020 (2)
O20.079 (3)0.051 (2)0.164 (4)0.017 (2)0.070 (3)0.019 (3)
O30.084 (3)0.060 (2)0.109 (4)0.007 (2)0.047 (3)0.020 (2)
Geometric parameters (Å, º) top
Ag1—P22.4888 (13)C13—C141.379 (6)
Ag1—P12.5078 (12)C14—C151.371 (7)
Ag1—S12.6263 (13)C14—H140.9300
Ag1—S22.6683 (13)C15—C161.365 (7)
P1—C11.815 (4)C15—H150.9300
P1—C71.816 (4)C16—C171.353 (7)
P1—C131.821 (5)C16—H160.9300
P2—C191.823 (5)C17—C181.382 (7)
P2—C311.828 (5)C17—H170.9300
P2—C251.834 (5)C18—H180.9300
S1—C371.698 (4)C19—C201.387 (6)
S2—C381.695 (6)C19—C241.388 (6)
N1—C371.317 (5)C20—C211.376 (6)
N1—H1A0.8600C20—H200.9300
N1—H1B0.8600C21—C221.378 (8)
N2—C371.315 (5)C21—H210.9300
N2—H2A0.8600C22—C231.348 (8)
N2—H2B0.8600C22—H220.9300
N3—C381.312 (6)C23—C241.377 (7)
N3—H3A0.8600C23—H230.9300
N3—H3B0.8600C24—H240.9300
N4—C381.324 (6)C25—C301.376 (6)
N4—H4A0.8600C25—C261.387 (6)
N4—H4B0.8600C26—C271.380 (6)
C1—C21.382 (5)C26—H260.9300
C1—C61.391 (6)C27—C281.377 (7)
C2—C31.389 (6)C27—H270.9300
C2—H20.9300C28—C291.366 (7)
C3—C41.363 (6)C28—H280.9300
C3—H30.9300C29—C301.382 (6)
C4—C51.363 (6)C29—H290.9300
C4—H40.9300C30—H300.9300
C5—C61.374 (6)C31—C361.369 (6)
C5—H50.9300C31—C321.387 (6)
C6—H60.9300C32—C331.390 (6)
C7—C81.364 (6)C32—H320.9300
C7—C121.375 (6)C33—C341.368 (7)
C8—C91.396 (7)C33—H330.9300
C8—H80.9300C34—C351.367 (7)
C9—C101.359 (7)C34—H340.9300
C9—H90.9300C35—C361.384 (6)
C10—C111.352 (7)C35—H350.9300
C10—H100.9300C36—H360.9300
C11—C121.381 (6)N5—O11.237 (5)
C11—H110.9300N5—O21.241 (5)
C12—H120.9300N5—O31.261 (5)
C13—C181.373 (6)
P2—Ag1—P1123.29 (4)C16—C15—H15119.8
P2—Ag1—S1116.19 (5)C14—C15—H15119.8
P1—Ag1—S1105.15 (4)C17—C16—C15118.2 (6)
P2—Ag1—S296.49 (4)C17—C16—H16120.9
P1—Ag1—S2110.67 (4)C15—C16—H16120.9
S1—Ag1—S2102.90 (4)C16—C17—C18122.1 (6)
C1—P1—C7103.0 (2)C16—C17—H17118.9
C1—P1—C13104.9 (2)C18—C17—H17118.9
C7—P1—C13103.8 (2)C13—C18—C17120.0 (5)
C1—P1—Ag1116.41 (14)C13—C18—H18120.0
C7—P1—Ag1112.30 (16)C17—C18—H18120.0
C13—P1—Ag1114.92 (14)C20—C19—C24118.0 (5)
C19—P2—C31104.3 (2)C20—C19—P2118.2 (4)
C19—P2—C25103.7 (2)C24—C19—P2123.7 (4)
C31—P2—C25105.0 (2)C21—C20—C19121.0 (5)
C19—P2—Ag1119.64 (17)C21—C20—H20119.5
C31—P2—Ag1109.93 (16)C19—C20—H20119.5
C25—P2—Ag1113.04 (17)C20—C21—C22119.1 (6)
C37—S1—Ag1111.29 (18)C20—C21—H21120.4
C38—S2—Ag1101.75 (19)C22—C21—H21120.4
C37—N1—H1A120.0C23—C22—C21121.0 (6)
C37—N1—H1B120.0C23—C22—H22119.5
H1A—N1—H1B120.0C21—C22—H22119.5
C37—N2—H2A120.0C22—C23—C24120.1 (7)
C37—N2—H2B120.0C22—C23—H23119.9
H2A—N2—H2B120.0C24—C23—H23119.9
C38—N3—H3A120.0C23—C24—C19120.6 (5)
C38—N3—H3B120.0C23—C24—H24119.7
H3A—N3—H3B120.0C19—C24—H24119.7
C38—N4—H4A120.0C30—C25—C26118.1 (4)
C38—N4—H4B120.0C30—C25—P2124.9 (4)
H4A—N4—H4B120.0C26—C25—P2117.0 (4)
C2—C1—C6117.2 (4)C27—C26—C25120.8 (5)
C2—C1—P1123.5 (4)C27—C26—H26119.6
C6—C1—P1119.3 (3)C25—C26—H26119.6
C1—C2—C3120.7 (5)C28—C27—C26120.1 (5)
C1—C2—H2119.6C28—C27—H27120.0
C3—C2—H2119.6C26—C27—H27120.0
C4—C3—C2120.3 (5)C29—C28—C27119.6 (5)
C4—C3—H3119.8C29—C28—H28120.2
C2—C3—H3119.8C27—C28—H28120.2
C3—C4—C5120.2 (5)C28—C29—C30120.2 (5)
C3—C4—H4119.9C28—C29—H29119.9
C5—C4—H4119.9C30—C29—H29119.9
C4—C5—C6119.5 (5)C25—C30—C29121.2 (5)
C4—C5—H5120.2C25—C30—H30119.4
C6—C5—H5120.2C29—C30—H30119.4
C5—C6—C1122.0 (5)C36—C31—C32119.4 (4)
C5—C6—H6119.0C36—C31—P2123.0 (4)
C1—C6—H6119.0C32—C31—P2117.4 (4)
C8—C7—C12118.4 (4)C31—C32—C33120.4 (5)
C8—C7—P1118.4 (4)C31—C32—H32119.8
C12—C7—P1123.0 (4)C33—C32—H32119.8
C7—C8—C9121.0 (5)C34—C33—C32119.0 (5)
C7—C8—H8119.5C34—C33—H33120.5
C9—C8—H8119.5C32—C33—H33120.5
C10—C9—C8119.3 (6)C35—C34—C33121.0 (5)
C10—C9—H9120.3C35—C34—H34119.5
C8—C9—H9120.3C33—C34—H34119.5
C11—C10—C9120.4 (6)C34—C35—C36119.9 (5)
C11—C10—H10119.8C34—C35—H35120.0
C9—C10—H10119.8C36—C35—H35120.0
C10—C11—C12120.3 (5)C31—C36—C35120.3 (5)
C10—C11—H11119.8C31—C36—H36119.9
C12—C11—H11119.8C35—C36—H36119.9
C7—C12—C11120.6 (5)N2—C37—N1117.6 (4)
C7—C12—H12119.7N2—C37—S1120.7 (4)
C11—C12—H12119.7N1—C37—S1121.8 (4)
C18—C13—C14117.3 (5)N3—C38—N4117.5 (6)
C18—C13—P1125.1 (4)N3—C38—S2122.4 (5)
C14—C13—P1117.5 (4)N4—C38—S2120.1 (5)
C15—C14—C13121.9 (5)O1—N5—O2121.3 (6)
C15—C14—H14119.1O1—N5—O3119.3 (5)
C13—C14—H14119.1O2—N5—O3119.4 (5)
C16—C15—C14120.4 (5)
C7—P1—C1—C26.2 (5)Ag1—P2—C19—C2021.5 (4)
C13—P1—C1—C2114.6 (4)C31—P2—C19—C2439.0 (5)
Ag1—P1—C1—C2117.2 (4)C25—P2—C19—C2470.7 (4)
C7—P1—C1—C6175.4 (4)Ag1—P2—C19—C24162.3 (3)
C13—P1—C1—C667.0 (4)C24—C19—C20—C212.2 (7)
Ag1—P1—C1—C661.2 (4)P2—C19—C20—C21174.2 (4)
C6—C1—C2—C30.4 (7)C19—C20—C21—C220.4 (8)
P1—C1—C2—C3178.8 (4)C20—C21—C22—C232.1 (9)
C1—C2—C3—C40.3 (8)C21—C22—C23—C241.0 (9)
C2—C3—C4—C50.6 (9)C22—C23—C24—C191.7 (8)
C3—C4—C5—C60.1 (9)C20—C19—C24—C233.2 (7)
C4—C5—C6—C10.6 (8)P2—C19—C24—C23172.9 (4)
C2—C1—C6—C50.8 (7)C19—P2—C25—C3030.9 (5)
P1—C1—C6—C5179.3 (4)C31—P2—C25—C3078.3 (5)
C1—P1—C7—C897.0 (4)Ag1—P2—C25—C30161.9 (4)
C13—P1—C7—C8153.8 (4)C19—P2—C25—C26146.5 (4)
Ag1—P1—C7—C829.0 (5)C31—P2—C25—C26104.4 (4)
C1—P1—C7—C1277.7 (4)Ag1—P2—C25—C2615.4 (4)
C13—P1—C7—C1231.5 (4)C30—C25—C26—C270.3 (7)
Ag1—P1—C7—C12156.2 (4)P2—C25—C26—C27177.2 (4)
C12—C7—C8—C90.2 (9)C25—C26—C27—C280.3 (8)
P1—C7—C8—C9174.8 (5)C26—C27—C28—C291.6 (9)
C7—C8—C9—C102.1 (10)C27—C28—C29—C302.1 (9)
C8—C9—C10—C112.7 (10)C26—C25—C30—C290.2 (7)
C9—C10—C11—C121.3 (10)P2—C25—C30—C29177.5 (4)
C8—C7—C12—C111.2 (8)C28—C29—C30—C251.4 (8)
P1—C7—C12—C11175.9 (4)C19—P2—C31—C36119.9 (5)
C10—C11—C12—C70.6 (8)C25—P2—C31—C3611.2 (5)
C1—P1—C13—C180.2 (5)Ag1—P2—C31—C36110.7 (4)
C7—P1—C13—C18108.0 (5)C19—P2—C31—C3265.8 (4)
Ag1—P1—C13—C18129.0 (4)C25—P2—C31—C32174.5 (4)
C1—P1—C13—C14178.6 (4)Ag1—P2—C31—C3263.7 (4)
C7—P1—C13—C1473.6 (4)C36—C31—C32—C331.3 (8)
Ag1—P1—C13—C1449.4 (4)P2—C31—C32—C33173.2 (4)
C18—C13—C14—C152.8 (8)C31—C32—C33—C341.5 (9)
P1—C13—C14—C15175.8 (4)C32—C33—C34—C350.1 (9)
C13—C14—C15—C160.0 (8)C33—C34—C35—C361.3 (9)
C14—C15—C16—C172.2 (9)C32—C31—C36—C350.1 (8)
C15—C16—C17—C181.5 (9)P2—C31—C36—C35174.3 (4)
C14—C13—C18—C173.3 (8)C34—C35—C36—C311.4 (8)
P1—C13—C18—C17175.1 (4)Ag1—S1—C37—N2162.8 (4)
C16—C17—C18—C131.3 (10)Ag1—S1—C37—N116.2 (5)
C31—P2—C19—C20144.9 (4)Ag1—S2—C38—N335.5 (4)
C25—P2—C19—C20105.5 (4)Ag1—S2—C38—N4144.3 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O2i0.862.072.899 (5)161
N1—H1B···S20.862.573.417 (4)169
N2—H2A···O2i0.862.543.255 (5)141
N2—H2A···O3i0.862.242.992 (5)147
N2—H2B···S1ii0.862.663.453 (4)154
N3—H3A···O10.862.092.946 (6)171
N3—H3B···S10.862.913.759 (5)169
N4—H4A···O30.862.262.976 (6)140
C2—H2···O1iii0.932.533.174 (6)126
C14—H14···S10.932.923.520 (5)124
Symmetry codes: (i) x+1/2, y1/2, z+1/2; (ii) x+1, y, z+1; (iii) x+1/2, y+1/2, z+1/2.
Selected bond lengths (Å) top
Ag1—P22.4888 (13)Ag1—S12.6263 (13)
Ag1—P12.5078 (12)Ag1—S22.6683 (13)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O2i0.862.072.899 (5)161
N1—H1B···S20.862.573.417 (4)169
N2—H2A···O2i0.862.543.255 (5)141
N2—H2A···O3i0.862.242.992 (5)147
N2—H2B···S1ii0.862.663.453 (4)154
N3—H3A···O10.862.092.946 (6)171
N3—H3B···S10.862.913.759 (5)169
N4—H4A···O30.862.262.976 (6)140
C2—H2···O1iii0.932.533.174 (6)126
C14—H14···S10.932.923.520 (5)124
Symmetry codes: (i) x+1/2, y1/2, z+1/2; (ii) x+1, y, z+1; (iii) x+1/2, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formula[Ag(CH4N2S)2(C18H15P)2]NO3
Mr846.66
Crystal system, space groupMonoclinic, P21/n
Temperature (K)296
a, b, c (Å)15.0519 (6), 15.1758 (5), 17.9186 (8)
β (°) 107.886 (2)
V3)3895.2 (3)
Z4
Radiation typeMo Kα
µ (mm1)0.75
Crystal size (mm)0.32 × 0.26 × 0.16
Data collection
DiffractometerBruker Kappa APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2005)
Tmin, Tmax0.798, 0.892
No. of measured, independent and
observed [I > 2σ(I)] reflections
30110, 7659, 3813
Rint0.100
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.051, 0.088, 0.98
No. of reflections7659
No. of parameters460
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.47, 0.49

Computer programs: APEX2 (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2015), ORTEP-3 for Windows (Farrugia, 2012) and PLATON (Spek, 2009), WinGX (Farrugia, 2012) and PLATON (Spek, 2009).

 

Acknowledgements

The authors acknowledge the provision of funds for the purchase of a diffractometer and encouragement by Dr Muhammad Akram Chaudhary, Vice Chancellor, University of Sargodha, Pakistan.

References

First citationBruker (2005). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFerrari, M., Bisceglie, F., Cavalli, E., Pelosi, G., Tarasconi, P. & Verdolino, V. (2007). Inorg. Chim. Acta, 360, 3233–3240.  Google Scholar
First citationIsab, A. A., Nawaz, S., Saleem, M., Altaf, M., Monim-ul-Mehboob, M., Ahmad, S. & Stoeckli-Evans, H. (2010). Polyhedron, 29, 1251–1256.  Web of Science CSD CrossRef CAS Google Scholar
First citationKaragiannidis, P., Aslanidis, P., Kokkou, S. & Cheer, C. J. (1990). Inorg. Chim. Acta, 172, 247–251.  Google Scholar
First citationLiu, J. J., Galettis, P., Farr, A., Maharaj, L., Samarasinha, H., McGechan, A. C., Baguley, B. C., Bowen, R. J., Berners-Price, S. J. & McKeage, M. J. (2008). J. Inorg. Biochem. 102, 303–310.  Web of Science CrossRef PubMed CAS Google Scholar
First citationNawaz, S., Isab, A. A., Merz, K., Vasylyeva, V., Metzler-Nolte, N., Saleem, M. & Ahmad, S. (2011). Polyhedron, 30, 1502–1506.  Web of Science CSD CrossRef CAS Google Scholar
First citationRuan, B., Tian, Y., Zhou, H., Wu, J., Liu, Z., Zhu, C., Yang, J. & Zhu, H. (2009). J. Organomet. Chem. 694, 2883–2887.  Web of Science CSD CrossRef CAS Google Scholar
First citationRüffer, T., Lang, H., Nawaz, S., Isab, A. A., Ahmad, S. & Athar, M. M. (2011). J. Struct. Chem. 52, 1025–1029.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 71| Part 2| February 2015| Pages 220-222
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds