organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

6,7-Di­chloro-2,3-bis­(pyridin-2-yl)quinox­aline

aDepartment of Chemistry & Biochemistry, Central Connecticut State University, New Britain, CT 06053, USA
*Correspondence e-mail: crundwellg@mail.ccsu.edu

Edited by P. C. Healy, Griffith University, Australia (Received 15 December 2014; accepted 2 January 2015; online 10 January 2015)

The title compound, C18H10Cl2N4, synthesized by the condensation reaction between 4,5-di­chloro­benzene-1,2-di­amine and 1,2-di(pyridin-2-yl)ethane-1,2-dione in boiling acetic acid, has a nearly planar quinoxaline moiety [maximum deviation = 0.070 (1) Å] whose mean plane makes dihedral angles of 40.51 (2) and 39.29 (3)° with the pyridine rings. Within the unit cell, there are no classical hydrogen bonds. Molecules in the structure pack with ππ stacking contacts between the quinoxaline units and nearby pyridine rings with an intercentroid distance of 3.7676 (9) Å.

1. Related literature

For the synthesis of the title compound, see: Imeri et al. (2013[Imeri, A., Glagovich, N. M. & Crundwell, G. (2013). Acta Cryst. E69, o48.]). For the structures of similar compounds, see: Woźniak (1991[Woźniak, K. (1991). Acta Cryst. C47, 1761-1763.]); Rasmussen et al. (1990[Rasmussen, S. C., Richter, M. M., Yi, E., Place, H. & Brewer, K. J. (1990). Inorg. Chem. 29, 3926-3932.]); Crundwell et al. (2010[Crundwell, G. & Glagovich, N. (2010). Acta Cryst. E66, o3042.], 2014[Crundwell, G., Cantalupo, S., Foss, P. C. D., McBurney, B., Kopp, K., Westcott, B. L., Updegraff, J. III, Zeller, M. & Hunter, A. D. (2014). Open J. Inorg. Chem. 4, 10-17.]); Jaso et al. (2005[Jaso, A., Zarranz, B., Aldana, I. & Monge, A. (2005). J. Med. Chem. 48, 2019-2025.]); Bu et al. (2001[Bu, X.-H., Liu, H., Du, M., Wong, K. M.-C., Yam, V. W.-W. & Shionoya, M. (2001). Inorg. Chem. 40, 4143-4149.]); Cantalupo et al. (2010[Cantalupo, S. A., Crundwell, G. & Glagovich, N. (2010). Acta Cryst. E66, o2184.]); Crundwell (2013[Crundwell, G. (2013). Acta Cryst. E69, m164.]).

[Scheme 1]

2. Experimental

2.1. Crystal data

  • C18H10Cl2N4

  • Mr = 353.20

  • Orthorhombic, P b c a

  • a = 7.1921 (5) Å

  • b = 18.072 (3) Å

  • c = 24.093 (4) Å

  • V = 3131.6 (8) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.42 mm−1

  • T = 110 K

  • 0.23 × 0.12 × 0.09 mm

2.2. Data collection

  • Oxford Diffraction Xcalibur, Sapphire3 diffractometer

  • Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis CCD,CrysAlis PRO, CrysAlis RED. Oxford Diffraction Ltd, Abington, England.]) Tmin = 0.971, Tmax = 1.000

  • 24047 measured reflections

  • 6227 independent reflections

  • 3818 reflections with I > 2σ(I)

  • Rint = 0.031

2.3. Refinement

  • R[F2 > 2σ(F2)] = 0.034

  • wR(F2) = 0.086

  • S = 0.90

  • 6227 reflections

  • 217 parameters

  • H-atom parameters constrained

  • Δρmax = 0.45 e Å−3

  • Δρmin = −0.24 e Å−3

Data collection: CrysAlis CCD (Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis CCD,CrysAlis PRO, CrysAlis RED. Oxford Diffraction Ltd, Abington, England.]); cell refinement: CrysAlis RED (Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis CCD,CrysAlis PRO, CrysAlis RED. Oxford Diffraction Ltd, Abington, England.]); data reduction: CrysAlis RED; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]).

Supporting information


Comment top

Quinoxalines, like the title compound C18H10Cl2N4, have interesting characteristics including antimicrobial activity (Jaso et al., 2005). Our interest in quinoxalines results from their simple synthesis, and the proclivity with which X-ray quality crystals can be grown (Imeri et al., 2013; Crundwell et al., 2010; Cantalupo et al., 2010; Wozniak, 1991). We have also found that quinoxalines make interesting ligands when combined with metals, especially silver(I) salts (Rasmussen et al., 1990; Bu et al., 2001; Crundwell, 2013; Crundwell et al., 2014).

The title compound, C18H10Cl2N4, has a nearly planar quinoxaline moiety (Fig. 1). The pyridine rings make angles of 40.52 (2)° and 39.32 (3)° with respect to the mean plane of the quinoxaline. All bond lengths and angles lie within expected values. Within the unit cell, there are no classical hydrogen bonds. The molecules pack in offset layers with closest contacts between quinoxalines and nearby pyridine rings.

Related literature top

For the synthesis of the title compound, see: Imeri et al. (2013). For the structures of similar compounds, see: Wozniak (1991); Rasmussen et al. (1990); Crundwell et al. (2010, 2014); Jaso et al. (2005); Bu et al. (2001); Cantalupo et al. (2010); Crundwell (2013).

Experimental top

The title compound was synthesized in a manner similar to related compounds Imeri et al. (2013). To a 50 ml round bottom flask equipped with a reflux condenser was combined 0.2685 g (1.265 mmol) 1,2-di(pyridin-2-yl)ethane-1,2-dione, 0.3445 g (1.946 mmol) 4,5-dichlorobenzene-1,2-diamine and 20 ml glacial acetic acid. The resulting mixture was heated to reflux for 24 h. After this time, the resulting solution was poured over ice. The resulting beige solid was filtered and recrystallized from methanol, which produced 0.299 g of the title compound as a shiny, beige solid (67%). Rf 0.36 (SiO2, ethyl acetate); m.p. 468 K; IR (ATR-FTIR) 3077, 3046, 3008, 1585, 1474, 1391, 1341, 1278, 1110, 1078, 1002, 965, 860, 790, 743, 599, 547 cm-1; 1H NMR (300 MHz, CDCl3) δ 8.38 (s, 2H), 8.38 (dt, 2H J = 5, 1 Hz), 8.00 (dt, 2H, J = 8, 1 Hz), 7.87 (td, 2H, J = 8, 1 Hz), 7.29 (td, 2H, J = 5, 1 Hz); 13C NMR (300 MHz, CDCl3) δ 156.87, 153.53, 148.58, 139.84, 136.74, 135.10, 129.97, 124.17, 123.29; UV/Vis (CH2Cl2; λmax (logε)) 348 nm (12668), 275 nm (24188) 253 nm (43604); MS calculated for C18H10Cl2N4: M+: 352, measured: 352.

Refinement top

Carbon-bound H-atoms were placed in calculated positions (C—H = 0.93 Å) and were included in the refinement in the riding model approximation, with Uiso(H) = 1.2Ueq(C).

Computing details top

Data collection: CrysAlis CCD (Oxford Diffraction, 2009); cell refinement: CrysAlis RED (Oxford Diffraction, 2009); data reduction: CrysAlis RED (Oxford Diffraction, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. A view of the title compound (Spek, 2009). Displacement ellipsoids are drawn at the 50% probability level.
6,7-Dichloro-2,3-bis(pyridin-2-yl)quinoxaline top
Crystal data top
C18H10Cl2N4Dx = 1.498 Mg m3
Mr = 353.20Melting point: 468 K
Orthorhombic, PbcaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2abCell parameters from 9283 reflections
a = 7.1921 (5) Åθ = 3.8–34.6°
b = 18.072 (3) ŵ = 0.42 mm1
c = 24.093 (4) ÅT = 110 K
V = 3131.6 (8) Å3Needle, brown
Z = 80.23 × 0.12 × 0.09 mm
F(000) = 1440
Data collection top
Oxford Diffraction Xcalibur, Sapphire3
diffractometer
6227 independent reflections
Radiation source: fine-focus sealed tube3818 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.031
Detector resolution: 16.1790 pixels mm-1θmax = 34.7°, θmin = 4.0°
ω scansh = 1011
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2009)
k = 2727
Tmin = 0.971, Tmax = 1.000l = 3612
24047 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.034Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.086H-atom parameters constrained
S = 0.90 w = 1/[σ2(Fo2) + (0.0479P)2]
where P = (Fo2 + 2Fc2)/3
6227 reflections(Δ/σ)max = 0.002
217 parametersΔρmax = 0.45 e Å3
0 restraintsΔρmin = 0.24 e Å3
Crystal data top
C18H10Cl2N4V = 3131.6 (8) Å3
Mr = 353.20Z = 8
Orthorhombic, PbcaMo Kα radiation
a = 7.1921 (5) ŵ = 0.42 mm1
b = 18.072 (3) ÅT = 110 K
c = 24.093 (4) Å0.23 × 0.12 × 0.09 mm
Data collection top
Oxford Diffraction Xcalibur, Sapphire3
diffractometer
6227 independent reflections
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2009)
3818 reflections with I > 2σ(I)
Tmin = 0.971, Tmax = 1.000Rint = 0.031
24047 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0340 restraints
wR(F2) = 0.086H-atom parameters constrained
S = 0.90Δρmax = 0.45 e Å3
6227 reflectionsΔρmin = 0.24 e Å3
217 parameters
Special details top

Experimental. Carbon-bound H-atoms were placed in calculated positions (C—H = 0.93 Å) and were included in the refinement in the riding model approximation, with Uiso(H) = 1.2Ueq(C).

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl20.32732 (4)0.426900 (14)1.127570 (12)0.02132 (7)
Cl10.47814 (4)0.573896 (15)1.184200 (12)0.02235 (7)
N10.40209 (13)0.70156 (5)0.99845 (4)0.01556 (18)
C60.41314 (16)0.57361 (6)1.11493 (5)0.0160 (2)
N20.22634 (13)0.57626 (5)0.95171 (4)0.01546 (18)
C140.15721 (15)0.64197 (6)0.86826 (5)0.0142 (2)
N40.06670 (13)0.70481 (5)0.85634 (4)0.0180 (2)
N30.45961 (14)0.75394 (5)0.86134 (4)0.0178 (2)
C30.29491 (15)0.57490 (5)1.00477 (5)0.0144 (2)
C50.34195 (15)0.50820 (6)1.09007 (5)0.0160 (2)
C150.16747 (16)0.58249 (6)0.83174 (5)0.0174 (2)
H150.22580.53870.84220.021*
C10.34541 (15)0.70080 (5)0.94668 (5)0.0143 (2)
C20.24614 (15)0.63859 (5)0.92372 (5)0.0144 (2)
C70.42943 (15)0.63766 (6)1.08503 (5)0.0162 (2)
H70.47720.68011.10150.019*
C90.39540 (15)0.76674 (5)0.91270 (5)0.0146 (2)
C40.28220 (15)0.50930 (6)1.03626 (5)0.0166 (2)
H40.23300.46671.02040.020*
C180.01188 (17)0.70972 (6)0.80610 (5)0.0210 (2)
H180.07760.75260.79760.025*
C80.37327 (15)0.63874 (6)1.02907 (5)0.0149 (2)
C110.41978 (16)0.89793 (6)0.90239 (5)0.0188 (2)
H110.40550.94580.91590.023*
C100.37737 (16)0.83738 (5)0.93523 (5)0.0169 (2)
H100.33760.84370.97160.020*
C160.08919 (17)0.58966 (6)0.77953 (5)0.0211 (2)
H160.09710.55130.75390.025*
C130.50436 (16)0.81321 (6)0.83081 (5)0.0198 (2)
H130.55180.80540.79540.024*
C120.48406 (16)0.88553 (6)0.84893 (5)0.0196 (2)
H120.51300.92500.82570.024*
C170.00125 (16)0.65502 (6)0.76609 (5)0.0222 (2)
H170.05330.66190.73110.027*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl20.02666 (15)0.01669 (12)0.02059 (14)0.00209 (10)0.00040 (11)0.00626 (11)
Cl10.03104 (16)0.02148 (13)0.01452 (13)0.00167 (11)0.00438 (11)0.00270 (11)
N10.0188 (5)0.0130 (4)0.0149 (5)0.0012 (3)0.0003 (4)0.0006 (3)
C60.0167 (5)0.0180 (5)0.0132 (5)0.0002 (4)0.0012 (4)0.0006 (4)
N20.0191 (4)0.0133 (4)0.0140 (4)0.0002 (3)0.0001 (4)0.0006 (3)
C140.0160 (5)0.0131 (4)0.0136 (5)0.0023 (4)0.0001 (4)0.0005 (4)
N40.0206 (5)0.0163 (4)0.0170 (5)0.0008 (4)0.0022 (4)0.0002 (4)
N30.0221 (5)0.0158 (4)0.0157 (5)0.0014 (4)0.0004 (4)0.0007 (4)
C30.0161 (5)0.0133 (4)0.0138 (5)0.0004 (4)0.0004 (4)0.0007 (4)
C50.0168 (5)0.0138 (5)0.0174 (5)0.0016 (4)0.0020 (4)0.0027 (4)
C150.0207 (5)0.0145 (5)0.0169 (5)0.0035 (4)0.0017 (4)0.0011 (4)
C10.0167 (5)0.0115 (4)0.0148 (5)0.0007 (4)0.0008 (4)0.0011 (4)
C20.0169 (5)0.0132 (4)0.0133 (5)0.0001 (4)0.0018 (4)0.0016 (4)
C70.0178 (5)0.0155 (5)0.0154 (5)0.0018 (4)0.0002 (4)0.0017 (4)
C90.0161 (5)0.0129 (4)0.0148 (5)0.0005 (4)0.0019 (4)0.0004 (4)
C40.0195 (5)0.0131 (5)0.0172 (6)0.0013 (4)0.0001 (4)0.0014 (4)
C180.0218 (6)0.0210 (5)0.0203 (6)0.0008 (5)0.0029 (5)0.0020 (5)
C80.0169 (5)0.0134 (4)0.0143 (5)0.0001 (4)0.0005 (4)0.0003 (4)
C110.0194 (6)0.0126 (5)0.0245 (6)0.0005 (4)0.0029 (5)0.0000 (4)
C100.0190 (5)0.0149 (5)0.0167 (6)0.0006 (4)0.0009 (4)0.0022 (4)
C160.0263 (6)0.0211 (5)0.0158 (6)0.0070 (5)0.0019 (5)0.0050 (4)
C130.0232 (6)0.0202 (5)0.0160 (6)0.0021 (4)0.0005 (5)0.0021 (4)
C120.0215 (6)0.0165 (5)0.0208 (6)0.0029 (4)0.0020 (5)0.0050 (4)
C170.0235 (6)0.0275 (6)0.0155 (6)0.0074 (5)0.0045 (5)0.0012 (5)
Geometric parameters (Å, º) top
Cl2—C51.7281 (11)C1—C21.4420 (15)
Cl1—C61.7332 (12)C1—C91.4897 (15)
N1—C11.3124 (14)C7—C81.4075 (15)
N1—C81.3697 (14)C7—H70.9300
C6—C71.3685 (15)C9—C101.3934 (14)
C6—C51.4207 (15)C4—H40.9300
N2—C21.3206 (13)C18—C171.3828 (17)
N2—C31.3703 (15)C18—H180.9300
C14—N41.3402 (13)C11—C101.3843 (15)
C14—C151.3912 (15)C11—C121.3869 (17)
C14—C21.4826 (16)C11—H110.9300
N4—C181.3390 (15)C10—H100.9300
N3—C131.3386 (14)C16—C171.3869 (17)
N3—C91.3411 (15)C16—H160.9300
C3—C81.4112 (14)C13—C121.3856 (16)
C3—C41.4107 (15)C13—H130.9300
C5—C41.3658 (16)C12—H120.9300
C15—C161.3841 (17)C17—H170.9300
C15—H150.9300
C1—N1—C8117.15 (9)N3—C9—C1116.88 (9)
C7—C6—C5120.84 (11)C10—C9—C1119.77 (10)
C7—C6—Cl1118.78 (8)C5—C4—C3120.16 (10)
C5—C6—Cl1120.38 (8)C5—C4—H4119.9
C2—N2—C3116.93 (9)C3—C4—H4119.9
N4—C14—C15123.03 (10)N4—C18—C17124.02 (11)
N4—C14—C2115.94 (9)N4—C18—H18118.0
C15—C14—C2121.03 (10)C17—C18—H18118.0
C18—N4—C14117.06 (10)N1—C8—C3120.97 (10)
C13—N3—C9116.86 (9)N1—C8—C7118.94 (10)
N2—C3—C8121.07 (9)C3—C8—C7120.05 (10)
N2—C3—C4119.58 (9)C10—C11—C12118.46 (10)
C8—C3—C4119.33 (10)C10—C11—H11120.8
C4—C5—C6120.10 (10)C12—C11—H11120.8
C4—C5—Cl2119.30 (8)C11—C10—C9118.77 (11)
C6—C5—Cl2120.59 (9)C11—C10—H10120.6
C16—C15—C14118.74 (10)C9—C10—H10120.6
C16—C15—H15120.6C15—C16—C17118.86 (11)
C14—C15—H15120.6C15—C16—H16120.6
N1—C1—C2121.77 (9)C17—C16—H16120.6
N1—C1—C9116.03 (9)N3—C13—C12123.81 (11)
C2—C1—C9122.16 (10)N3—C13—H13118.1
N2—C2—C1121.50 (10)C12—C13—H13118.1
N2—C2—C14116.67 (9)C13—C12—C11118.69 (10)
C1—C2—C14121.82 (9)C13—C12—H12120.7
C6—C7—C8119.43 (10)C11—C12—H12120.7
C6—C7—H7120.3C18—C17—C16118.17 (11)
C8—C7—H7120.3C18—C17—H17120.9
N3—C9—C10123.33 (10)C16—C17—H17120.9
C15—C14—N4—C181.81 (16)N1—C1—C9—N3135.70 (11)
C2—C14—N4—C18178.80 (10)C2—C1—C9—N342.28 (15)
C2—N2—C3—C83.50 (15)N1—C1—C9—C1043.17 (15)
C2—N2—C3—C4178.38 (10)C2—C1—C9—C10138.85 (11)
C7—C6—C5—C42.44 (17)C6—C5—C4—C31.47 (17)
Cl1—C6—C5—C4176.69 (9)Cl2—C5—C4—C3179.29 (8)
C7—C6—C5—Cl2178.33 (9)N2—C3—C4—C5176.88 (10)
Cl1—C6—C5—Cl22.54 (13)C8—C3—C4—C51.27 (16)
N4—C14—C15—C163.48 (17)C14—N4—C18—C171.49 (17)
C2—C14—C15—C16177.17 (10)C1—N1—C8—C33.28 (15)
C8—N1—C1—C23.95 (15)C1—N1—C8—C7179.04 (10)
C8—N1—C1—C9174.03 (9)N2—C3—C8—N17.34 (16)
C3—N2—C2—C13.71 (15)C4—C3—C8—N1174.53 (10)
C3—N2—C2—C14174.77 (9)N2—C3—C8—C7175.00 (10)
N1—C1—C2—N27.87 (16)C4—C3—C8—C73.13 (16)
C9—C1—C2—N2169.99 (10)C6—C7—C8—N1175.51 (10)
N1—C1—C2—C14170.53 (10)C6—C7—C8—C32.19 (17)
C9—C1—C2—C1411.61 (15)C12—C11—C10—C91.98 (17)
N4—C14—C2—N2136.57 (10)N3—C9—C10—C112.96 (17)
C15—C14—C2—N242.83 (15)C1—C9—C10—C11178.25 (10)
N4—C14—C2—C141.91 (14)C14—C15—C16—C171.84 (17)
C15—C14—C2—C1138.69 (11)C9—N3—C13—C121.45 (17)
C5—C6—C7—C80.57 (17)N3—C13—C12—C112.30 (18)
Cl1—C6—C7—C8178.57 (9)C10—C11—C12—C130.46 (17)
C13—N3—C9—C101.23 (17)N4—C18—C17—C162.97 (18)
C13—N3—C9—C1179.95 (10)C15—C16—C17—C181.16 (17)

Experimental details

Crystal data
Chemical formulaC18H10Cl2N4
Mr353.20
Crystal system, space groupOrthorhombic, Pbca
Temperature (K)110
a, b, c (Å)7.1921 (5), 18.072 (3), 24.093 (4)
V3)3131.6 (8)
Z8
Radiation typeMo Kα
µ (mm1)0.42
Crystal size (mm)0.23 × 0.12 × 0.09
Data collection
DiffractometerOxford Diffraction Xcalibur, Sapphire3
diffractometer
Absorption correctionMulti-scan
(CrysAlis RED; Oxford Diffraction, 2009)
Tmin, Tmax0.971, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
24047, 6227, 3818
Rint0.031
(sin θ/λ)max1)0.800
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.034, 0.086, 0.90
No. of reflections6227
No. of parameters217
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.45, 0.24

Computer programs: CrysAlis CCD (Oxford Diffraction, 2009), CrysAlis RED (Oxford Diffraction, 2009), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2009), SHELXTL (Sheldrick, 2008).

Selected geometric parameters (Å, º) top
Cl2—C51.7281 (11)C3—C81.4112 (14)
Cl1—C61.7332 (12)C3—C41.4107 (15)
N1—C11.3124 (14)C5—C41.3658 (16)
N1—C81.3697 (14)C15—C161.3841 (17)
C6—C71.3685 (15)C1—C21.4420 (15)
C6—C51.4207 (15)C1—C91.4897 (15)
N2—C21.3206 (13)C7—C81.4075 (15)
N2—C31.3703 (15)C9—C101.3934 (14)
C14—N41.3402 (13)C18—C171.3828 (17)
C14—C151.3912 (15)C18—H180.9300
C14—C21.4826 (16)C11—C101.3843 (15)
N4—C181.3390 (15)C11—C121.3869 (17)
N3—C131.3386 (14)C16—C171.3869 (17)
N3—C91.3411 (15)C13—C121.3856 (16)
C1—N1—C8117.15 (9)C2—C1—C9122.16 (10)
C7—C6—C5120.84 (11)N2—C2—C1121.50 (10)
C7—C6—Cl1118.78 (8)N2—C2—C14116.67 (9)
C5—C6—Cl1120.38 (8)C1—C2—C14121.82 (9)
C2—N2—C3116.93 (9)C6—C7—C8119.43 (10)
N4—C14—C15123.03 (10)N3—C9—C10123.33 (10)
N4—C14—C2115.94 (9)N3—C9—C1116.88 (9)
C15—C14—C2121.03 (10)C10—C9—C1119.77 (10)
C18—N4—C14117.06 (10)C5—C4—C3120.16 (10)
C13—N3—C9116.86 (9)N4—C18—C17124.02 (11)
N2—C3—C8121.07 (9)N1—C8—C3120.97 (10)
N2—C3—C4119.58 (9)N1—C8—C7118.94 (10)
C8—C3—C4119.33 (10)C3—C8—C7120.05 (10)
C4—C5—C6120.10 (10)C10—C11—C12118.46 (10)
C4—C5—Cl2119.30 (8)C11—C10—C9118.77 (11)
C6—C5—Cl2120.59 (9)C15—C16—C17118.86 (11)
C16—C15—C14118.74 (10)N3—C13—C12123.81 (11)
N1—C1—C2121.77 (9)C13—C12—C11118.69 (10)
N1—C1—C9116.03 (9)C18—C17—C16118.17 (11)
C15—C14—N4—C181.81 (16)N1—C1—C9—N3135.70 (11)
C2—C14—N4—C18178.80 (10)C2—C1—C9—N342.28 (15)
C2—N2—C3—C83.50 (15)N1—C1—C9—C1043.17 (15)
C2—N2—C3—C4178.38 (10)C2—C1—C9—C10138.85 (11)
C7—C6—C5—C42.44 (17)C6—C5—C4—C31.47 (17)
Cl1—C6—C5—C4176.69 (9)Cl2—C5—C4—C3179.29 (8)
C7—C6—C5—Cl2178.33 (9)N2—C3—C4—C5176.88 (10)
Cl1—C6—C5—Cl22.54 (13)C8—C3—C4—C51.27 (16)
N4—C14—C15—C163.48 (17)C14—N4—C18—C171.49 (17)
C2—C14—C15—C16177.17 (10)C1—N1—C8—C33.28 (15)
C8—N1—C1—C23.95 (15)C1—N1—C8—C7179.04 (10)
C8—N1—C1—C9174.03 (9)N2—C3—C8—N17.34 (16)
C3—N2—C2—C13.71 (15)C4—C3—C8—N1174.53 (10)
C3—N2—C2—C14174.77 (9)N2—C3—C8—C7175.00 (10)
N1—C1—C2—N27.87 (16)C4—C3—C8—C73.13 (16)
C9—C1—C2—N2169.99 (10)C6—C7—C8—N1175.51 (10)
N1—C1—C2—C14170.53 (10)C6—C7—C8—C32.19 (17)
C9—C1—C2—C1411.61 (15)C12—C11—C10—C91.98 (17)
N4—C14—C2—N2136.57 (10)N3—C9—C10—C112.96 (17)
C15—C14—C2—N242.83 (15)C1—C9—C10—C11178.25 (10)
N4—C14—C2—C141.91 (14)C14—C15—C16—C171.84 (17)
C15—C14—C2—C1138.69 (11)C9—N3—C13—C121.45 (17)
C5—C6—C7—C80.57 (17)N3—C13—C12—C112.30 (18)
Cl1—C6—C7—C8178.57 (9)C10—C11—C12—C130.46 (17)
C13—N3—C9—C101.23 (17)N4—C18—C17—C162.97 (18)
C13—N3—C9—C1179.95 (10)C15—C16—C17—C181.16 (17)
 

Acknowledgements

This research was funded by a CCSU–AAUP research grant and a CCSU Student-Faculty grant.

References

First citationBu, X.-H., Liu, H., Du, M., Wong, K. M.-C., Yam, V. W.-W. & Shionoya, M. (2001). Inorg. Chem. 40, 4143–4149.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationCantalupo, S. A., Crundwell, G. & Glagovich, N. (2010). Acta Cryst. E66, o2184.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationCrundwell, G. (2013). Acta Cryst. E69, m164.  Google Scholar
First citationCrundwell, G., Cantalupo, S., Foss, P. C. D., McBurney, B., Kopp, K., Westcott, B. L., Updegraff, J. III, Zeller, M. & Hunter, A. D. (2014). Open J. Inorg. Chem. 4, 10–17.  Google Scholar
First citationCrundwell, G. & Glagovich, N. (2010). Acta Cryst. E66, o3042.  Google Scholar
First citationImeri, A., Glagovich, N. M. & Crundwell, G. (2013). Acta Cryst. E69, o48.  Google Scholar
First citationJaso, A., Zarranz, B., Aldana, I. & Monge, A. (2005). J. Med. Chem. 48, 2019–2025.  Web of Science CrossRef PubMed CAS Google Scholar
First citationOxford Diffraction (2009). CrysAlis CCD,CrysAlis PRO, CrysAlis RED. Oxford Diffraction Ltd, Abington, England.  Google Scholar
First citationRasmussen, S. C., Richter, M. M., Yi, E., Place, H. & Brewer, K. J. (1990). Inorg. Chem. 29, 3926–3932.  CSD CrossRef CAS Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWoźniak, K. (1991). Acta Cryst. C47, 1761–1763.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds