organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 71| Part 2| February 2015| Pages o140-o141

Crystal structure of (1S,2R,4R,9S,11S,12R)-9α-hy­dr­oxy-4,8-di­methyl-12-[(thio­morpholin-4-yl)meth­yl]-3,14-dioxatri­cyclo­[9.3.0.02,4]tetra­dec-7-en-13-one

aLaboratoire de Chimie des Substances Naturelles, URAC16, Faculté des Sciences Semlalia, BP 2390 Bd My Abdellah, 40000 Marrakech, Morocco, bLaboratoire de Chimie Bioorganique et Analytique, URAC 22, BP 146, FSTM, Université Hassan II, Mohammedia-Casablanca 20810 Mohammedia, Morocco, and cLaboratoire de Chimie du Solide Appliquée, Faculté des Sciences, Avenue Ibn Battouta BP 1014, Rabat, Morocco
*Correspondence e-mail: abenharref@yahoo.fr

Edited by W. T. A. Harrison, University of Aberdeen, Scotland (Received 21 January 2015; accepted 26 January 2015; online 31 January 2015)

The title compound, C19H29NO4S, was synthesised from 9α-hy­droxy­parthenolide (9α-hy­droxy-4,8-dimethyl-12-methyl­ene-3,14-dioxatri­cyclo­[9.3.0.02,4]tetra­dec-7-en-13-one), which was isolated from the chloro­form extract of the aerial parts of the plant Anvillea radiata. The mol­ecule is built up from two fused five- and ten-membered rings, with an additional ep­oxy ring system and a thio­morpholine group as a substituent. The ten-membered ring adopts an approximate chair–chair conformation, while the thio­morpholine ring displays a chair conformation and the five-membered ring has an envelope conformation, with the C atom closest to the hy­droxy group forming the flap. An intra­molecular O—H⋯N hydrogen bond closes an S(8) ring. The crystal structure features weak C—H⋯O hydrogen-bonding inter­actions, which link the mol­ecules into [010] chains.

1. Related literature

For background to the medicinal uses of the plant Anvillea radiata, see: El Hassany et al. (2004[El Hassany, B., El Hanbali, F., Akssira, M., Mellouki, F., Haidour, A. & Barrero, A. F. (2004). Fitoterapia, 75, 573-576.]); Abdel Sattar et al. (1996[Abdel Sattar, E., Galal, A. M. & Mossa, J. S. (1996). J. Nat. Prod. 59, 403-405.]). For the reactivity of this sesquiterpene, see: Hwang et al. (2006[Hwang, D.-R., Wu, Y.-S., Chang, C.-W., Lien, T.-W., Chen, W.-C., Tan, U.-K., Hsu, J. T. A. & Hsieh, H.-P. (2006). Bioorg. Med. Chem. 14, 83-91.]); Neelakantan et al. (2009[Neelakantan, S., Nasim, Sh., Guzman, M. L., Jordan, C. T. & Crooks, P. A. (2009). Bioorg. Med. Chem. Lett. 19, 4346-4349.]); Loubidi et al. (2014[Loubidi, M., Benharref, A., El Ammari, L., Saadi, M. & Berraho, M. (2014). Acta Cryst. E70, o497-o498.]).

[Scheme 1]

2. Experimental

2.1. Crystal data

  • C19H29NO4S

  • Mr = 367.49

  • Monoclinic, P 21

  • a = 11.920 (2) Å

  • b = 6.7919 (13) Å

  • c = 12.144 (3) Å

  • β = 101.659 (6)°

  • V = 962.9 (3) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.19 mm−1

  • T = 296 K

  • 0.33 × 0.17 × 0.04 mm

2.2. Data collection

  • Bruker APEXII CCD diffractometer

  • 12288 measured reflections

  • 3940 independent reflections

  • 3749 reflections with I > 2σ(I)

  • Rint = 0.033

2.3. Refinement

  • R[F2 > 2σ(F2)] = 0.031

  • wR(F2) = 0.083

  • S = 1.03

  • 3940 reflections

  • 229 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.23 e Å−3

  • Δρmin = −0.18 e Å−3

  • Absolute structure: Flack & Bernardinelli (2000[Flack, H. D. & Bernardinelli, G. (2000). J. Appl. Cryst. 33, 1143-1148.]), 1799 Friedel pairs

  • Absolute structure parameter: 0.04 (7)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O4—H4⋯N2 0.82 2.21 3.0278 (18) 176
C2—H2⋯O1i 0.98 2.51 3.2948 (19) 137
C6—H6⋯O2ii 0.93 2.59 3.2526 (19) 129
Symmetry codes: (i) [-x+1, y-{\script{1\over 2}}, -z+1]; (ii) x, y-1, z.

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2, SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT-Plus (Bruker, 2009[Bruker (2009). APEX2, SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: WinGX (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]).

Supporting information


Comment top

The natural sesquiterpene lactone, 9α -hydroxypartenolide is the main constituent of the chloroform extract of the aerial parts of Anvillea radiata (El Hassany et al., 2004; Qureshi et al.) and of Anvillea garcini (Abdel Sattar et al.,1996). The reactivity of this sesquiterpene lactone and its derivatives have been the subject of several studies (Hwang et al., 2006; Neelakantan et al., 2009; Loubidi et al., 2014), in order to prepare products with high value which can be used in the pharmacological industry. In this context, we have treated the 9α-hydroxy-parthenolide with an equivalent amount of thiomorpholine and prepared the 9α-Hydroxy-12- [thiomorpholin-N- methyl]-4,8-dimethyl-3,14-dioxatricyclo [9.3.0.02,4] tetradec-7-en-13-one. The structure of this new product was confirmed by its single crystal X-ray structure. The molecule contains a fused ring system and thiomorpholin group as a substituent to a lactone ring. The molecular structure of (I), Fig.1, shows the lactone ring to adopt an envelope conformation, as indicated by puckering parameters Q = 0.2241 (15) Å and ϕ = 291.3 (4)°. The atom C10 deviate from the mean plane through other four atoms in the ring by 0.3601 (13)Å. The ten-membered ring displays an approximate chair-chair conformation, while the thiomorpholin ring has an almost ideal chair conformation with QT = 0.6400 (17)Å, θ = 178.37 (15)° and ϕ = 244 (4)°. In the crystal structure, the molecules are linked by C—H···O intermolecular hydrogen bonds into chains along the b axis (Table 1, Fig.2). In addition an intramolecular O—H···N, hydrogen bond is also observed.

Related literature top

For background to the medicinal uses of the plant Anvillea radiata, see: El Hassany et al. (2004); Abdel Sattar et al. (1996). For the reactivity of this sesquiterpene, see: Hwang et al. (2006); Neelakantan et al. (2009); Loubidi et al. (2014).

Experimental top

The mixture of 9α-hydoxypartenolide (9α-hydroxy-4,8-dimethyl- 12-methylene- 3,14-dioxatricyclo[9.3.0.02,4]tetradec-7-en-13-one) (1 g, 3.8 mmol) and one equivalent of thiomorpholin in EtOH (20 ml) was stirred for ten hours at room temperature. Then the reaction was stopped by adding water (10 ml) and the solution was extracted with chloroform (3 x 20 ml). The combined organic layers were dried over anhydrous MgSO4, filtered and concentrated under vacuum to give 0.9 g(2.5 mmol) of the title compound (yield: 66%). Recrystallization was performed from ethyl acetate solution to yield colourless plates.

Refinement top

All H atoms were fixed geometrically and treated as riding with C—H = 0.96 Å (methyl),0.97 Å (methylene), 0.98 Å (methine) with Uiso(H) = 1.2Ueq(methylene, methine and OH) or Uiso(H) = 1.5Ueq(methyl). Owing to the presence of S atom, the absolute configuration could be fully confirmed, by refining the Flack parameter (Flack & Bernardinelli (2000) as C1(S), C2(R), C4(R), C9(S), C11(S) and C2(R).

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT-Plus (Bruker, 2009); data reduction: SAINT-Plus (Bruker, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and PLATON (Spek, 2009); software used to prepare material for publication: WinGX (Farrugia, 2012).

Figures top
[Figure 1] Fig. 1. : Molecular structure of the title compound with displacement ellipsoids drawn at the 30% probability level.
[Figure 2] Fig. 2. : Partial packing view showing the C—H···O interactions (dashed lines) and the formation of a chain parallel to the b axis. H atoms not involved in hydrogen bonding have been omitted for clarity. [Symmetry code: (i) x, -1 + y, z.]
(1S,2R,4R,9S,11S,12R)-9α-Hydroxy-4,8-dimethyl-12-[(thiomorpholin-4-yl)methyl]-3,14-dioxatricyclo[9.3.0.02,4]tetradec-7-en-13-one top
Crystal data top
C19H29NO4SF(000) = 396
Mr = 367.49Dx = 1.268 Mg m3
Monoclinic, P21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ybCell parameters from 3940 reflections
a = 11.920 (2) Åθ = 2.7–26.4°
b = 6.7919 (13) ŵ = 0.19 mm1
c = 12.144 (3) ÅT = 296 K
β = 101.659 (6)°Platelet, colourless
V = 962.9 (3) Å30.33 × 0.17 × 0.04 mm
Z = 2
Data collection top
Bruker APEXII CCD
diffractometer
3749 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.033
Graphite monochromatorθmax = 26.4°, θmin = 2.7°
ω and ϕ scansh = 1414
12288 measured reflectionsk = 88
3940 independent reflectionsl = 1515
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.031H-atom parameters constrained
wR(F2) = 0.083 w = 1/[σ2(Fo2) + (0.0458P)2 + 0.1195P]
where P = (Fo2 + 2Fc2)/3
S = 1.03(Δ/σ)max < 0.001
3940 reflectionsΔρmax = 0.23 e Å3
229 parametersΔρmin = 0.18 e Å3
1 restraintAbsolute structure: Flack & Bernardinelli (2000), 1799 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.04 (7)
Crystal data top
C19H29NO4SV = 962.9 (3) Å3
Mr = 367.49Z = 2
Monoclinic, P21Mo Kα radiation
a = 11.920 (2) ŵ = 0.19 mm1
b = 6.7919 (13) ÅT = 296 K
c = 12.144 (3) Å0.33 × 0.17 × 0.04 mm
β = 101.659 (6)°
Data collection top
Bruker APEXII CCD
diffractometer
3749 reflections with I > 2σ(I)
12288 measured reflectionsRint = 0.033
3940 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.031H-atom parameters constrained
wR(F2) = 0.083Δρmax = 0.23 e Å3
S = 1.03Δρmin = 0.18 e Å3
3940 reflectionsAbsolute structure: Flack & Bernardinelli (2000), 1799 Friedel pairs
229 parametersAbsolute structure parameter: 0.04 (7)
1 restraint
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against all reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on all data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S0.75906 (4)0.44169 (9)0.12214 (4)0.05970 (15)
C110.47717 (11)0.9710 (2)0.29664 (11)0.0287 (3)
H110.47711.04440.22710.034*
O20.35347 (8)1.10088 (15)0.40682 (8)0.0328 (2)
O40.40208 (10)0.43397 (19)0.20264 (11)0.0488 (3)
H40.45830.50540.22050.073*
C100.37095 (11)0.8366 (2)0.28037 (11)0.0256 (3)
H100.39070.71950.32740.031*
O10.53049 (10)1.22191 (19)0.44127 (10)0.0458 (3)
C120.46117 (12)1.1124 (2)0.38823 (12)0.0317 (3)
O30.13476 (9)0.9267 (2)0.45208 (10)0.0465 (3)
C20.22047 (12)0.8371 (2)0.39912 (12)0.0325 (3)
H20.26840.73990.44660.039*
N20.60890 (10)0.70195 (19)0.25656 (10)0.0310 (3)
C150.59162 (12)0.8638 (2)0.33252 (12)0.0328 (3)
H15A0.65330.95830.33620.039*
H15B0.59620.81080.40750.039*
C90.32885 (13)0.7685 (2)0.15807 (12)0.0315 (3)
H9A0.38450.80960.11450.038*
H9B0.25760.83610.12770.038*
C30.09931 (13)0.7784 (2)0.36578 (15)0.0394 (4)
C10.28464 (11)0.9606 (2)0.33070 (11)0.0286 (3)
H10.23151.02970.27110.034*
C190.64040 (14)0.7794 (3)0.15414 (13)0.0387 (3)
H19A0.71410.84470.17370.046*
H19B0.58410.87620.12010.046*
C60.18706 (13)0.4410 (2)0.27405 (15)0.0422 (4)
H60.25590.42410.32510.051*
C70.19578 (13)0.4844 (2)0.16970 (15)0.0415 (4)
C170.69958 (13)0.5726 (3)0.31802 (13)0.0399 (4)
H17A0.68050.53560.38920.048*
H17B0.77110.64510.33430.048*
C80.30887 (14)0.5453 (2)0.14119 (14)0.0377 (3)
H80.30420.51740.06120.045*
C40.06950 (15)0.5785 (3)0.40637 (17)0.0495 (4)
H4A0.00820.58130.41920.059*
H4B0.12050.54880.47730.059*
C160.71589 (16)0.3889 (3)0.25369 (16)0.0496 (4)
H16A0.64470.31530.23840.059*
H16B0.77370.30700.29970.059*
C180.64687 (16)0.6178 (3)0.07026 (14)0.0498 (4)
H18A0.66060.67590.00120.060*
H18B0.57390.54970.05290.060*
C130.02051 (14)0.8583 (3)0.26257 (18)0.0547 (5)
H13A0.05440.87850.27840.082*
H13B0.01570.76600.20190.082*
H13C0.05000.98120.24160.082*
C50.07965 (16)0.4157 (3)0.32077 (19)0.0537 (5)
H5A0.08110.28810.35700.064*
H5B0.01320.41970.25970.064*
C140.09689 (18)0.4951 (4)0.06943 (19)0.0679 (6)
H14A0.02620.47260.09380.102*
H14B0.10660.39650.01550.102*
H14C0.09520.62300.03550.102*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S0.0614 (3)0.0736 (3)0.0469 (2)0.0211 (3)0.0173 (2)0.0094 (3)
C110.0308 (7)0.0301 (7)0.0252 (6)0.0049 (5)0.0051 (5)0.0005 (5)
O20.0317 (5)0.0312 (5)0.0355 (5)0.0028 (4)0.0070 (4)0.0086 (4)
O40.0411 (6)0.0332 (6)0.0703 (8)0.0046 (5)0.0068 (5)0.0056 (6)
C100.0270 (6)0.0242 (6)0.0249 (6)0.0015 (5)0.0034 (5)0.0009 (5)
O10.0422 (6)0.0481 (7)0.0460 (6)0.0143 (5)0.0061 (5)0.0175 (6)
C120.0325 (7)0.0309 (7)0.0310 (7)0.0039 (6)0.0044 (5)0.0015 (6)
O30.0366 (5)0.0539 (7)0.0539 (7)0.0044 (6)0.0205 (5)0.0164 (6)
C20.0283 (7)0.0357 (7)0.0339 (8)0.0011 (6)0.0072 (6)0.0026 (6)
N20.0291 (5)0.0378 (6)0.0271 (6)0.0022 (5)0.0077 (4)0.0028 (5)
C150.0280 (7)0.0415 (8)0.0282 (7)0.0020 (6)0.0039 (5)0.0038 (6)
C90.0353 (7)0.0320 (7)0.0259 (7)0.0036 (6)0.0029 (5)0.0033 (6)
C30.0290 (7)0.0384 (8)0.0525 (10)0.0007 (6)0.0123 (6)0.0048 (7)
C10.0277 (6)0.0267 (7)0.0294 (6)0.0008 (6)0.0008 (5)0.0027 (6)
C190.0427 (8)0.0431 (9)0.0325 (8)0.0002 (7)0.0130 (6)0.0051 (7)
C60.0388 (8)0.0243 (7)0.0621 (10)0.0001 (7)0.0069 (7)0.0012 (8)
C70.0381 (8)0.0299 (8)0.0531 (10)0.0042 (6)0.0012 (7)0.0095 (7)
C170.0355 (8)0.0521 (10)0.0322 (8)0.0092 (7)0.0067 (6)0.0046 (7)
C80.0419 (8)0.0321 (8)0.0373 (8)0.0015 (6)0.0034 (6)0.0106 (6)
C40.0364 (9)0.0519 (11)0.0640 (11)0.0091 (8)0.0191 (8)0.0040 (9)
C160.0498 (9)0.0484 (11)0.0504 (10)0.0141 (8)0.0097 (8)0.0056 (8)
C180.0586 (11)0.0602 (11)0.0312 (8)0.0090 (9)0.0107 (7)0.0017 (8)
C130.0335 (8)0.0461 (10)0.0776 (14)0.0004 (8)0.0054 (8)0.0018 (9)
C50.0491 (9)0.0350 (9)0.0782 (13)0.0101 (8)0.0157 (9)0.0050 (9)
C140.0487 (10)0.0836 (17)0.0633 (13)0.0162 (11)0.0080 (9)0.0134 (11)
Geometric parameters (Å, º) top
S—C181.810 (2)C1—H10.9800
S—C161.810 (2)C19—C181.510 (3)
C11—C121.510 (2)C19—H19A0.9700
C11—C151.530 (2)C19—H19B0.9700
C11—C101.5410 (18)C6—C71.325 (3)
C11—H110.9800C6—C51.512 (2)
O2—C121.3500 (17)C6—H60.9300
O2—C11.4592 (16)C7—C141.516 (2)
O4—C81.424 (2)C7—C81.516 (2)
O4—H40.8200C17—C161.505 (3)
C10—C91.5396 (19)C17—H17A0.9700
C10—C11.5476 (19)C17—H17B0.9700
C10—H100.9800C8—H80.9800
O1—C121.1983 (18)C4—C51.539 (3)
O3—C21.4471 (18)C4—H4A0.9700
O3—C31.454 (2)C4—H4B0.9700
C2—C31.474 (2)C16—H16A0.9700
C2—C11.495 (2)C16—H16B0.9700
C2—H20.9800C18—H18A0.9700
N2—C191.4674 (19)C18—H18B0.9700
N2—C171.4735 (19)C13—H13A0.9600
N2—C151.4758 (19)C13—H13B0.9600
C15—H15A0.9700C13—H13C0.9600
C15—H15B0.9700C5—H5A0.9700
C9—C81.542 (2)C5—H5B0.9700
C9—H9A0.9700C14—H14A0.9600
C9—H9B0.9700C14—H14B0.9600
C3—C131.507 (3)C14—H14C0.9600
C3—C41.511 (3)
C18—S—C1696.67 (8)C18—C19—H19B109.3
C12—C11—C15109.33 (11)H19A—C19—H19B108.0
C12—C11—C10104.37 (11)C7—C6—C5128.33 (16)
C15—C11—C10114.62 (12)C7—C6—H6115.8
C12—C11—H11109.4C5—C6—H6115.8
C15—C11—H11109.4C6—C7—C14125.47 (17)
C10—C11—H11109.4C6—C7—C8121.62 (15)
C12—O2—C1111.34 (10)C14—C7—C8112.74 (17)
C8—O4—H4109.5N2—C17—C16112.94 (13)
C9—C10—C11113.63 (12)N2—C17—H17A109.0
C9—C10—C1115.55 (11)C16—C17—H17A109.0
C11—C10—C1102.81 (11)N2—C17—H17B109.0
C9—C10—H10108.2C16—C17—H17B109.0
C11—C10—H10108.2H17A—C17—H17B107.8
C1—C10—H10108.2O4—C8—C7111.77 (14)
O1—C12—O2121.46 (14)O4—C8—C9111.68 (13)
O1—C12—C11127.91 (14)C7—C8—C9111.03 (13)
O2—C12—C11110.62 (11)O4—C8—H8107.4
C2—O3—C361.08 (10)C7—C8—H8107.4
O3—C2—C359.68 (10)C9—C8—H8107.4
O3—C2—C1119.82 (13)C3—C4—C5111.69 (15)
C3—C2—C1125.59 (13)C3—C4—H4A109.3
O3—C2—H2113.7C5—C4—H4A109.3
C3—C2—H2113.7C3—C4—H4B109.3
C1—C2—H2113.7C5—C4—H4B109.3
C19—N2—C17110.84 (12)H4A—C4—H4B107.9
C19—N2—C15110.78 (12)C17—C16—S112.55 (13)
C17—N2—C15107.95 (11)C17—C16—H16A109.1
N2—C15—C11113.93 (11)S—C16—H16A109.1
N2—C15—H15A108.8C17—C16—H16B109.1
C11—C15—H15A108.8S—C16—H16B109.1
N2—C15—H15B108.8H16A—C16—H16B107.8
C11—C15—H15B108.8C19—C18—S112.36 (12)
H15A—C15—H15B107.7C19—C18—H18A109.1
C10—C9—C8115.79 (13)S—C18—H18A109.1
C10—C9—H9A108.3C19—C18—H18B109.1
C8—C9—H9A108.3S—C18—H18B109.1
C10—C9—H9B108.3H18A—C18—H18B107.9
C8—C9—H9B108.3C3—C13—H13A109.5
H9A—C9—H9B107.4C3—C13—H13B109.5
O3—C3—C259.24 (9)H13A—C13—H13B109.5
O3—C3—C13113.05 (14)C3—C13—H13C109.5
C2—C3—C13122.86 (15)H13A—C13—H13C109.5
O3—C3—C4116.16 (15)H13B—C13—H13C109.5
C2—C3—C4115.81 (15)C6—C5—C4111.07 (15)
C13—C3—C4116.52 (15)C6—C5—H5A109.4
O2—C1—C2107.44 (11)C4—C5—H5A109.4
O2—C1—C10105.77 (10)C6—C5—H5B109.4
C2—C1—C10111.70 (12)C4—C5—H5B109.4
O2—C1—H1110.6H5A—C5—H5B108.0
C2—C1—H1110.6C7—C14—H14A109.5
C10—C1—H1110.6C7—C14—H14B109.5
N2—C19—C18111.59 (15)H14A—C14—H14B109.5
N2—C19—H19A109.3C7—C14—H14C109.5
C18—C19—H19A109.3H14A—C14—H14C109.5
N2—C19—H19B109.3H14B—C14—H14C109.5
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O4—H4···N20.822.213.0278 (18)176
C2—H2···O1i0.982.513.2948 (19)137
C6—H6···O2ii0.932.593.2526 (19)129
Symmetry codes: (i) x+1, y1/2, z+1; (ii) x, y1, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O4—H4···N20.822.213.0278 (18)176
C2—H2···O1i0.982.513.2948 (19)137
C6—H6···O2ii0.932.593.2526 (19)129
Symmetry codes: (i) x+1, y1/2, z+1; (ii) x, y1, z.
 

Acknowledgements

The authors thank the Unit of Support for Technical and Scientific Research (UATRS, CNRST) for the X-ray measurements.

References

First citationAbdel Sattar, E., Galal, A. M. & Mossa, J. S. (1996). J. Nat. Prod. 59, 403–405.  CrossRef CAS PubMed Google Scholar
First citationBruker (2009). APEX2, SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationEl Hassany, B., El Hanbali, F., Akssira, M., Mellouki, F., Haidour, A. & Barrero, A. F. (2004). Fitoterapia, 75, 573–576.  Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFlack, H. D. & Bernardinelli, G. (2000). J. Appl. Cryst. 33, 1143–1148.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationHwang, D.-R., Wu, Y.-S., Chang, C.-W., Lien, T.-W., Chen, W.-C., Tan, U.-K., Hsu, J. T. A. & Hsieh, H.-P. (2006). Bioorg. Med. Chem. 14, 83–91.  Web of Science CrossRef PubMed CAS Google Scholar
First citationLoubidi, M., Benharref, A., El Ammari, L., Saadi, M. & Berraho, M. (2014). Acta Cryst. E70, o497–o498.  Google Scholar
First citationNeelakantan, S., Nasim, Sh., Guzman, M. L., Jordan, C. T. & Crooks, P. A. (2009). Bioorg. Med. Chem. Lett. 19, 4346–4349.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 71| Part 2| February 2015| Pages o140-o141
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds