organic compounds
β-D,L-allose
ofaDepartment of Advanced Materials Science, Faculty of Engineering, Kagawa University, 2217-20 Hayashi-cho, Takamatsu, Kagawa 761-0396, Japan, bDepartment of Applied Biological Science, Faculty of Agriculture, Kagawa University, 2393 Ikenobe, Kagawa 761-0795, Japan, and cDepartment of Chemistry, Faculty of Science, Okayama University of Science, 1-1 Ridaicho, Kita-ku, Okayama 700-0005, Japan
*Correspondence e-mail: tishii@eng.kagawa-u.ac.jp
The title compound, C6H12O6, a C-3 position epimer of glucose, was crystallized from an equimolar mixture of D- and L-allose. It was confirmed that D-allose (L-allose) formed β-pyranose with a 4C1 (1C4) conformation in the crystal. In the crystal, molecules are linked by O—H⋯O hydrogen bond, forming a three-dimensional framework. The cell volume of the racemic β-D,L-allose is 739.36 (3) Å3, which is about 10 Å3 smaller than that of chiral β-D-allose [V = 751.0 (2) Å3].
Keywords: crystal structure; racemic compound; rare sugar; O—H⋯O hydrogen bonding.
CCDC reference: 1037204
1. Related literature
For the β-D-allose, see: Kroon-Batenburg et al. (1984). For the of racemic D,L-arabinose, see: Longchambon et al. (1985) and of chiral L-arabinose, see: Takagi & Jeffrey (1977). For the synthesis of chiral D- or L-allose, see: Menavuvu et al. (2006); Morimoto et al. (2006, 2013); Shimonishi & Izumori (1996).
of the chiral2. Experimental
2.1. Crystal data
|
2.3. Refinement
|
Data collection: RAPID-AUTO (Rigaku, 2009); cell RAPID-AUTO; data reduction: RAPID-AUTO; program(s) used to solve structure: SIR2008 in Il Milione (Burla et al., 2007); program(s) used to refine structure: SHELXL2013 (Sheldrick, 2015); molecular graphics: CrystalStructure (Rigaku, 2010); software used to prepare material for publication: CrystalStructure.
Supporting information
CCDC reference: 1037204
10.1107/S2056989015000353/is5386sup1.cif
contains datablocks General, I. DOI:Structure factors: contains datablock I. DOI: 10.1107/S2056989015000353/is5386Isup2.hkl
D-Allose and L-allose were biosynthesized from D-psicose and L-psicose using L-rhammose isomerase (Menavuvu et al., 2006; Morimoto et al., 2006) and L-ribose isomerase (Shimonishi et al., 1996; Morimoto et al., 2013), respectively. Equimolar mixture of D-allose and L-allose was dissolved in water to give 15 wt% solution, and then it was kept at 30 °C. After two days, small crystals appeared and they were grown at 25 °C for two weeks yielded prism-shaped crystals of sufficient size. Melting point of the obtained crystals was confirmed to be 181 °C, which was 30–35 °C higher than the melting point of β-D-allose.
H atoms bounded to methine-type C (H1B, H2B, H3B, H4B, H5A) were positioned geometrically and refined using a riding model with C—H = 0.98 Å and Uiso(H) = 1.2Ueq(C). H atoms bounded to methylene-type C (H6B, H6C) were positioned geometrically and refined using a riding model with C—H = 0.97 Å and Uiso(H) = 1.2Ueq(C). H atoms bounded to O (H1A, H2A, H3A, H4A, H6A) were positioned geometrically and refined using a riding model with O—H = 0.82 Å and Uiso(H) = 1.2Ueq(O), allowing for
of the OH groups.Data collection: RAPID-AUTO (Rigaku, 2009); cell
RAPID-AUTO (Rigaku, 2009); data reduction: RAPID-AUTO (Rigaku, 2009); program(s) used to solve structure: SIR2008 in Il Milione (Burla et al., 2007); program(s) used to refine structure: SHELXL2013 (Sheldrick, 2015); molecular graphics: CrystalStructure (Rigaku, 2010); software used to prepare material for publication: CrystalStructure (Rigaku, 2010).Fig. 1. ORTEP view of the title compound with the atom-labeling scheme. The thermal ellipsoids of all non-hydrogen atoms are drawn at the 50% probability level. H atoms are shown as small spheres of arbitrary radius. | |
Fig. 2. Part of the crystal structure of the title compound with hydrogen-bonding network represented as light green dashed lines, viewed down the tilted a axis. The hydrogen atoms are omitted for clarity. | |
Fig. 3. Part of the crystal structure of the chiral β-D-allose (Kroon-Batenburg et al., 1984) with hydrogen-bonding network represented as light blue dashed lines, viewed down the a axis. The hydrogen atoms are omitted for clarity. |
C6H12O6 | F(000) = 384.00 |
Mr = 180.16 | Dx = 1.618 Mg m−3 |
Monoclinic, P21/c | Cu Kα radiation, λ = 1.54187 Å |
Hall symbol: -P 2ybc | Cell parameters from 11709 reflections |
a = 4.98211 (10) Å | θ = 3.5–68.2° |
b = 12.5624 (3) Å | µ = 1.29 mm−1 |
c = 11.8156 (3) Å | T = 295 K |
β = 91.1262 (14)° | Block, colorless |
V = 739.36 (3) Å3 | 0.10 × 0.10 × 0.10 mm |
Z = 4 |
Rigaku R-AXIS RAPID diffractometer | 1232 reflections with F2 > 2σ(F2) |
Detector resolution: 10.000 pixels mm-1 | Rint = 0.075 |
ω scans | θmax = 68.2° |
Absorption correction: multi-scan (ABSCOR; Higashi, 1995) | h = −6→6 |
Tmin = 0.687, Tmax = 0.879 | k = −15→15 |
12963 measured reflections | l = −14→14 |
1350 independent reflections |
Refinement on F2 | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.037 | H-atom parameters constrained |
wR(F2) = 0.102 | w = 1/[σ2(Fo2) + (0.0463P)2 + 0.3535P] where P = (Fo2 + 2Fc2)/3 |
S = 1.07 | (Δ/σ)max = 0.001 |
1350 reflections | Δρmax = 0.37 e Å−3 |
115 parameters | Δρmin = −0.22 e Å−3 |
0 restraints | Extinction correction: SHELXL2013 (Sheldrick, 2015) |
Primary atom site location: structure-invariant direct methods | Extinction coefficient: 0.0159 (15) |
Secondary atom site location: difference Fourier map |
C6H12O6 | V = 739.36 (3) Å3 |
Mr = 180.16 | Z = 4 |
Monoclinic, P21/c | Cu Kα radiation |
a = 4.98211 (10) Å | µ = 1.29 mm−1 |
b = 12.5624 (3) Å | T = 295 K |
c = 11.8156 (3) Å | 0.10 × 0.10 × 0.10 mm |
β = 91.1262 (14)° |
Rigaku R-AXIS RAPID diffractometer | 1350 independent reflections |
Absorption correction: multi-scan (ABSCOR; Higashi, 1995) | 1232 reflections with F2 > 2σ(F2) |
Tmin = 0.687, Tmax = 0.879 | Rint = 0.075 |
12963 measured reflections |
R[F2 > 2σ(F2)] = 0.037 | 0 restraints |
wR(F2) = 0.102 | H-atom parameters constrained |
S = 1.07 | Δρmax = 0.37 e Å−3 |
1350 reflections | Δρmin = −0.22 e Å−3 |
115 parameters |
Refinement. Refinement was performed using all reflections. The weighted R-factor (wR) and goodness of fit (S) are based on F2. R-factor (gt) are based on F. The threshold expression of F2 > 2.0 σ(F2) is used only for calculating R-factor (gt). |
x | y | z | Uiso*/Ueq | ||
O1 | 0.1621 (3) | 0.79703 (8) | 0.67894 (10) | 0.0283 (3) | |
O2 | 0.1676 (3) | 0.85269 (9) | 0.91826 (9) | 0.0311 (4) | |
O3 | −0.0213 (2) | 1.05723 (8) | 0.88005 (9) | 0.0244 (3) | |
O4 | 0.3426 (3) | 1.21319 (8) | 0.80258 (10) | 0.0270 (3) | |
O5 | 0.2673 (2) | 0.96785 (8) | 0.63757 (8) | 0.0219 (3) | |
O6 | 0.6115 (3) | 1.14807 (9) | 0.56175 (9) | 0.0282 (3) | |
C1 | 0.1454 (3) | 0.90015 (11) | 0.71937 (12) | 0.0211 (4) | |
C2 | 0.2848 (3) | 0.91736 (11) | 0.83377 (12) | 0.0207 (4) | |
C3 | 0.2552 (3) | 1.03366 (11) | 0.86734 (12) | 0.0195 (4) | |
C4 | 0.3680 (3) | 1.10357 (11) | 0.77418 (12) | 0.0189 (4) | |
C5 | 0.2263 (3) | 1.07910 (11) | 0.66196 (12) | 0.0197 (4) | |
C6 | 0.3259 (4) | 1.14427 (12) | 0.56431 (13) | 0.0259 (4) | |
H1A | 0.3191 | 0.7774 | 0.6812 | 0.0340* | |
H1B | −0.0442 | 0.9196 | 0.7254 | 0.0254* | |
H2A | 0.2377 | 0.7936 | 0.9180 | 0.0373* | |
H2B | 0.4758 | 0.8998 | 0.8280 | 0.0248* | |
H3A | −0.0440 | 1.0847 | 0.9421 | 0.0293* | |
H3B | 0.3529 | 1.0470 | 0.9387 | 0.0234* | |
H4B | 0.5592 | 1.0872 | 0.7668 | 0.0226* | |
H4A | 0.1849 | 1.2268 | 0.8151 | 0.0324* | |
H5A | 0.0336 | 1.0920 | 0.6699 | 0.0237* | |
H6A | 0.6640 | 1.1146 | 0.5069 | 0.0339* | |
H6C | 0.2577 | 1.1140 | 0.4939 | 0.0311* | |
H6B | 0.2565 | 1.2162 | 0.5702 | 0.0311* |
U11 | U22 | U33 | U12 | U13 | U23 | |
O1 | 0.0289 (7) | 0.0177 (6) | 0.0386 (7) | −0.0020 (5) | 0.0058 (5) | −0.0067 (5) |
O2 | 0.0465 (8) | 0.0190 (6) | 0.0283 (6) | 0.0071 (5) | 0.0162 (5) | 0.0067 (5) |
O3 | 0.0230 (6) | 0.0284 (6) | 0.0222 (6) | 0.0063 (5) | 0.0066 (4) | −0.0025 (5) |
O4 | 0.0271 (6) | 0.0147 (6) | 0.0393 (7) | −0.0005 (4) | 0.0044 (5) | −0.0042 (5) |
O5 | 0.0292 (7) | 0.0174 (6) | 0.0193 (6) | −0.0019 (4) | 0.0049 (5) | −0.0011 (4) |
O6 | 0.0303 (7) | 0.0300 (7) | 0.0247 (6) | −0.0063 (5) | 0.0089 (5) | −0.0044 (5) |
C1 | 0.0232 (8) | 0.0154 (8) | 0.0250 (8) | −0.0019 (6) | 0.0047 (6) | −0.0016 (6) |
C2 | 0.0233 (8) | 0.0182 (8) | 0.0207 (8) | 0.0035 (6) | 0.0054 (6) | 0.0030 (6) |
C3 | 0.0202 (8) | 0.0195 (8) | 0.0187 (7) | 0.0025 (6) | −0.0005 (6) | −0.0010 (6) |
C4 | 0.0187 (8) | 0.0139 (7) | 0.0240 (8) | 0.0013 (6) | 0.0013 (6) | −0.0023 (6) |
C5 | 0.0199 (8) | 0.0165 (8) | 0.0229 (8) | 0.0017 (6) | 0.0022 (6) | 0.0002 (6) |
C6 | 0.0282 (9) | 0.0251 (8) | 0.0245 (8) | 0.0008 (6) | 0.0025 (6) | 0.0052 (7) |
O1—C1 | 1.3837 (18) | O1—H1A | 0.820 |
O2—C2 | 1.4216 (19) | O2—H2A | 0.820 |
O3—C3 | 1.4199 (18) | O3—H3A | 0.820 |
O4—C4 | 1.4236 (18) | O4—H4A | 0.820 |
O5—C1 | 1.4314 (18) | O6—H6A | 0.820 |
O5—C5 | 1.4423 (18) | C1—H1B | 0.980 |
O6—C6 | 1.425 (2) | C2—H2B | 0.980 |
C1—C2 | 1.523 (2) | C3—H3B | 0.980 |
C2—C3 | 1.522 (2) | C4—H4B | 0.980 |
C3—C4 | 1.524 (2) | C5—H5A | 0.980 |
C4—C5 | 1.521 (2) | C6—H6C | 0.970 |
C5—C6 | 1.507 (2) | C6—H6B | 0.970 |
C1—O5—C5 | 112.16 (11) | C6—O6—H6A | 109.474 |
O1—C1—O5 | 107.10 (12) | O1—C1—H1B | 108.857 |
O1—C1—C2 | 114.20 (12) | O5—C1—H1B | 108.860 |
O5—C1—C2 | 108.84 (12) | C2—C1—H1B | 108.859 |
O2—C2—C1 | 110.83 (12) | O2—C2—H2B | 109.452 |
O2—C2—C3 | 108.80 (12) | C1—C2—H2B | 109.449 |
C1—C2—C3 | 108.83 (12) | C3—C2—H2B | 109.458 |
O3—C3—C2 | 109.09 (12) | O3—C3—H3B | 109.847 |
O3—C3—C4 | 109.17 (12) | C2—C3—H3B | 109.848 |
C2—C3—C4 | 109.02 (12) | C4—C3—H3B | 109.842 |
O4—C4—C3 | 110.57 (12) | O4—C4—H4B | 108.392 |
O4—C4—C5 | 111.04 (12) | C3—C4—H4B | 108.388 |
C3—C4—C5 | 109.98 (12) | C5—C4—H4B | 108.388 |
O5—C5—C4 | 107.75 (11) | O5—C5—H5A | 108.775 |
O5—C5—C6 | 108.87 (12) | C4—C5—H5A | 108.778 |
C4—C5—C6 | 113.79 (12) | C6—C5—H5A | 108.780 |
O6—C6—C5 | 112.25 (13) | O6—C6—H6C | 109.153 |
C1—O1—H1A | 109.467 | O6—C6—H6B | 109.157 |
C2—O2—H2A | 109.472 | C5—C6—H6C | 109.152 |
C3—O3—H3A | 109.470 | C5—C6—H6B | 109.146 |
C4—O4—H4A | 109.476 | H6C—C6—H6B | 107.880 |
C1—O5—C5—C4 | 63.92 (13) | C1—C2—C3—C4 | −56.31 (14) |
C1—O5—C5—C6 | −172.24 (10) | O3—C3—C4—O4 | 60.68 (14) |
C5—O5—C1—O1 | 171.24 (10) | O3—C3—C4—C5 | −62.31 (13) |
C5—O5—C1—C2 | −64.83 (13) | C2—C3—C4—O4 | 179.76 (11) |
O1—C1—C2—O2 | −61.24 (16) | C2—C3—C4—C5 | 56.77 (14) |
O1—C1—C2—C3 | 179.15 (11) | O4—C4—C5—O5 | 178.40 (10) |
O5—C1—C2—O2 | 179.15 (10) | O4—C4—C5—C6 | 57.59 (15) |
O5—C1—C2—C3 | 59.54 (14) | C3—C4—C5—O5 | −58.88 (14) |
O2—C2—C3—O3 | −58.04 (14) | C3—C4—C5—C6 | −179.69 (10) |
O2—C2—C3—C4 | −177.17 (10) | O5—C5—C6—O6 | −74.12 (14) |
C1—C2—C3—O3 | 62.82 (14) | C4—C5—C6—O6 | 46.06 (16) |
D—H···A | D—H | H···A | D···A | D—H···A |
O1—H1A···O4i | 0.82 | 1.88 | 2.6884 (16) | 171 |
O2—H2A···O6i | 0.82 | 1.99 | 2.8044 (16) | 172 |
O3—H3A···O2ii | 0.82 | 1.94 | 2.7494 (16) | 169 |
O4—H4A···O1iii | 0.82 | 1.94 | 2.7384 (16) | 163 |
O4—H4A···O3 | 0.82 | 2.49 | 2.8333 (15) | 106 |
O6—H6A···O5iv | 0.82 | 2.03 | 2.8439 (15) | 171 |
Symmetry codes: (i) −x+1, y−1/2, −z+3/2; (ii) −x, −y+2, −z+2; (iii) −x, y+1/2, −z+3/2; (iv) −x+1, −y+2, −z+1. |
D—H···A | D—H | H···A | D···A | D—H···A |
O1—H1A···O4i | 0.82 | 1.88 | 2.6884 (16) | 171 |
O2—H2A···O6i | 0.82 | 1.99 | 2.8044 (16) | 172 |
O3—H3A···O2ii | 0.82 | 1.94 | 2.7494 (16) | 169 |
O4—H4A···O1iii | 0.82 | 1.94 | 2.7384 (16) | 163 |
O4—H4A···O3 | 0.82 | 2.49 | 2.8333 (15) | 106 |
O6—H6A···O5iv | 0.82 | 2.03 | 2.8439 (15) | 171 |
Symmetry codes: (i) −x+1, y−1/2, −z+3/2; (ii) −x, −y+2, −z+2; (iii) −x, y+1/2, −z+3/2; (iv) −x+1, −y+2, −z+1. |
References
Burla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G., Siliqi, D. & Spagna, R. (2007). J. Appl. Cryst. 40, 609–613. Web of Science CrossRef CAS IUCr Journals Google Scholar
Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan. Google Scholar
Kroon-Batenburg, L. M. J., van der Sluis, P. & Kanters, J. A. (1984). Acta Cryst. C40, 1863–1865. Google Scholar
Longchambon, F., Gillier-Pandraud, H., Wiest, R., Rees, B., Mitschler, A., Feld, R., Lehmann, M. & Becker, P. (1985). Acta Cryst. B41, 47–56. CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
Menavuvu, B. T., Poonperm, W., Leang, K., Noguchi, N., Okada, H., Morimoto, K., Granström, T. B., Takada, G. & Izumori, K. (2006). J. Biosci. Bioeng. 101, 340–345. Google Scholar
Morimoto, K., Park, C.-S., Ozaki, M., Takeshita, K., Shimonishi, T., Granström, T. B., Takata, G., Tokuda, M. & Izumori, K. (2006). Enzyme Microb. Technol. 38, 855–859. Google Scholar
Morimoto, K., Terami, Y., Maeda, Y., Yoshihara, A., Takata, G. & Izumori, K. (2013). J. Biosci. Bioeng. 115, 377–381. Google Scholar
Rigaku (2009). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan. Google Scholar
Rigaku (2010). CrystalStructure. Rigaku Corporation, Tokyo, Japan. Google Scholar
Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Shimonishi, T. & Izumori, K. (1996). J. Ferment. Bioeng. 81, 493–497. CrossRef CAS Web of Science Google Scholar
Takagi, S. & Jeffrey, G. A. (1977). Acta Cryst. B33, 3033–3040. CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Orientations of three hydrogen atoms (H1A, H2A, H4A) located on three equatorial OH groups at C-1, C-2 and C-4 positions are perpendicular to the pyranose ring. A hydrogen atom (H3A) on the axial OH group at C-3 position is located along to the radial direction. Therefore, it is inconvenient to obtain the intramolecular hydrogen bonding. Only a weak intramolecular hydrogen bonding (O4—H4A···O3) is found in the racemic β-D,L-allose, with long interatomic distance (H4A···O3; 2.49 Å) and the small bond angle (O4—H4A···O3; 106°). In the case of the chiral β-D-allose, there are five hydrogen bonding (O1—H1A···O4, O2—H2A···O6, O3—H3A···O2, O4—H4A···O1, O6—H6A···O5) observed between two adjacent D-allose molecules (Kroon-Batenburg et al., 1984). These five hydrogen bondings are also observed in the racemic β-D,L-allose with a same corresponding sequential number. Three of them (O1—H1A···O4i, O2—H2A···O6i and O4—H4A···O1iii; Table 1) are used for creating the hydrogen bonding network between two adjacent D-molecules or L-molecules, forming a homochiral layer parallel to the ab-plane. The remaining hydrogen bonds (O3—H3A···O2ii and O6—H6A···O5iv; Table 1) are used for connecting between the D- and L-allose molecules. An example of the unit cell volume of racemic compound less than that of chiral one was also found in the case of racemic D,L-arabinose (V = 596.516 Å3 at 175 K; Longchambon et al., 1985) and chiral L-arabinose (V = 598.661 Å3 at 123 K; Takagi et al., 1977).