metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 71| Part 2| February 2015| Pages m16-m17

Crystal structure of cis-tetra­aqua­di­chlorido­cobalt(II) sulfolane disolvate

aUnité de Recherche de Chimie de l'Environnement et Moléculaire Structurale, CHEMS, Université Constantine 1, 25000 , Algeria, bDépartement Sciences de la Matière, Faculté des Sciences Exactes et Sciences de la Nature et de la Vie, Université Oum El Bouaghi, Algeria, and cUniversité Abdelmalek Essaadi, Faculté des Sciences, BP 2121 M'Hannech II, 93002 Tétouan, Morocco
*Correspondence e-mail: bouacida_sofiane@yahoo.fr

Edited by W. Imhof, University Koblenz-Landau, Germany (Received 7 December 2014; accepted 19 December 2014; online 3 January 2015)

In the title compound, [CoCl2(H2O)4]·2C4H8SO2, the CoII cation is located on the twofold rotation axis and is coordinated by four water mol­ecules and two adjacent chloride ligands in a slightly distorted octa­hedral coordination environment. The cisoid angles are in the range 83.27 (5)–99.66 (2)°. The three transoid angles deviate significantly from the ideal linear angle. The crystal packing can be described as a linear arrangement of complex units along c formed by bifurcated O—H⋯Cl hydrogen bonds between two water mol­ecules from one complex unit towards one chloride ligand of the neighbouring complex. Two solvent mol­ecules per complex are attached to this infinite chain via O—H⋯O hydrogen bonds in which water mol­ecules act as the hydrogen-bond donor and sulfolane O atoms as the hydrogen-bond acceptor sites.

1. Related literature

For structures where the CoII atom exhibits an octahedral geometry and is coordinated by water molecules, see: Waizumi et al. (1990[Waizumi, K., Masuda, H., Ohtaki, H., Tsukamoto, K. & Sunagawa, I. (1990). Bull. Chem. Soc. Jpn, 63, 3426-3433.]); Sarangarajan et al. (2008[Sarangarajan, T. R., Krishnamoorthy, B. S., Panchanatheswaran, K., Low, J. N. & Glidewell, C. (2008). Acta Cryst. C64, m286-m291.]). For potential applications of organic–inorganic hybrid compounds, see: Al-Ktaifani & Rukiah (2011[Al-Ktaifani, M. M. & Rukiah, M. K. (2011). Chem. Pap. 65, 469-476.]). For related structures, see: Bouacida et al. (2005[Bouacida, S., Merazig, H., Beghidja, A. & Beghidja, C. (2005). Acta Cryst. E61, m577-m579.], 2013[Bouacida, S., Bouchene, R., Khadri, A., Belhouas, R. & Merazig, H. (2013). Acta Cryst. E69, m610-m611.]); Sahbani et al. (2014[Sahbani, T., Smirani Sta, W. & Rzaigui, M. (2014). Acta Cryst. E70, m6.]).

[Scheme 1]

2. Experimental

2.1. Crystal data

  • [CoCl2(H2O)4]·2C4H8O2S

  • Mr = 442.22

  • Monoclinic, C 2/c

  • a = 20.062 (2) Å

  • b = 9.4284 (10) Å

  • c = 10.5882 (13) Å

  • β = 118.734 (5)°

  • V = 1756.2 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.55 mm−1

  • T = 295 K

  • 0.21 × 0.15 × 0.09 mm

2.2. Data collection

  • Bruker APEXII diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2002[Sheldrick, G. M. (2002). SADABS. University of Göttingen, Germany.]) Tmin = 0.649, Tmax = 0.748

  • 20238 measured reflections

  • 5090 independent reflections

  • 3409 reflections with I > 2σ(I)

  • Rint = 0.061

2.3. Refinement

  • R[F2 > 2σ(F2)] = 0.043

  • wR(F2) = 0.129

  • S = 1.01

  • 5090 reflections

  • 108 parameters

  • 4 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.90 e Å−3

  • Δρmin = −1.44 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1W—H1W⋯Cl1i 0.77 (3) 2.44 (3) 3.1885 (15) 165 (3)
O1W—H2W⋯O11 0.81 (2) 1.99 (2) 2.782 (2) 165 (2)
O2W—H3W⋯Cl1ii 0.83 (2) 2.41 (2) 3.2289 (16) 171 (2)
O2W—H4W⋯O12 0.79 (3) 2.05 (3) 2.835 (2) 174 (3)
Symmetry codes: (i) -x+1, -y+1, -z; (ii) [x, -y+1, z+{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2011[Bruker (2011). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2011[Bruker (2011). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SIR2002 (Burla et al., 2005[Burla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G. & Spagna, R. (2005). J. Appl. Cryst. 38, 381-388.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and DIAMOND (Brandenburg & Berndt, 2001[Brandenburg, K. & Berndt, M. (2001). DIAMOND. Crystal Impact, Bonn, Germany.]); software used to prepare material for publication: WinGX (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]).

Supporting information


Comment top

Organic-inorganic hybrid salts have received considerable attention because of their potential applications in analytical, material and supramolecular chemistry (Al-Ktaifani et al., 2011; Bouacida et al. 2005, 2013; Sahbani et al., 2014). In this work, we report the preparation and the structural investigation of [Co(H2O)4Cl2] × 2 C4H8SO2. Since the central cobalt the CoII cation is located on the twofold rotation axis the asymmetric unit of (I) consists of one one half of the complex unit and one molecule of sulfolane (Figure 1).

The structure of the compound consists of discrete tetraaquadichlorocobalt(II) complexes stacked in chains parallel to the c axis. The CoII cation is coordinated by four water molecules and two adjacent chloride ligands in a slightly distorted octahedral geometry. The two Co—Cl distances are 2.510 (6) Å and the Co—O distances are between 2.165 (3) and 2.243 (3) Å in good agreement with that found in mineral compound CoCl2O4H8 (Waizumi et al., 1990) and in the coordination compound [CoCl2(H2O)4]C4H6N2O2 (Sarangarajan et al., 2008). Cisoid angles around Co atom are in the range of 83.27 (5)° to 99.66 (2)°. In the organic molecule, the S atom is tetrahedrally coordinated by two O and two C atoms. The three bonds C—C are in the range 1.516 (2)–1,531 (3) Å. In the crystal, molecules are linked by O—H···O and O—H···Cl hydrogen bonds forming chains along [001] (Figure 2). The crystal packing can be described as a linear arrangement of complex units along c formed by bifurcated O–H···Cl hydrogen bonds between two water molecules from one complex unit towards one chloride ligand of the neighboring complex. Two solvent molecules per complex are attached to this infinite chain via O–H···O hydrogen bonds in which water molecules act as the hydrogen bond donor and sulfolane oxygen atoms as the hydrogen bond acceptor sites.

Related literature top

For the environment of CoII, see: Waizumi et al. (1990); Sarangarajan et al. (2008). For potential applications of organic–inorganic hybrid compounds, see: Al-Ktaifani & Rukiah (2011); Bouacida et al. (2005, 2013); Sahbani et al. (2014).

Experimental top

A solution of CoCl2 × 2 H2O (34 mg, 0.2 mmol) in water (10 ml) was added dropwise to a solution of sulfolane (24 mg, 0.2 mmol) in water (10 ml). The mixture was then refluxed with stirring for 3 h and the resulting solution was left to stand at room temperature. After several days, blue crystals were obtained and dried under vacuum (yield: 55%).

Refinement top

All non-H atoms were refined with anisotropic displacement parameters. Approximate positions for all H atoms were first obtained from the difference electron density map. However, the H atoms were situated into idealized positions and the H-atoms have been refined within the riding atom approximation with C—H = 0.93 Å and Uiso = 1.2Ueq(C) except for H atoms of water molecules, which were refined isotropically using the following restraints: O—H = 0.84 (2) Å, H···H = 1.45 (2) Å and Uiso = 1.5Ueq(O).

Computing details top

Data collection: APEX2 (Bruker, 2011); cell refinement: SAINT (Bruker, 2011); data reduction: SAINT (Bruker, 2011); program(s) used to solve structure: SIR2002 (Burla et al., 2005); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and DIAMOND (Brandenburg & Berndt, 2001); software used to prepare material for publication: WinGX (Farrugia, 2012).

Figures top
[Figure 1] Fig. 1. Molecular structure of (I) with displacement ellipsoids drawn at the 50% probability level. Only the asymmetric unit is labelled. H atoms are represented as small spheres of arbitrary radii.
[Figure 2] Fig. 2. Packing diagram of (I) showing the infinite chains of complex units and solvent molecule along the c axis.
cis-Tetraaquadichloridocobalt(II) sulfolane disolvate top
Crystal data top
[CoCl2(H2O)4]·2C4H8O2SF(000) = 916
Mr = 442.22Dx = 1.673 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 5148 reflections
a = 20.062 (2) Åθ = 2.5–35.1°
b = 9.4284 (10) ŵ = 1.55 mm1
c = 10.5882 (13) ÅT = 295 K
β = 118.734 (5)°Prism, blue
V = 1756.2 (3) Å30.21 × 0.15 × 0.09 mm
Z = 4
Data collection top
Bruker APEXII
diffractometer
5090 independent reflections
Radiation source: sealed tube3409 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.061
ϕ and ω scansθmax = 39.0°, θmin = 2.3°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2002)
h = 3435
Tmin = 0.649, Tmax = 0.748k = 1616
20238 measured reflectionsl = 1814
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.043Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.129H atoms treated by a mixture of independent and constrained refinement
S = 1.01 w = 1/[σ2(Fo2) + (0.0666P)2]
where P = (Fo2 + 2Fc2)/3
5090 reflections(Δ/σ)max = 0.007
108 parametersΔρmax = 0.90 e Å3
4 restraintsΔρmin = 1.44 e Å3
Crystal data top
[CoCl2(H2O)4]·2C4H8O2SV = 1756.2 (3) Å3
Mr = 442.22Z = 4
Monoclinic, C2/cMo Kα radiation
a = 20.062 (2) ŵ = 1.55 mm1
b = 9.4284 (10) ÅT = 295 K
c = 10.5882 (13) Å0.21 × 0.15 × 0.09 mm
β = 118.734 (5)°
Data collection top
Bruker APEXII
diffractometer
5090 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2002)
3409 reflections with I > 2σ(I)
Tmin = 0.649, Tmax = 0.748Rint = 0.061
20238 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0434 restraints
wR(F2) = 0.129H atoms treated by a mixture of independent and constrained refinement
S = 1.01Δρmax = 0.90 e Å3
5090 reflectionsΔρmin = 1.44 e Å3
108 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Co10.50.47467 (3)0.250.01473 (8)
S10.76287 (2)0.53220 (4)0.58938 (4)0.01334 (9)
Cl10.43290 (2)0.30294 (4)0.04608 (4)0.01647 (9)
O1W0.59916 (7)0.49821 (15)0.22088 (14)0.0177 (2)
H1W0.5953 (15)0.556 (2)0.168 (2)0.027*
H2W0.6412 (11)0.483 (3)0.288 (2)0.027*
O2W0.54617 (7)0.65037 (13)0.41295 (13)0.0155 (2)
H3W0.5200 (12)0.669 (3)0.452 (2)0.023*
H4W0.5887 (12)0.631 (3)0.467 (3)0.023*
C30.90875 (11)0.5145 (2)0.7520 (3)0.0298 (5)
H3A0.9550.55380.82960.036*
H3B0.92060.47240.68150.036*
C40.84886 (10)0.6288 (2)0.6830 (2)0.0240 (4)
H4A0.85840.6860.61720.029*
H4B0.84750.690.75540.029*
C10.79391 (13)0.3742 (2)0.6942 (2)0.0293 (4)
H1A0.76180.35290.7370.035*
H1B0.79240.29450.6350.035*
C20.87487 (14)0.4035 (3)0.8102 (3)0.0386 (6)
H2A0.90470.3170.83420.046*
H2B0.87520.43860.89660.046*
O120.70254 (8)0.60180 (16)0.60336 (16)0.0245 (3)
O110.74827 (8)0.50189 (17)0.44424 (16)0.0273 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Co10.01483 (14)0.01815 (15)0.01223 (15)00.00731 (12)0
S10.01081 (15)0.01611 (17)0.01057 (17)0.00112 (12)0.00313 (13)0.00104 (12)
Cl10.02063 (18)0.01729 (17)0.01137 (16)0.00469 (13)0.00760 (14)0.00251 (13)
O1W0.0121 (5)0.0302 (7)0.0117 (5)0.0022 (4)0.0064 (4)0.0051 (5)
O2W0.0149 (5)0.0186 (5)0.0130 (5)0.0020 (4)0.0067 (4)0.0022 (4)
C30.0136 (7)0.0444 (12)0.0283 (11)0.0051 (7)0.0074 (7)0.0038 (9)
C40.0173 (7)0.0219 (8)0.0277 (9)0.0067 (6)0.0068 (7)0.0036 (7)
C10.0397 (12)0.0158 (8)0.0332 (11)0.0009 (7)0.0182 (10)0.0080 (7)
C20.0326 (11)0.0517 (14)0.0278 (11)0.0189 (10)0.0115 (9)0.0219 (10)
O120.0160 (6)0.0326 (7)0.0230 (7)0.0034 (5)0.0079 (5)0.0044 (5)
O110.0188 (6)0.0506 (9)0.0112 (6)0.0003 (6)0.0060 (5)0.0021 (6)
Geometric parameters (Å, º) top
Co1—O1W2.1660 (13)O2W—H4W0.79 (2)
Co1—O1Wi2.1660 (13)C3—C41.515 (3)
Co1—O2W2.2455 (12)C3—C21.529 (4)
Co1—O2Wi2.2455 (12)C3—H3A0.97
Co1—Cl12.5102 (5)C3—H3B0.97
Co1—Cl1i2.5102 (5)C4—H4A0.97
S1—O121.4456 (14)C4—H4B0.97
S1—O111.4478 (16)C1—C21.518 (3)
S1—C41.7730 (18)C1—H1A0.97
S1—C11.7820 (19)C1—H1B0.97
O1W—H1W0.758 (16)C2—H2A0.97
O1W—H2W0.812 (17)C2—H2B0.97
O2W—H3W0.830 (16)
O1W—Co1—O1Wi168.24 (8)H3W—O2W—H4W115 (2)
O1W—Co1—O2W88.05 (5)C4—C3—C2106.16 (18)
O1Wi—Co1—O2W83.27 (5)C4—C3—H3A110.5
O1W—Co1—O2Wi83.27 (5)C2—C3—H3A110.5
O1Wi—Co1—O2Wi88.05 (5)C4—C3—H3B110.5
O2W—Co1—O2Wi84.92 (7)C2—C3—H3B110.5
O1W—Co1—Cl195.34 (4)H3A—C3—H3B108.7
O1Wi—Co1—Cl192.24 (4)C3—C4—S1103.73 (13)
O2W—Co1—Cl1171.61 (4)C3—C4—H4A111
O2Wi—Co1—Cl187.85 (3)S1—C4—H4A111
O1W—Co1—Cl1i92.24 (4)C3—C4—H4B111
O1Wi—Co1—Cl1i95.34 (4)S1—C4—H4B111
O2W—Co1—Cl1i87.85 (3)H4A—C4—H4B109
O2Wi—Co1—Cl1i171.61 (4)C2—C1—S1105.63 (15)
Cl1—Co1—Cl1i99.66 (2)C2—C1—H1A110.6
O12—S1—O11116.50 (9)S1—C1—H1A110.6
O12—S1—C4110.32 (9)C2—C1—H1B110.6
O11—S1—C4109.92 (10)S1—C1—H1B110.6
O12—S1—C1112.01 (10)H1A—C1—H1B108.7
O11—S1—C1109.14 (10)C1—C2—C3107.97 (17)
C4—S1—C197.26 (10)C1—C2—H2A110.1
Co1—O1W—H1W114 (2)C3—C2—H2A110.1
Co1—O1W—H2W120 (2)C1—C2—H2B110.1
H1W—O1W—H2W118 (3)C3—C2—H2B110.1
Co1—O2W—H3W114.7 (17)H2A—C2—H2B108.4
Co1—O2W—H4W106.8 (18)
C2—C3—C4—S142.0 (2)O11—S1—C1—C2115.94 (17)
O12—S1—C4—C3140.20 (15)C4—S1—C1—C21.88 (19)
O11—S1—C4—C389.99 (17)S1—C1—C2—C327.0 (2)
C1—S1—C4—C323.45 (17)C4—C3—C2—C145.6 (3)
O12—S1—C1—C2113.53 (17)
Symmetry code: (i) x+1, y, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1W···Cl1ii0.77 (3)2.44 (3)3.1885 (15)165 (3)
O1W—H2W···O110.81 (2)1.99 (2)2.782 (2)165 (2)
O2W—H3W···Cl1iii0.83 (2)2.41 (2)3.2289 (16)171 (2)
O2W—H4W···O120.79 (3)2.05 (3)2.835 (2)174 (3)
Symmetry codes: (ii) x+1, y+1, z; (iii) x, y+1, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1W···Cl1i0.77 (3)2.44 (3)3.1885 (15)165 (3)
O1W—H2W···O110.81 (2)1.99 (2)2.782 (2)165.0 (19)
O2W—H3W···Cl1ii0.83 (2)2.41 (2)3.2289 (16)171.3 (19)
O2W—H4W···O120.79 (3)2.05 (3)2.835 (2)174 (3)
Symmetry codes: (i) x+1, y+1, z; (ii) x, y+1, z+1/2.
 

Acknowledgements

Thanks are due to MESRS and ATRST (Ministére de l'Enseignement Supérieur et de la Recherche Scientifique et l'Agence Thématique de Recherche en Sciences et Technologie - Algérie) for financial support via the PNR programme.

References

First citationAl-Ktaifani, M. M. & Rukiah, M. K. (2011). Chem. Pap. 65, 469–476.  CAS Google Scholar
First citationBouacida, S., Bouchene, R., Khadri, A., Belhouas, R. & Merazig, H. (2013). Acta Cryst. E69, m610–m611.  CSD CrossRef CAS IUCr Journals Google Scholar
First citationBouacida, S., Merazig, H., Beghidja, A. & Beghidja, C. (2005). Acta Cryst. E61, m577–m579.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBrandenburg, K. & Berndt, M. (2001). DIAMOND. Crystal Impact, Bonn, Germany.  Google Scholar
First citationBruker (2011). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBurla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G. & Spagna, R. (2005). J. Appl. Cryst. 38, 381–388.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSahbani, T., Smirani Sta, W. & Rzaigui, M. (2014). Acta Cryst. E70, m6.  CSD CrossRef IUCr Journals Google Scholar
First citationSarangarajan, T. R., Krishnamoorthy, B. S., Panchanatheswaran, K., Low, J. N. & Glidewell, C. (2008). Acta Cryst. C64, m286–m291.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2002). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWaizumi, K., Masuda, H., Ohtaki, H., Tsukamoto, K. & Sunagawa, I. (1990). Bull. Chem. Soc. Jpn, 63, 3426–3433.  CrossRef CAS Web of Science Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 71| Part 2| February 2015| Pages m16-m17
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds