organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 71| Part 2| February 2015| Pages o137-o138

Crystal structure of 3-{(E)-[(3,4-di­chloro­phen­yl)imino]­meth­yl}benzene-1,2-diol

aDepartment of Physics, University of Sargodha, Sargodha, Punjab, Pakistan, bDepartment of Chemistry, University of Sargodha, Sargodha, Pakistan, cDepartment of Chemistry, Chenab College, Jhang, Punjab, Pakistan, and dDrug Controller, Sir Ganga Ram Hospital, Lahore, Pakistan
*Correspondence e-mail: dmntahir_uos@yahoo.com

Edited by W. T. A. Harrison, University of Aberdeen, Scotland (Received 15 January 2015; accepted 22 January 2015; online 28 January 2015)

In the title Schiff base, C13H9Cl2NO2, which arose from the condensation of 3,4-di­chloro­aniline with 2,3-di­hydroxy­benzaldehyde, the dihedral angle between the aromatic rings is 44.74 (13)°. Intra­molecular O—H⋯O and O—H⋯N hydrogen bonds close S(5) and S(6) rings, respectively. In the crystal, inversion dimers linked by pairs of O—H⋯O hydrogen bonds generate R22(10) loops. A weak C—H⋯π inter­action is also observed.

1. Related literature

For related structures, see: Fun et al. (2011[Fun, H.-K., Quah, C. K., Viveka, S., Madhukumar, D. J. & Nagaraja, G. K. (2011). Acta Cryst. E67, o1934.]); Keleşoğlu et al. (2009[Keleşoğlu, Z., Büyükgüngör, O., Albayrak, Ç. & Odabaşoğlu, M. (2009). Acta Cryst. E65, o2410-o2411.]); Shuja et al. (2006[Shuja, S., Ali, S., Shahzadi, S., Labat, G. & Stoeckli-Evans, H. (2006). Acta Cryst. E62, o4789-o4790.]); Tahir et al. (2012[Tahir, M. N., Khan, A. H., Iqbal, M. S., Munir, C. & Aziz, T. (2012). Acta Cryst. E68, o2125.]); Temel et al. (2007[Temel, E., Albayrak, Ç., Odabaşoğlu, M. & Büyükgüngör, O. (2007). Acta Cryst. E63, o2642.]).

[Scheme 1]

2. Experimental

2.1. Crystal data

  • C13H9Cl2NO2

  • Mr = 282.11

  • Triclinic, [P \overline 1]

  • a = 6.4237 (8) Å

  • b = 8.8412 (11) Å

  • c = 11.7799 (15) Å

  • α = 88.606 (6)°

  • β = 76.588 (6)°

  • γ = 70.193 (5)°

  • V = 611.20 (13) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.52 mm−1

  • T = 296 K

  • 0.34 × 0.26 × 0.20 mm

2.2. Data collection

  • Bruker Kappa APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005[Bruker (2005). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.844, Tmax = 0.902

  • 8896 measured reflections

  • 2671 independent reflections

  • 1866 reflections with I > 2σ(I)

  • Rint = 0.042

2.3. Refinement

  • R[F2 > 2σ(F2)] = 0.052

  • wR(F2) = 0.164

  • S = 1.04

  • 2671 reflections

  • 165 parameters

  • H-atom parameters constrained

  • Δρmax = 0.33 e Å−3

  • Δρmin = −0.33 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 is the centroid of the benzene ring (C1–C6).

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯N1 0.82 1.89 2.608 (3) 146
O2—H2⋯O1 0.82 2.28 2.729 (3) 115
O2—H2⋯O1i 0.82 2.20 2.846 (3) 136
C12—H12⋯Cg1ii 0.93 2.83 3.538 (4) 134
Symmetry codes: (i) -x-1, -y+2, -z+1; (ii) x+1, y-1, z.

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: WinGX (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and PLATON.

Supporting information


Comment top

The title compound (I), (Fig. 1) has been synthesized for forming different metal complexes.

The crystal structures of 2-[(E)-(2,4,6-trichlorophenyl)iminomethyl] phenol (Fun et al., 2011), (E)-3-((2-fluorophenylimino)methyl) benzene-1,2-diol (Temel et al., 2007), (E)-3-[(3-bromophenyl) iminomethyl]benzene-1,2-diol (Kelesoglu et al., 2009), 4-([(E)-2, 3-dihydroxybenzylidene]amino)-N-(5-methyl-1,2-oxazol-3-yl)benzenesulfonamide (Tahir et al., 2012) and 3-(4-bromophenyliminomethyl)benzene-1,2-diol (Shuja et al., 2006) have been published which are related to the title compound due to two moieties of the Schiff base.

In (I) the moieties of 2,3-dihydroxybenzaldehyde A (C1–C7/O1/O2) and 3,4-dichloroanilline B (C8—13/N1/CL1/CL2) are almost planar with r.m.s. deviation of 0.0225 and 0.0172 Å, respectively. The dihedral angle between A/B is 44.219 (50)°. In (I), S(5) and S(6) ring motifs are present due to H-bondings of O—H···O and O—H···N types (Table 1, Fig. 2). The molecules are dimerized due to bifercated H-bonding of O—H···O type (Table 1, Fig. 2). There exist C—H···π (Table 1) and π···π interactions to stablize the dimmers. A π···π interactions between Cg1···Cg1i [i = -x, 2 - y, 1 - z] at a distance of 3.9101 (15) Å, where Cg1 is centroid of benzene ring (C1—C6) exists. Similarly, there is π···π interactions between Cg2···Cg2ii [il = 1 - x, 1 - y, - z] at a distance of 4.1194 (17) Å, where Cg2 is centroid of benzene ring (C8—C13).

Related literature top

For related structures, see: Fun et al. (2011); Kelesoglu et al. (2009); Shuja et al. (2006); Tahir et al. (2012); Temel et al. (2007).

Experimental top

Equimolar quantities of 3,4-dichloroanilline and 2,3-dihydroxybenzaldehyde were refluxed in methanol for 2 h. The resulting mixture was evaporated to grow crystals. Red prisms were obtained after 48 h.

Refinement top

The H-atoms were positioned geometrically (C–H = 0.93 Å, O—H = 0.82 Å) and refined as riding with Uiso(H) = xUeq(C, O), where x = 1.5 for hydroxy and x = 1.2 for other H-atoms.

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2015); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and PLATON (Spek, 2009); software used to prepare material for publication: WinGX (Farrugia, 2012) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. View of the title compound with displacement ellipsoids drawn at the 50% probability level.
[Figure 2] Fig. 2. The partial packing (PLATON; Spek, 2009), which shows that molecules form dimers due to O—H···O interactions.
3-{(E)-[(3,4-Dichlorophenyl)imino]methyl}benzene-1,2-diol top
Crystal data top
C13H9Cl2NO2Z = 2
Mr = 282.11F(000) = 284
Triclinic, P1Dx = 1.533 Mg m3
a = 6.4237 (8) ÅMo Kα radiation, λ = 0.71073 Å
b = 8.8412 (11) ÅCell parameters from 1866 reflections
c = 11.7799 (15) Åθ = 1.8–27.0°
α = 88.606 (6)°µ = 0.52 mm1
β = 76.588 (6)°T = 296 K
γ = 70.193 (5)°Prism, red
V = 611.20 (13) Å30.34 × 0.26 × 0.20 mm
Data collection top
Bruker Kappa APEXII CCD
diffractometer
2671 independent reflections
Radiation source: fine-focus sealed tube1866 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.042
Detector resolution: 7.80 pixels mm-1θmax = 27.0°, θmin = 1.8°
ω scansh = 87
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
k = 119
Tmin = 0.844, Tmax = 0.902l = 1415
8896 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.052Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.164H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0781P)2 + 0.3755P]
where P = (Fo2 + 2Fc2)/3
2671 reflections(Δ/σ)max < 0.001
165 parametersΔρmax = 0.33 e Å3
0 restraintsΔρmin = 0.33 e Å3
Crystal data top
C13H9Cl2NO2γ = 70.193 (5)°
Mr = 282.11V = 611.20 (13) Å3
Triclinic, P1Z = 2
a = 6.4237 (8) ÅMo Kα radiation
b = 8.8412 (11) ŵ = 0.52 mm1
c = 11.7799 (15) ÅT = 296 K
α = 88.606 (6)°0.34 × 0.26 × 0.20 mm
β = 76.588 (6)°
Data collection top
Bruker Kappa APEXII CCD
diffractometer
2671 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
1866 reflections with I > 2σ(I)
Tmin = 0.844, Tmax = 0.902Rint = 0.042
8896 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0520 restraints
wR(F2) = 0.164H-atom parameters constrained
S = 1.04Δρmax = 0.33 e Å3
2671 reflectionsΔρmin = 0.33 e Å3
165 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.24642 (15)0.26936 (10)0.01956 (8)0.0657 (3)
Cl20.73742 (15)0.11968 (10)0.06575 (9)0.0707 (3)
O10.2559 (3)0.9592 (2)0.38833 (19)0.0508 (5)
H10.16710.87940.34730.076*
O20.4973 (3)1.2453 (3)0.5138 (2)0.0594 (6)
H20.53531.16790.50370.089*
N10.1345 (4)0.7735 (3)0.2617 (2)0.0452 (6)
C10.1526 (5)1.0707 (3)0.3887 (2)0.0388 (6)
C20.2793 (5)1.2167 (3)0.4525 (2)0.0440 (6)
C30.1834 (5)1.3338 (3)0.4543 (2)0.0478 (7)
H30.26941.43130.49640.057*
C40.0401 (5)1.3083 (4)0.3943 (3)0.0516 (7)
H40.10301.38860.39540.062*
C50.1694 (5)1.1613 (4)0.3322 (3)0.0494 (7)
H50.32011.14270.29320.059*
C60.0738 (5)1.0419 (3)0.3285 (2)0.0409 (6)
C70.2124 (5)0.8875 (3)0.2674 (2)0.0440 (6)
H70.36380.87080.23090.053*
C80.2859 (5)0.6190 (3)0.2123 (2)0.0433 (6)
C90.2070 (5)0.5315 (3)0.1462 (2)0.0464 (7)
H90.06140.57510.13340.056*
C100.3479 (5)0.3784 (3)0.0998 (2)0.0447 (6)
C110.5634 (5)0.3123 (3)0.1205 (2)0.0471 (7)
C120.6396 (5)0.3969 (4)0.1879 (3)0.0490 (7)
H120.78340.35140.20270.059*
C130.5000 (5)0.5513 (3)0.2339 (2)0.0480 (7)
H130.55110.60910.27930.058*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0749 (6)0.0607 (5)0.0663 (5)0.0278 (4)0.0167 (4)0.0188 (4)
Cl20.0675 (6)0.0459 (5)0.0815 (6)0.0049 (4)0.0040 (4)0.0243 (4)
O10.0505 (11)0.0377 (10)0.0591 (13)0.0162 (9)0.0005 (9)0.0157 (9)
O20.0502 (12)0.0463 (12)0.0765 (15)0.0184 (10)0.0001 (11)0.0216 (11)
N10.0488 (13)0.0387 (12)0.0405 (12)0.0089 (10)0.0041 (10)0.0057 (10)
C10.0451 (14)0.0348 (13)0.0361 (13)0.0133 (11)0.0086 (11)0.0023 (10)
C20.0503 (16)0.0365 (14)0.0419 (14)0.0111 (12)0.0094 (12)0.0072 (11)
C30.0619 (18)0.0362 (14)0.0423 (15)0.0117 (13)0.0133 (13)0.0077 (12)
C40.067 (2)0.0455 (16)0.0519 (17)0.0291 (15)0.0173 (15)0.0016 (13)
C50.0536 (17)0.0495 (16)0.0469 (16)0.0240 (14)0.0058 (13)0.0009 (13)
C60.0489 (15)0.0346 (13)0.0355 (13)0.0114 (12)0.0070 (11)0.0001 (11)
C70.0473 (15)0.0405 (14)0.0372 (14)0.0113 (12)0.0016 (11)0.0053 (11)
C80.0508 (16)0.0365 (14)0.0359 (14)0.0124 (12)0.0007 (12)0.0059 (11)
C90.0490 (16)0.0435 (15)0.0442 (15)0.0146 (13)0.0073 (12)0.0045 (12)
C100.0531 (16)0.0436 (15)0.0373 (14)0.0198 (13)0.0051 (12)0.0047 (11)
C110.0524 (16)0.0396 (14)0.0406 (15)0.0113 (13)0.0001 (12)0.0070 (12)
C120.0469 (16)0.0486 (16)0.0463 (16)0.0102 (13)0.0094 (13)0.0060 (13)
C130.0546 (17)0.0455 (16)0.0422 (15)0.0160 (13)0.0089 (13)0.0103 (12)
Geometric parameters (Å, º) top
Cl1—C101.733 (3)C4—H40.9300
Cl2—C111.731 (3)C5—C61.396 (4)
O1—C11.363 (3)C5—H50.9300
O1—H10.8200C6—C71.450 (4)
O2—C21.359 (3)C7—H70.9300
O2—H20.8200C8—C131.383 (4)
N1—C71.277 (4)C8—C91.392 (4)
N1—C81.423 (3)C9—C101.388 (4)
C1—C21.394 (4)C9—H90.9300
C1—C61.401 (4)C10—C111.385 (4)
C2—C31.375 (4)C11—C121.373 (4)
C3—C41.390 (4)C12—C131.394 (4)
C3—H30.9300C12—H120.9300
C4—C51.395 (4)C13—H130.9300
C1—O1—H1109.5N1—C7—C6122.5 (3)
C2—O2—H2109.5N1—C7—H7118.7
C7—N1—C8119.6 (2)C6—C7—H7118.7
O1—C1—C2117.8 (2)C13—C8—C9119.9 (2)
O1—C1—C6122.1 (2)C13—C8—N1122.1 (3)
C2—C1—C6120.1 (2)C9—C8—N1117.9 (3)
O2—C2—C3119.1 (2)C10—C9—C8119.3 (3)
O2—C2—C1120.9 (2)C10—C9—H9120.3
C3—C2—C1120.0 (3)C8—C9—H9120.3
C2—C3—C4120.9 (3)C11—C10—C9120.3 (3)
C2—C3—H3119.6C11—C10—Cl1120.7 (2)
C4—C3—H3119.6C9—C10—Cl1118.9 (2)
C3—C4—C5119.5 (3)C12—C11—C10120.5 (3)
C3—C4—H4120.3C12—C11—Cl2118.9 (2)
C5—C4—H4120.3C10—C11—Cl2120.6 (2)
C4—C5—C6120.3 (3)C11—C12—C13119.5 (3)
C4—C5—H5119.8C11—C12—H12120.2
C6—C5—H5119.8C13—C12—H12120.2
C5—C6—C1119.3 (2)C8—C13—C12120.4 (3)
C5—C6—C7119.8 (3)C8—C13—H13119.8
C1—C6—C7120.9 (2)C12—C13—H13119.8
O1—C1—C2—O21.1 (4)C1—C6—C7—N12.5 (4)
C6—C1—C2—O2178.3 (3)C7—N1—C8—C1340.5 (4)
O1—C1—C2—C3179.2 (3)C7—N1—C8—C9143.4 (3)
C6—C1—C2—C31.4 (4)C13—C8—C9—C101.9 (4)
O2—C2—C3—C4179.0 (3)N1—C8—C9—C10178.1 (2)
C1—C2—C3—C40.7 (4)C8—C9—C10—C111.0 (4)
C2—C3—C4—C50.6 (4)C8—C9—C10—Cl1179.0 (2)
C3—C4—C5—C61.3 (5)C9—C10—C11—C120.5 (4)
C4—C5—C6—C10.7 (4)Cl1—C10—C11—C12177.5 (2)
C4—C5—C6—C7177.7 (3)C9—C10—C11—Cl2178.5 (2)
O1—C1—C6—C5179.9 (3)Cl1—C10—C11—Cl20.5 (4)
C2—C1—C6—C50.7 (4)C10—C11—C12—C131.1 (4)
O1—C1—C6—C73.1 (4)Cl2—C11—C12—C13179.1 (2)
C2—C1—C6—C7176.3 (3)C9—C8—C13—C121.3 (4)
C8—N1—C7—C6172.6 (2)N1—C8—C13—C12177.3 (3)
C5—C6—C7—N1179.5 (3)C11—C12—C13—C80.2 (4)
Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the benzene ring (C1–C6).
D—H···AD—HH···AD···AD—H···A
O1—H1···N10.821.892.608 (3)146
O2—H2···O10.822.282.729 (3)115
O2—H2···O1i0.822.202.846 (3)136
C12—H12···Cg1ii0.932.833.538 (4)134
Symmetry codes: (i) x1, y+2, z+1; (ii) x+1, y1, z.
Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the benzene ring (C1–C6).
D—H···AD—HH···AD···AD—H···A
O1—H1···N10.821.892.608 (3)146
O2—H2···O10.822.282.729 (3)115
O2—H2···O1i0.822.202.846 (3)136
C12—H12···Cg1ii0.932.833.538 (4)134
Symmetry codes: (i) x1, y+2, z+1; (ii) x+1, y1, z.
 

Acknowledgements

The authors acknowledge the provision of funds for the purchase of diffractometer and encouragement by Dr. Muhammad Akram Chaudhary, Vice Chancellor, University of Sargodha, Pakistan.

References

First citationBruker (2005). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFun, H.-K., Quah, C. K., Viveka, S., Madhukumar, D. J. & Nagaraja, G. K. (2011). Acta Cryst. E67, o1934.  Google Scholar
First citationKeleşoğlu, Z., Büyükgüngör, O., Albayrak, Ç. & Odabaşoğlu, M. (2009). Acta Cryst. E65, o2410–o2411.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationShuja, S., Ali, S., Shahzadi, S., Labat, G. & Stoeckli-Evans, H. (2006). Acta Cryst. E62, o4789–o4790.  Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTahir, M. N., Khan, A. H., Iqbal, M. S., Munir, C. & Aziz, T. (2012). Acta Cryst. E68, o2125.  CSD CrossRef IUCr Journals Google Scholar
First citationTemel, E., Albayrak, Ç., Odabaşoğlu, M. & Büyükgüngör, O. (2007). Acta Cryst. E63, o2642.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 71| Part 2| February 2015| Pages o137-o138
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds