organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 71| Part 2| February 2015| Pages o90-o91

Crystal structure of 3-[2-(4-methyl­phen­yl)ethyn­yl]-2H-chromen-2-one

aDepartmento de Física, Universidade Federal de São Carlos, 13565-905 São Carlos, SP, Brazil, bDepartamento de Farmácia, Faculdade de Ciências Farmacêuticas, Universidade de São Paulo, 05508-900 São Paulo-SP, Brazil, and cDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia
*Correspondence e-mail: ignez@ufscar.br

Edited by P. C. Healy, Griffith University, Australia (Received 15 December 2014; accepted 20 December 2014; online 10 January 2015)

The coumarin ring system in the title asymmetric alkyne, C18H12O2, is approximately planar (r.m.s. deviation of the 11 non-H atoms = 0.048 Å), and is inclined with respect to the methyl­benzene ring, forming a dihedral angle of 33.68 (4)°. In the crystal, supra­molecular zigzag chains along the c-axis direction are formed via weak C—H⋯O hydrogen bonds, and these are connected into double layers via weak C—H⋯π inter­actions; these stack along the a axis.

1. Related literature

For the biological activity of coumarins, see: Wu et al. (2009[Wu, L., Wang, X., Xu, W., Farzaneh, F. & Xu, R. (2009). Curr. Med. Chem. 16, 4236-4260.]). For background to previous work on coumarins, see: Stefani et al. (2012[Stefani, H. A., Gueogjan, K., Manarin, F., Farsky, S. H. P., Zukerman-Schpector, J., Caracelli, I., Pizano Rodrigues, S. R., Muscará, M. N., Teixeira, S. A., Santin, J. R., Machado, I. D., Bolonheis, S. M., Curi, R. & Vinolo, M. A. (2012). Eur. J. Med. Chem. 58, 117-127.]). For a related structure, see: Elangovan et al. (2004[Elangovan, E., Lin, J.-H., Yang, S.-W., Hsu, H.-Y. & Ho, T.-I. (2004). J. Org. Chem. 69, 8086-8092.]). For synthetic details, see: Gueogjian (2011[Gueogjian, K. (2011). PhD thesis. University of São Paulo, São Paulo, Brazil.]).

[Scheme 1]

2. Experimental

2.1. Crystal data

  • C18H12O2

  • Mr = 260.28

  • Monoclinic, P 21 /c

  • a = 8.4695 (2) Å

  • b = 10.6759 (2) Å

  • c = 14.5208 (2) Å

  • β = 98.093 (2)°

  • V = 1299.89 (4) Å3

  • Z = 4

  • Cu Kα radiation

  • μ = 0.69 mm−1

  • T = 100 K

  • 0.30 × 0.25 × 0.20 mm

2.2. Data collection

  • Agilent CCD diffratcometer diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2011[Agilent (2011). CrysAlis PRO. Agilent Technologies, Yarnton, England.]) Tmin = 0.834, Tmax = 1.000

  • 5023 measured reflections

  • 2664 independent reflections

  • 2416 reflections with I > 2σ(I)

  • Rint = 0.015

2.3. Refinement

  • R[F2 > 2σ(F2)] = 0.038

  • wR(F2) = 0.105

  • S = 1.04

  • 2664 reflections

  • 182 parameters

  • H-atom parameters constrained

  • Δρmax = 0.25 e Å−3

  • Δρmin = −0.21 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 and Cg2 are the centroids of the C4–C9 and C12–C17 rings, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
C7—H7⋯O2i 0.95 2.48 3.1425 (14) 127
C13—H13⋯Cg1ii 0.95 2.94 3.4416 (12) 115
C5—H5⋯Cg2iii 0.95 3.00 3.7780 (13) 140
Symmetry codes: (i) [x, -y+{\script{3\over 2}}, z+{\script{1\over 2}}]; (ii) -x, -y+1, -z+1; (iii) [x, -y+{\script{1\over 2}}, z+{\script{1\over 2}}].

Data collection: CrysAlis PRO (Agilent, 2011[Agilent (2011). CrysAlis PRO. Agilent Technologies, Yarnton, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SIR2014 (Burla et al., 2015[Burla, M. C., Caliandro, R., Carrozzini, B., Cascarano, G. L., Giacovazzo, C., Mallamo, M., Mazzone, A. & Polidori, G. (2015). In preparation.]); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and DIAMOND (Brandenburg, 2006[Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: MarvinSketch (ChemAxon, 2010[ChemAxon (2010). Marvinsketch. http://www.chemaxon.com.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Introduction top

Coumarins are heterocycles presenting a wide range of different biological activities (Wu et al., 2009). As part of our on-going inter­est in the synthesis of coumarin derivatives with biological activity (Stefani et al., 2012) the title compound was synthesized.

Experimental top

Synthesis and crystallization top

The title compound was prepared as per Gueogjian (2011). 3-Bromo coumarin (112.5 mg, 0.5 mmol), potassium tri­fluoro­borate salt (0.55 mmol), PdCl2(dppf).CH2Cl2 (41 mg, 10 mol%), i-Pr2NEt (0.3 mL, 1.5 mmol)and 1,4-dioxane/H2O (2/1, 3 mL), in aceto­nitrile (20 mL) were added to a two-necked round-bottomed flask equipped with a reflux condenser under N2. The reaction mixture was heated under reflux at 353 K, and was monitored by TLC and GC analysis. After the consumption of the 3-bromo­coumarin, the mixture was extracted twice with ethyl acetate (50 mL). The organic phase was separated, dried over MgSO4 and concentrated under vacuum. The residue was purified by flash chromatography (ethyl acetate/hexane 10:90). The title compound was obtained as a brown solid in 70% yield. Suitable crystals were obtained by slow evaporation from ethyl acetate/hexane.

Refinement top

Carbon-bound H-atoms were placed in calculated positions (C—H = 0.95 to 0.98 Å) and were included in the refinement in the riding model approximation, with Uiso(H) = 1.2–1.5Ueq(C).

Results and discussion top

The title compound, Fig. 1, is an asymmetric alkyne. The coumarin residue is approximately planar with the r.m.s. deviation of the 11 non-hydrogen atoms being 0.048 Å; the maximum deviations from their least-squares plane are 0.078 (1) and -0.066 (1) Å for the C2 and O2 atoms, respectively. Overall, the molecule is non-planar as seen in the dihedral between the fused ring system and the methyl­benzene ring of 33.68 (4)°.

The most closely related structure in the literature is of the derivative where the methyl group of the title compound has been replaced by an isoprop­oxy group (Elangovan et al., 2004). In this case, with the exception of the terminal methyl groups, the molecule is planar with the dihedral angle between the 11 non-hydrogen atoms of the courmarin residue the benzene ring being 0.88 (6)°.

Weak coumarin-C6—C—H···O(exocyclic) hydrogen bonding gives rise to a supra­molecular chain aligned along the c axis, Table 1 and Fig. 2. The chains are connected into double layers, sustained by weak C—H···π inter­actions, that stack along the a axis with no specific inter­actions between them, Table 2 and Fig. 3.

Related literature top

For the biological activity of coumarins, see: Wu et al. (2009). For background to previous work on coumarins, see: Stefani et al. (2012). For a related structure, see: Elangovan et al. (2004). For synthetic details, see: Gueogjian (2011).

Computing details top

Data collection: CrysAlis PRO (Agilent, 2011); cell refinement: CrysAlis PRO (Agilent, 2011); data reduction: CrysAlis PRO (Agilent, 2011); program(s) used to solve structure: SIR2014 (Burla et al., 2015); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and DIAMOND (Brandenburg, 2006); software used to prepare material for publication: MarvinSketch (ChemAxon, 2010) and publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound showing the atom-labelling scheme and displacement ellipsoids at the 70% probability level.
[Figure 2] Fig. 2. A view of the zigzag supramolecular sustained by weak C—H···O hydrogen bonds (orange dashed lines) and aligned along the c axis in the crystal packing.
[Figure 3] Fig. 3. A view in projection down the c axis of the unit-cell contents. The weak C—H···O and C—H···π interactions are shown as orange and purple dashed lines, respectively.
3-[2-(4-Methylphenyl)ethynyl]-2H-chromen-2-one top
Crystal data top
C18H12O2F(000) = 544
Mr = 260.28Dx = 1.330 Mg m3
Monoclinic, P21/cCu Kα radiation, λ = 1.54184 Å
a = 8.4695 (2) ÅCell parameters from 3107 reflections
b = 10.6759 (2) Åθ = 3.1–76.1°
c = 14.5208 (2) ŵ = 0.69 mm1
β = 98.093 (2)°T = 100 K
V = 1299.89 (4) Å3Prism, dark orange
Z = 40.30 × 0.25 × 0.20 mm
Data collection top
Agilent CCD diffratcometer
diffractometer
2416 reflections with I > 2σ(I)
Radiation source: SuperNova (Cu) X-ray SourceRint = 0.015
ω scansθmax = 76.3°, θmin = 5.2°
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2011)
h = 910
Tmin = 0.834, Tmax = 1.000k = 613
5023 measured reflectionsl = 1718
2664 independent reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.038H-atom parameters constrained
wR(F2) = 0.105 w = 1/[σ2(Fo2) + (0.0605P)2 + 0.3358P]
where P = (Fo2 + 2Fc2)/3
S = 1.04(Δ/σ)max < 0.001
2664 reflectionsΔρmax = 0.25 e Å3
182 parametersΔρmin = 0.21 e Å3
0 restraints
Crystal data top
C18H12O2V = 1299.89 (4) Å3
Mr = 260.28Z = 4
Monoclinic, P21/cCu Kα radiation
a = 8.4695 (2) ŵ = 0.69 mm1
b = 10.6759 (2) ÅT = 100 K
c = 14.5208 (2) Å0.30 × 0.25 × 0.20 mm
β = 98.093 (2)°
Data collection top
Agilent CCD diffratcometer
diffractometer
2664 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2011)
2416 reflections with I > 2σ(I)
Tmin = 0.834, Tmax = 1.000Rint = 0.015
5023 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0380 restraints
wR(F2) = 0.105H-atom parameters constrained
S = 1.04Δρmax = 0.25 e Å3
2664 reflectionsΔρmin = 0.21 e Å3
182 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.13803 (10)0.67272 (7)0.66818 (5)0.0210 (2)
O20.15964 (12)0.72775 (8)0.52430 (6)0.0313 (2)
C10.16397 (14)0.64322 (11)0.57962 (7)0.0211 (2)
C20.19557 (13)0.51127 (11)0.56003 (7)0.0199 (2)
C30.18389 (13)0.42253 (10)0.62585 (7)0.0199 (2)
H30.19800.33680.61150.024*
C40.15055 (13)0.45668 (10)0.71666 (7)0.0184 (2)
C50.14038 (13)0.36959 (11)0.78810 (8)0.0206 (2)
H50.15040.28260.77630.025*
C60.11585 (13)0.40976 (11)0.87544 (8)0.0217 (2)
H60.10780.35040.92330.026*
C70.10299 (13)0.53744 (11)0.89331 (7)0.0213 (2)
H70.08800.56450.95380.026*
C80.11176 (13)0.62546 (11)0.82380 (7)0.0204 (2)
H80.10330.71240.83600.025*
C90.13313 (13)0.58337 (10)0.73620 (7)0.0181 (2)
C100.24056 (14)0.48424 (11)0.47093 (8)0.0219 (2)
C110.28627 (14)0.46381 (11)0.39787 (8)0.0213 (2)
C120.34093 (13)0.43519 (11)0.31108 (7)0.0191 (2)
C130.28464 (13)0.50208 (11)0.23036 (8)0.0214 (2)
H130.21320.57010.23330.026*
C140.33248 (14)0.46968 (12)0.14599 (8)0.0227 (3)
H140.29410.51660.09190.027*
C150.43582 (13)0.36949 (11)0.13914 (8)0.0215 (2)
C160.49343 (14)0.30434 (11)0.22028 (8)0.0229 (2)
H160.56530.23660.21720.027*
C170.44814 (14)0.33623 (11)0.30511 (8)0.0218 (2)
H170.48970.29100.35950.026*
C180.48231 (15)0.32959 (13)0.04694 (8)0.0286 (3)
H18A0.42670.38210.00270.043*
H18B0.45260.24170.03510.043*
H18C0.59780.33900.04860.043*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0288 (4)0.0177 (4)0.0170 (4)0.0023 (3)0.0054 (3)0.0017 (3)
O20.0459 (6)0.0265 (5)0.0239 (4)0.0070 (4)0.0132 (4)0.0074 (3)
C10.0237 (6)0.0236 (6)0.0164 (5)0.0020 (4)0.0046 (4)0.0019 (4)
C20.0189 (5)0.0235 (6)0.0170 (5)0.0023 (4)0.0016 (4)0.0011 (4)
C30.0198 (5)0.0201 (5)0.0195 (5)0.0020 (4)0.0018 (4)0.0012 (4)
C40.0168 (5)0.0201 (5)0.0179 (5)0.0009 (4)0.0009 (4)0.0001 (4)
C50.0202 (5)0.0193 (5)0.0217 (5)0.0006 (4)0.0008 (4)0.0021 (4)
C60.0211 (5)0.0252 (6)0.0182 (5)0.0015 (4)0.0003 (4)0.0051 (4)
C70.0205 (5)0.0282 (6)0.0148 (5)0.0019 (4)0.0007 (4)0.0009 (4)
C80.0216 (5)0.0207 (5)0.0187 (5)0.0006 (4)0.0018 (4)0.0017 (4)
C90.0183 (5)0.0194 (5)0.0163 (5)0.0001 (4)0.0013 (4)0.0023 (4)
C100.0223 (5)0.0241 (5)0.0189 (5)0.0014 (4)0.0018 (4)0.0002 (4)
C110.0213 (5)0.0226 (5)0.0197 (5)0.0006 (4)0.0013 (4)0.0009 (4)
C120.0191 (5)0.0214 (5)0.0169 (5)0.0036 (4)0.0027 (4)0.0027 (4)
C130.0196 (5)0.0231 (6)0.0209 (5)0.0012 (4)0.0013 (4)0.0014 (4)
C140.0218 (5)0.0292 (6)0.0164 (5)0.0008 (5)0.0006 (4)0.0012 (4)
C150.0191 (5)0.0278 (6)0.0178 (5)0.0054 (4)0.0030 (4)0.0048 (4)
C160.0211 (5)0.0231 (6)0.0250 (6)0.0013 (4)0.0053 (4)0.0022 (4)
C170.0229 (5)0.0238 (6)0.0184 (5)0.0002 (4)0.0021 (4)0.0023 (4)
C180.0274 (6)0.0394 (7)0.0200 (6)0.0036 (5)0.0062 (5)0.0074 (5)
Geometric parameters (Å, º) top
O1—C11.3713 (13)C8—H80.9500
O1—C91.3780 (13)C10—C111.1995 (16)
O2—C11.2053 (14)C11—C121.4353 (15)
C1—C21.4691 (16)C12—C131.3978 (16)
C2—C31.3592 (15)C12—C171.4036 (16)
C2—C101.4287 (15)C13—C141.3873 (15)
C3—C41.4339 (14)C13—H130.9500
C3—H30.9500C14—C151.3945 (17)
C4—C91.3941 (15)C14—H140.9500
C4—C51.4048 (15)C15—C161.3958 (16)
C5—C61.3820 (15)C15—C181.5090 (14)
C5—H50.9500C16—C171.3833 (15)
C6—C71.3946 (17)C16—H160.9500
C6—H60.9500C17—H170.9500
C7—C81.3887 (16)C18—H18A0.9800
C7—H70.9500C18—H18B0.9800
C8—C91.3847 (15)C18—H18C0.9800
C1—O1—C9122.56 (9)C8—C9—C4122.22 (10)
O2—C1—O1117.33 (10)C11—C10—C2176.53 (12)
O2—C1—C2125.32 (10)C10—C11—C12178.19 (12)
O1—C1—C2117.35 (9)C13—C12—C17118.68 (10)
C3—C2—C10123.44 (11)C13—C12—C11120.89 (10)
C3—C2—C1119.92 (10)C17—C12—C11120.39 (10)
C10—C2—C1116.62 (10)C14—C13—C12120.37 (11)
C2—C3—C4120.84 (10)C14—C13—H13119.8
C2—C3—H3119.6C12—C13—H13119.8
C4—C3—H3119.6C13—C14—C15121.24 (10)
C9—C4—C5118.20 (10)C13—C14—H14119.4
C9—C4—C3118.30 (10)C15—C14—H14119.4
C5—C4—C3123.46 (10)C14—C15—C16118.05 (10)
C6—C5—C4120.34 (11)C14—C15—C18121.64 (11)
C6—C5—H5119.8C16—C15—C18120.29 (11)
C4—C5—H5119.8C17—C16—C15121.42 (11)
C5—C6—C7119.99 (10)C17—C16—H16119.3
C5—C6—H6120.0C15—C16—H16119.3
C7—C6—H6120.0C16—C17—C12120.21 (10)
C8—C7—C6120.84 (10)C16—C17—H17119.9
C8—C7—H7119.6C12—C17—H17119.9
C6—C7—H7119.6C15—C18—H18A109.5
C9—C8—C7118.38 (10)C15—C18—H18B109.5
C9—C8—H8120.8H18A—C18—H18B109.5
C7—C8—H8120.8C15—C18—H18C109.5
O1—C9—C8117.06 (10)H18A—C18—H18C109.5
O1—C9—C4120.72 (9)H18B—C18—H18C109.5
C9—O1—C1—O2177.09 (10)C7—C8—C9—O1178.68 (9)
C9—O1—C1—C23.21 (15)C7—C8—C9—C41.88 (17)
O2—C1—C2—C3174.34 (12)C5—C4—C9—O1178.37 (9)
O1—C1—C2—C35.98 (16)C3—C4—C9—O13.95 (16)
O2—C1—C2—C106.73 (18)C5—C4—C9—C82.21 (16)
O1—C1—C2—C10172.95 (10)C3—C4—C9—C8175.47 (10)
C10—C2—C3—C4175.00 (10)C17—C12—C13—C140.91 (16)
C1—C2—C3—C43.86 (17)C11—C12—C13—C14176.91 (10)
C2—C3—C4—C91.08 (16)C12—C13—C14—C150.70 (17)
C2—C3—C4—C5178.62 (10)C13—C14—C15—C161.63 (17)
C9—C4—C5—C60.84 (16)C13—C14—C15—C18177.00 (11)
C3—C4—C5—C6176.70 (10)C14—C15—C16—C170.99 (17)
C4—C5—C6—C70.77 (17)C18—C15—C16—C17177.67 (10)
C5—C6—C7—C81.12 (17)C15—C16—C17—C120.60 (18)
C6—C7—C8—C90.18 (17)C13—C12—C17—C161.54 (17)
C1—O1—C9—C8177.74 (10)C11—C12—C17—C16176.28 (10)
C1—O1—C9—C41.71 (16)
Hydrogen-bond geometry (Å, º) top
Cg1 and Cg2 are the centroids of the C4–C9 and C12–C17 rings, respectively.
D—H···AD—HH···AD···AD—H···A
C7—H7···O2i0.952.483.1425 (14)127
C13—H13···Cg1ii0.952.943.4416 (12)115
C5—H5···Cg2iii0.953.003.7780 (13)140
Symmetry codes: (i) x, y+3/2, z+1/2; (ii) x, y+1, z+1; (iii) x, y+1/2, z+1/2.
Hydrogen-bond geometry (Å, º) top
Cg1 and Cg2 are the centroids of the C4–C9 and C12–C17 rings, respectively.
D—H···AD—HH···AD···AD—H···A
C7—H7···O2i0.952.483.1425 (14)127
C13—H13···Cg1ii0.952.943.4416 (12)115
C5—H5···Cg2iii0.953.003.7780 (13)140
Symmetry codes: (i) x, y+3/2, z+1/2; (ii) x, y+1, z+1; (iii) x, y+1/2, z+1/2.
 

Acknowledgements

The Brazilian agencies CNPq (306121/2013–2 to IC and 308320/2010–7 to HAS), FAPESP and CAPES are acknowledged for financial support.

References

First citationAgilent (2011). CrysAlis PRO. Agilent Technologies, Yarnton, England.  Google Scholar
First citationBrandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBurla, M. C., Caliandro, R., Carrozzini, B., Cascarano, G. L., Giacovazzo, C., Mallamo, M., Mazzone, A. & Polidori, G. (2015). In preparation.  Google Scholar
First citationChemAxon (2010). Marvinsketch. http://www.chemaxon.com.  Google Scholar
First citationElangovan, E., Lin, J.-H., Yang, S.-W., Hsu, H.-Y. & Ho, T.-I. (2004). J. Org. Chem. 69, 8086–8092.  Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGueogjian, K. (2011). PhD thesis. University of São Paulo, São Paulo, Brazil.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStefani, H. A., Gueogjan, K., Manarin, F., Farsky, S. H. P., Zukerman-Schpector, J., Caracelli, I., Pizano Rodrigues, S. R., Muscará, M. N., Teixeira, S. A., Santin, J. R., Machado, I. D., Bolonheis, S. M., Curi, R. & Vinolo, M. A. (2012). Eur. J. Med. Chem. 58, 117–127.  Web of Science CrossRef CAS PubMed Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWu, L., Wang, X., Xu, W., Farzaneh, F. & Xu, R. (2009). Curr. Med. Chem. 16, 4236–4260.  Web of Science CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 71| Part 2| February 2015| Pages o90-o91
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds