research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 71| Part 2| February 2015| Pages 133-135

Crystal structure of (2-methyl-1-phenyl­sulfon­yl-1H-indol-3-yl)(phen­yl)methanone

aResearch and Development Centre, Bharathiyar University, Coimbatore 641 046, India, bDepartment of Chemistry, Pallavan College of Engineering, Kanchipuram 631 502, India, cDepartment of Organic Chemistry, University of Madras, Guindy Campus, Chennai 600 025, India, dDepartment of Sciences, Chemistry and Materials Research Lab, Amrita Vishwa Vidyapeetham University, Ettimadai, Coimbatore 641 112, India, and eDepartment of Physics, CPCL Polytechnic College, Chennai 600 068, India
*Correspondence e-mail: ryamuna1@gmail.com, chakkaravarthi_2005@yahoo.com

Edited by H. Ishida, Okayama University, Japan (Received 13 December 2014; accepted 24 December 2014; online 3 January 2015)

In the title compound, C22H17NO3S, the sulfonyl-bound phenyl ring is almost orthogonal to the indole ring system, making a dihedral angle of 84.89 (7)°. The carbonyl-bound phenyl ring forms a dihedral angle of 57.32 (5)° with the indole ring system. The two phenyl rings are inclined at 52.68 (7)°. The S atom has a distorted tetra­hedral configuration. In the crystal, weak C—H⋯O inter­actions link the mol­ecules, forming a helical chain along the b-axis direction.

1. Chemical context

In a continuation of our studies on indole derivatives, which possess various biological activities such as anti­hepatitis B virus (Chai et al., 2006[Chai, H., Zhao, C., Zhao, C. & Gong, P. (2006). Bioorg. Med. Chem. 14, 911-917.]) and anti­bacterial (Nieto et al., 2005[Nieto, M. J., Alovero, F. L., Manzo, R. H. & Mazzieri, M. R. (2005). Eur. J. Med. Chem. 40, 361-369.]) etc, we herein report the synthesis and the crystal structure of the title compound, (I)[link].

[Scheme 1]

2. Structural commentary

The mol­ecular structure of the title compound is shown in Fig. 1[link]. The sulfonyl-bound phenyl ring (C1–C6) is almost orthogonal to the indole ring system (N1/C7–C14), making a dihedral angle of 84.89 (7)°. The carbonyl-bound phenyl ring (C17–C22) forms a dihedral angle of 57.32 (5)° with the indole ring system. The two phenyl rings are inclined at an angle of 52.68 (7)°. Atom S1 has a distorted tetra­hedral configuration with angles O1—S1—O2 [119.97 (10)°] and N1—S1—C1 [104.99 (8)°] differing from the ideal tetra­hedral value. As a result of the electron-withdrawing character of the phenyl­sulfonyl group, the bond lengths N1—C7 [1.420 (2) Å] and N1—C14 [1.419 (2) Å] are longer than the mean value of 1.355 (14) Å (Allen et al., 1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin. Trans. 2, pp. S1-19.]). The geometric parameters of (I)[link] agree well with those in similar reported structures (Chakkaravarthi et al., 2008[Chakkaravarthi, G., Sureshbabu, R., Mohanakrishnan, A. K. & Manivannan, V. (2008). Acta Cryst. E64, o751.], 2009[Chakkaravarthi, G., Marx, A., Dhayalan, V., Mohanakrishnan, A. K. & Manivannan, V. (2009). Acta Cryst. E65, o464-o465.]).

[Figure 1]
Figure 1
The mol­ecular structure of the title compound, with atom labels and 30% probability displacement ellipsoids for non-H atoms.

3. Supra­molecular features

In the crystal, weak C—H⋯O inter­actions link the mol­ecules, forming a helical chain along the b-axis direction (Table 1[link] and Fig. 2[link]). No significant ππ or C—H⋯π inter­actions are observed.

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C15—H15C⋯O1i 0.96 2.59 3.525 (3) 165
Symmetry code: (i) [-x, y+{\script{1\over 2}}, -z+{\script{3\over 2}}].
[Figure 2]
Figure 2
The packing diagram of the title compound, viewed down the a axis. Inter­molecular hydrogen bonds are shown as dashed lines. H atoms not involved in hydrogen bonding have been omitted.

4. Database survey

A search of the Cambridge Structural Database (Version 5.35, last update May 2014; Groom & Allen, 2014[Groom, C. R. & Allen, F. H. (2014). Angew. Chem. Int. Ed. 53, 662-671.]). indicated 123 compounds having a phenyl­sulfonyl-1H-indole moiety. Of these compounds, several similar structures have been reported earlier, i.e. ethyl 2-acet­oxy­methyl-1-phenyl­sulfonyl-1H-indole-3-carboxyl­ate (Gunasekaran et al., 2009[Gunasekaran, B., Sureshbabu, R., Mohanakrishnan, A. K., Chakkaravarthi, G. & Manivannan, V. (2009). Acta Cryst. E65, o2069.]), 3-iodo-2-methyl-1-phenyl­sulfonyl-1H-indole (Ramathilagam et al., 2011[Ramathilagam, C., Saravanan, V., Mohanakrishnan, A. K., Chakkaravarthi, G., Umarani, P. R. & Manivannan, V. (2011). Acta Cryst. E67, o632.]) and 1-(2-bromo­methyl-1-phenyl­sulfonyl-1H-indol-3-yl)propan-1-one (Umadevi et al., 2013[Umadevi, M., Saravanan, V., Yamuna, R., Mohanakrishnan, A. K. & Chakkaravarthi, G. (2013). Acta Cryst. E69, o1802-o1803.]). In these structures, the sulfonyl-bound phenyl ring is almost orthogonal to the indole ring system, the dihedral angles of 83.35 (5), 82.84 (9) and 89.91 (11)°, respectively, being are comparable with that in the title compound.

5. Synthesis and crystallization

To a solution of benzoyl chloride (1.55 g, 11.07 mmol) in dry DCM (25 ml), SnCl4 (2.88 g, 10.10 mmol) at 273 K was added dropwise. To this, phenyl­sulfonyl-1H-indole (2 g, 7.38 mmol) in dry DCM (10 ml) was added dropwise (5 min) and stirred for 30 min at the same temperature. After completion of the reaction (monitored by TLC), it was poured over ice–water (50 ml) and extracted with saturated aqueous NaHCO3 (2 × 30 ml) and brine (2 × 30 ml), dried (Na2SO4) and concentrated under reduced pressure. Then, the crude product was crystallized from methanol to afford single crystals of the title compound suitable for X-ray diffraction.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. H atoms for Caromatic and Cmeth­yl were positioned geometrically and refined using a riding model, with C—H = 0.93 and 0.97 Å, respectively with Uiso(H) = 1.5Ueq(C) for methyl H atoms and 1.2Ueq(C) for other H atoms.

Table 2
Experimental details

Crystal data
Chemical formula C22H17NO3S
Mr 375.43
Crystal system, space group Orthorhombic, P212121
Temperature (K) 295
a, b, c (Å) 8.9989 (7), 11.0036 (9), 18.4209 (16)
V3) 1824.0 (3)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.20
Crystal size (mm) 0.28 × 0.24 × 0.20
 
Data collection
Diffractometer Bruker APEXII CCD
Absorption correction Multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS, University of Göttingen, Germany.])
Tmin, Tmax 0.946, 0.961
No. of measured, independent and observed [I > 2σ(I)] reflections 26244, 5020, 3493
Rint 0.034
(sin θ/λ)max−1) 0.708
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.036, 0.091, 1.02
No. of reflections 5020
No. of parameters 246
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.17, −0.25
Absolute structure Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 2109 Friedel pairs
Absolute structure parameter −0.01 (7)
Computer programs: APEX2 and SAINT (Bruker, 2004[Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXS97 and SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Chemical context top

In a continuation of our studies on indole derivatives, which possess various biological activities such as anti­hepatitis B virus (Chai et al., 2006) and anti­bacterial (Nieto et al., 2005) etc., we herein report the synthesis and the crystal structure of the title compound, (I).

Structural commentary top

The molecular structure of the title compound is shown in Fig. 1. The sulfonyl-bound phenyl ring (C1–C6) is almost orthogonal to the indole ring system (N1/C7–C14), making a dihedral angle of 84.89 (7)°. The carbonyl-bound phenyl ring (C17–C22) forms a dihedral angle of 57.32 (5)° with the indole ring system. The two phenyl rings are inclined at an angle of 52.68 (7)°. Atom S1 has a distorted tetra­hedral configuration with angles O1—S1—O2 [119.97 (10)°] and N1—S1—C1 [104.99 (8)°] differing from the ideal tetra­hedral value. As a result of the electron-withdrawing character of the phenyl­sulfonyl group, the bond lengths N1—C7 [1.420 (2) Å] and N1—C14 [1.419 (2) Å] are longer than the mean value of 1.355 (14) Å (Allen et al., 1987). The geometric parameters of (I) agree well with those in similar reported structures (Chakkaravarthi et al., 2008, 2009).

Supra­molecular features top

In the crystal, weak C—H···O inter­actions link the molecules, forming a helical chain along the b-axis direction (Table 1 and Fig. 2). No significant ππ or C—H···π inter­actions are observed.

Database survey top

A search of the Cambridge Structural Database (Version 5.35, last update May 2014; Groom & Allen, 2014). indicated 123 compounds having a phenyl­sulfonyl-1H-indole moiety. Of these compounds, several similar structures have been reported earlier, i.e. ethyl 2-acet­oxy­methyl-1-phenyl­sulfonyl-1H-indole-3-carboxyl­ate (Gunasekaran et al., 2009), 3-iodo-2-methyl-1-phenyl­sulfonyl-1H-indole (Ramathilagam et al., 2011) and 1-(2-bromo­methyl-1-phenyl­sulfonyl-1H-indol-3-yl)propan-1-one (Umadevi et al., 2013). In these structures, the sulfonyl-bound phenyl ring is almost orthogonal to the indole ring system, the dihedral angles of 83.35 (5), 82.84 (9) and 89.91 (11)°, respectively, being are comparable with that in the title compound.

Synthesis and crystallization top

To a solution of benzoyl chloride (1.55 g, 11.07 mmol) in dry DCM (25 ml), SnCl4 (2.88 g, 10.10 mmol) at 273 K was added dropwise. To this, phenyl­sulfonyl-1H-indole (2 g, 7.38 mmol) in dry DCM (10 ml) was added dropwise (5 min) and stirred for 30 min at the same temperature. After completion of the reaction (monitored by TLC), it was poured over ice–water (50 ml) and extracted with saturated aqueous NaHCO3 (2 × 30 ml) and brine (2 × 30 ml), dried (Na2SO4) and concentrated under reduced pressure. Then, the crude product was crystallized from methanol to afford single crystals of the title compound suitable for X-ray diffraction.

Refinement top

Crystal data, data collection and structure refinement details are summarized in Table 2. H atoms for Caromatic and Cmethyl were positioned geometrically and refined using a riding model, with C—H = 0.93 and 0.97 Å, respectively with Uiso(H) = 1.2Ueq(C) or 1.5Ueq(C).

Related literature top

For related literature, see: Allen et al. (1987); Bassindale (1984); Chai et al. (2006); Chakkaravarthi et al. (2008, 2009); Groom & Allen (2014); Gunasekaran et al. (2009); Nieto et al. (2005); Ramathilagam et al. (2011); Umadevi et al. (2013).

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, with atom labels and 30% probability displacement ellipsoids for non-H atoms.
[Figure 2] Fig. 2. The packing diagram of the title compound, viewed down the a axis. Intermolecular hydrogen bonds are shown as dashed lines. H atoms not involved in hydrogen bonding have been omitted.
(2-Methyl-1-phenylsulfonyl-1H-indol-3-yl)(phenyl)methanone top
Crystal data top
C22H17NO3SF(000) = 784
Mr = 375.43Dx = 1.367 Mg m3
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 812 reflections
a = 8.9989 (7) Åθ = 2.2–30.2°
b = 11.0036 (9) ŵ = 0.20 mm1
c = 18.4209 (16) ÅT = 295 K
V = 1824.0 (3) Å3Block, colourless
Z = 40.28 × 0.24 × 0.20 mm
Data collection top
Bruker APEXII CCD
diffractometer
5020 independent reflections
Radiation source: fine-focus sealed tube3493 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.034
ω and ϕ scanθmax = 30.2°, θmin = 2.2°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1212
Tmin = 0.946, Tmax = 0.961k = 1414
26244 measured reflectionsl = 2524
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.036 w = 1/[σ2(Fo2) + (0.0353P)2 + 0.2764P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.091(Δ/σ)max < 0.001
S = 1.02Δρmax = 0.17 e Å3
5020 reflectionsΔρmin = 0.25 e Å3
246 parametersExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 restraintsExtinction coefficient: 0.0039 (8)
Primary atom site location: structure-invariant direct methodsAbsolute structure: Flack (1983), 2109 Friedel pairs
Secondary atom site location: difference Fourier mapAbsolute structure parameter: 0.01 (7)
Crystal data top
C22H17NO3SV = 1824.0 (3) Å3
Mr = 375.43Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 8.9989 (7) ŵ = 0.20 mm1
b = 11.0036 (9) ÅT = 295 K
c = 18.4209 (16) Å0.28 × 0.24 × 0.20 mm
Data collection top
Bruker APEXII CCD
diffractometer
5020 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
3493 reflections with I > 2σ(I)
Tmin = 0.946, Tmax = 0.961Rint = 0.034
26244 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.036H-atom parameters constrained
wR(F2) = 0.091Δρmax = 0.17 e Å3
S = 1.02Δρmin = 0.25 e Å3
5020 reflectionsAbsolute structure: Flack (1983), 2109 Friedel pairs
246 parametersAbsolute structure parameter: 0.01 (7)
0 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.2369 (2)0.81475 (17)0.72517 (9)0.0469 (4)
C20.2009 (3)0.69315 (19)0.72539 (12)0.0623 (6)
H20.10290.66840.73180.075*
C30.3119 (4)0.6089 (2)0.71605 (14)0.0779 (8)
H30.28910.52650.71600.093*
C40.4552 (4)0.6457 (3)0.70682 (13)0.0797 (8)
H40.52950.58810.69990.096*
C50.4904 (3)0.7661 (3)0.70759 (15)0.0815 (8)
H50.58890.79030.70250.098*
C60.3812 (3)0.8512 (2)0.71586 (13)0.0658 (6)
H60.40470.93350.71520.079*
C70.1037 (2)1.05176 (15)0.60528 (9)0.0405 (4)
C80.0471 (2)1.03514 (16)0.53755 (10)0.0417 (4)
C90.0431 (2)0.92698 (17)0.53745 (10)0.0421 (4)
C100.1247 (2)0.86956 (18)0.48385 (12)0.0566 (5)
H100.12580.89980.43670.068*
C110.2046 (3)0.7663 (2)0.50152 (15)0.0667 (6)
H110.25930.72660.46590.080*
C120.2040 (3)0.72186 (19)0.57128 (15)0.0651 (6)
H120.25880.65240.58190.078*
C130.1248 (2)0.77715 (17)0.62583 (13)0.0549 (5)
H130.12510.74660.67290.066*
C140.0439 (2)0.88084 (16)0.60774 (11)0.0429 (4)
C150.2119 (2)1.14443 (19)0.63034 (11)0.0521 (5)
H15A0.24451.19210.58970.078*
H15B0.29591.10470.65200.078*
H15C0.16541.19640.66550.078*
C160.0714 (2)1.10898 (16)0.47141 (10)0.0462 (4)
C170.0621 (2)1.24405 (16)0.47428 (10)0.0425 (4)
C180.0098 (2)1.30428 (18)0.52995 (12)0.0513 (5)
H180.05031.26050.56830.062*
C190.0215 (3)1.4297 (2)0.52874 (14)0.0667 (6)
H190.06991.47000.56630.080*
C200.0380 (3)1.4945 (2)0.47233 (15)0.0684 (7)
H200.02961.57870.47160.082*
C210.1096 (3)1.4360 (2)0.41704 (13)0.0633 (6)
H210.15111.48050.37920.076*
C220.1204 (2)1.31043 (19)0.41723 (11)0.0512 (5)
H220.16711.27070.37890.061*
N10.04557 (17)0.95902 (13)0.65071 (8)0.0436 (4)
O10.02677 (18)0.87038 (14)0.76860 (8)0.0700 (4)
O20.16072 (19)1.03169 (12)0.76515 (8)0.0632 (4)
O30.0922 (2)1.05764 (13)0.41366 (7)0.0699 (4)
S10.09803 (6)0.92484 (4)0.73525 (3)0.04934 (14)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0585 (12)0.0484 (10)0.0339 (9)0.0054 (9)0.0015 (9)0.0024 (9)
C20.0712 (14)0.0513 (12)0.0644 (14)0.0075 (11)0.0075 (12)0.0094 (11)
C30.103 (2)0.0516 (14)0.0789 (17)0.0201 (14)0.0139 (16)0.0001 (12)
C40.098 (2)0.0856 (19)0.0556 (14)0.0464 (17)0.0027 (14)0.0015 (13)
C50.0655 (17)0.095 (2)0.0836 (19)0.0196 (15)0.0100 (14)0.0062 (16)
C60.0626 (14)0.0606 (13)0.0743 (15)0.0054 (12)0.0048 (12)0.0017 (11)
C70.0405 (9)0.0364 (9)0.0448 (9)0.0027 (8)0.0077 (8)0.0009 (7)
C80.0453 (10)0.0362 (9)0.0436 (10)0.0040 (8)0.0065 (8)0.0015 (8)
C90.0441 (9)0.0346 (9)0.0476 (10)0.0067 (8)0.0068 (8)0.0029 (8)
C100.0608 (13)0.0529 (11)0.0560 (12)0.0004 (11)0.0006 (11)0.0103 (10)
C110.0660 (15)0.0526 (13)0.0813 (16)0.0068 (11)0.0007 (13)0.0177 (12)
C120.0555 (14)0.0402 (11)0.0995 (19)0.0051 (10)0.0087 (13)0.0040 (12)
C130.0497 (12)0.0417 (10)0.0732 (13)0.0019 (10)0.0084 (11)0.0106 (10)
C140.0395 (9)0.0350 (9)0.0541 (11)0.0043 (8)0.0071 (8)0.0014 (8)
C150.0556 (12)0.0503 (11)0.0505 (11)0.0049 (10)0.0045 (10)0.0007 (9)
C160.0526 (12)0.0440 (10)0.0422 (10)0.0019 (9)0.0055 (9)0.0012 (8)
C170.0403 (10)0.0430 (10)0.0443 (10)0.0004 (8)0.0011 (8)0.0036 (8)
C180.0530 (12)0.0469 (11)0.0539 (12)0.0055 (9)0.0062 (10)0.0011 (10)
C190.0682 (14)0.0498 (12)0.0821 (16)0.0095 (12)0.0013 (13)0.0096 (13)
C200.0693 (15)0.0408 (11)0.095 (2)0.0042 (11)0.0175 (15)0.0054 (13)
C210.0614 (13)0.0547 (12)0.0736 (14)0.0124 (12)0.0097 (12)0.0233 (12)
C220.0468 (11)0.0554 (12)0.0512 (11)0.0008 (10)0.0007 (9)0.0098 (9)
N10.0454 (9)0.0403 (8)0.0452 (8)0.0020 (7)0.0056 (7)0.0064 (7)
O10.0734 (10)0.0768 (10)0.0599 (9)0.0050 (8)0.0309 (8)0.0169 (8)
O20.0924 (11)0.0505 (8)0.0466 (8)0.0073 (7)0.0019 (8)0.0101 (7)
O30.1119 (13)0.0526 (8)0.0453 (8)0.0015 (10)0.0186 (9)0.0054 (7)
S10.0614 (3)0.0477 (3)0.0389 (2)0.0074 (2)0.0117 (2)0.0022 (2)
Geometric parameters (Å, º) top
C1—C61.369 (3)C12—H120.9300
C1—C21.377 (3)C13—C141.394 (3)
C1—S11.750 (2)C13—H130.9300
C2—C31.373 (3)C14—N11.419 (2)
C2—H20.9300C15—H15A0.9600
C3—C41.362 (4)C15—H15B0.9600
C3—H30.9300C15—H15C0.9600
C4—C51.363 (4)C16—O31.219 (2)
C4—H40.9300C16—C171.490 (3)
C5—C61.366 (3)C17—C181.382 (3)
C5—H50.9300C17—C221.383 (3)
C6—H60.9300C18—C191.384 (3)
C7—C81.360 (2)C18—H180.9300
C7—N11.420 (2)C19—C201.369 (3)
C7—C151.483 (3)C19—H190.9300
C8—C91.441 (3)C20—C211.366 (3)
C8—C161.481 (2)C20—H200.9300
C9—C101.383 (3)C21—C221.385 (3)
C9—C141.391 (3)C21—H210.9300
C10—C111.384 (3)C22—H220.9300
C10—H100.9300N1—S11.6701 (16)
C11—C121.375 (4)O1—S11.4134 (15)
C11—H110.9300O2—S11.4156 (15)
C12—C131.374 (3)
C6—C1—C2120.5 (2)C9—C14—C13121.60 (19)
C6—C1—S1119.18 (17)C9—C14—N1107.17 (16)
C2—C1—S1120.28 (17)C13—C14—N1131.22 (19)
C3—C2—C1119.0 (2)C7—C15—H15A109.5
C3—C2—H2120.5C7—C15—H15B109.5
C1—C2—H2120.5H15A—C15—H15B109.5
C4—C3—C2120.3 (2)C7—C15—H15C109.5
C4—C3—H3119.9H15A—C15—H15C109.5
C2—C3—H3119.9H15B—C15—H15C109.5
C3—C4—C5120.5 (3)O3—C16—C8119.11 (16)
C3—C4—H4119.7O3—C16—C17120.13 (17)
C5—C4—H4119.7C8—C16—C17120.66 (16)
C4—C5—C6120.0 (3)C18—C17—C22119.23 (18)
C4—C5—H5120.0C18—C17—C16122.10 (17)
C6—C5—H5120.0C22—C17—C16118.58 (17)
C5—C6—C1119.7 (2)C17—C18—C19120.1 (2)
C5—C6—H6120.1C17—C18—H18119.9
C1—C6—H6120.1C19—C18—H18119.9
C8—C7—N1107.82 (15)C20—C19—C18120.1 (2)
C8—C7—C15128.60 (16)C20—C19—H19120.0
N1—C7—C15123.54 (16)C18—C19—H19120.0
C7—C8—C9108.87 (16)C21—C20—C19120.3 (2)
C7—C8—C16128.73 (17)C21—C20—H20119.8
C9—C8—C16122.38 (17)C19—C20—H20119.8
C10—C9—C14119.69 (18)C20—C21—C22120.1 (2)
C10—C9—C8132.63 (18)C20—C21—H21120.0
C14—C9—C8107.64 (17)C22—C21—H21120.0
C9—C10—C11118.9 (2)C17—C22—C21120.1 (2)
C9—C10—H10120.6C17—C22—H22119.9
C11—C10—H10120.6C21—C22—H22119.9
C12—C11—C10120.6 (2)C14—N1—C7108.41 (14)
C12—C11—H11119.7C14—N1—S1122.94 (12)
C10—C11—H11119.7C7—N1—S1127.40 (13)
C13—C12—C11121.9 (2)O1—S1—O2119.97 (10)
C13—C12—H12119.1O1—S1—N1106.03 (10)
C11—C12—H12119.1O2—S1—N1106.76 (8)
C12—C13—C14117.3 (2)O1—S1—C1108.67 (10)
C12—C13—H13121.4O2—S1—C1109.36 (10)
C14—C13—H13121.4N1—S1—C1104.99 (8)
C6—C1—C2—C30.1 (3)C8—C16—C17—C1819.3 (3)
S1—C1—C2—C3178.83 (18)O3—C16—C17—C2219.3 (3)
C1—C2—C3—C40.1 (4)C8—C16—C17—C22164.22 (18)
C2—C3—C4—C50.8 (4)C22—C17—C18—C190.6 (3)
C3—C4—C5—C61.6 (4)C16—C17—C18—C19177.1 (2)
C4—C5—C6—C11.6 (4)C17—C18—C19—C200.0 (3)
C2—C1—C6—C50.8 (3)C18—C19—C20—C210.2 (4)
S1—C1—C6—C5179.70 (19)C19—C20—C21—C221.0 (4)
N1—C7—C8—C92.92 (19)C18—C17—C22—C211.4 (3)
C15—C7—C8—C9174.62 (18)C16—C17—C22—C21178.01 (19)
N1—C7—C8—C16178.71 (17)C20—C21—C22—C171.6 (3)
C15—C7—C8—C163.8 (3)C9—C14—N1—C71.39 (19)
C7—C8—C9—C10179.9 (2)C13—C14—N1—C7179.84 (19)
C16—C8—C9—C101.4 (3)C9—C14—N1—S1169.49 (12)
C7—C8—C9—C142.1 (2)C13—C14—N1—S111.7 (3)
C16—C8—C9—C14179.42 (16)C8—C7—N1—C142.70 (19)
C14—C9—C10—C110.5 (3)C15—C7—N1—C14174.99 (17)
C8—C9—C10—C11178.31 (19)C8—C7—N1—S1170.12 (13)
C9—C10—C11—C120.5 (3)C15—C7—N1—S17.6 (2)
C10—C11—C12—C130.1 (4)C14—N1—S1—O140.28 (16)
C11—C12—C13—C140.1 (3)C7—N1—S1—O1153.97 (15)
C10—C9—C14—C130.2 (3)C14—N1—S1—O2169.29 (14)
C8—C9—C14—C13178.55 (17)C7—N1—S1—O224.96 (17)
C10—C9—C14—N1178.67 (16)C14—N1—S1—C174.67 (16)
C8—C9—C14—N10.37 (19)C7—N1—S1—C191.08 (16)
C12—C13—C14—C90.1 (3)C6—C1—S1—O1159.68 (17)
C12—C13—C14—N1178.71 (19)C2—C1—S1—O121.40 (19)
C7—C8—C16—O3137.3 (2)C6—C1—S1—O227.02 (19)
C9—C8—C16—O340.9 (3)C2—C1—S1—O2154.07 (17)
C7—C8—C16—C1746.2 (3)C6—C1—S1—N187.22 (18)
C9—C8—C16—C17135.63 (18)C2—C1—S1—N191.69 (17)
O3—C16—C17—C18157.2 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C15—H15C···O1i0.962.593.525 (3)165
Symmetry code: (i) x, y+1/2, z+3/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C15—H15C···O1i0.962.593.525 (3)165
Symmetry code: (i) x, y+1/2, z+3/2.

Experimental details

Crystal data
Chemical formulaC22H17NO3S
Mr375.43
Crystal system, space groupOrthorhombic, P212121
Temperature (K)295
a, b, c (Å)8.9989 (7), 11.0036 (9), 18.4209 (16)
V3)1824.0 (3)
Z4
Radiation typeMo Kα
µ (mm1)0.20
Crystal size (mm)0.28 × 0.24 × 0.20
Data collection
DiffractometerBruker APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.946, 0.961
No. of measured, independent and
observed [I > 2σ(I)] reflections
26244, 5020, 3493
Rint0.034
(sin θ/λ)max1)0.708
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.036, 0.091, 1.02
No. of reflections5020
No. of parameters246
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.17, 0.25
Absolute structureFlack (1983), 2109 Friedel pairs
Absolute structure parameter0.01 (7)

Computer programs: APEX2 (Bruker, 2004), SAINT (Bruker, 2004), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2009).

 

Acknowledgements

The authors wish to acknowledge the SAIF, IIT, Madras, for the data collection.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin. Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationBruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChai, H., Zhao, C., Zhao, C. & Gong, P. (2006). Bioorg. Med. Chem. 14, 911–917.  Web of Science CrossRef PubMed CAS Google Scholar
First citationChakkaravarthi, G., Marx, A., Dhayalan, V., Mohanakrishnan, A. K. & Manivannan, V. (2009). Acta Cryst. E65, o464–o465.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationChakkaravarthi, G., Sureshbabu, R., Mohanakrishnan, A. K. & Manivannan, V. (2008). Acta Cryst. E64, o751.  CSD CrossRef IUCr Journals Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationGroom, C. R. & Allen, F. H. (2014). Angew. Chem. Int. Ed. 53, 662–671.  Web of Science CrossRef CAS Google Scholar
First citationGunasekaran, B., Sureshbabu, R., Mohanakrishnan, A. K., Chakkaravarthi, G. & Manivannan, V. (2009). Acta Cryst. E65, o2069.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationNieto, M. J., Alovero, F. L., Manzo, R. H. & Mazzieri, M. R. (2005). Eur. J. Med. Chem. 40, 361–369.  Web of Science CrossRef PubMed CAS Google Scholar
First citationRamathilagam, C., Saravanan, V., Mohanakrishnan, A. K., Chakkaravarthi, G., Umarani, P. R. & Manivannan, V. (2011). Acta Cryst. E67, o632.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (1996). SADABS, University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationUmadevi, M., Saravanan, V., Yamuna, R., Mohanakrishnan, A. K. & Chakkaravarthi, G. (2013). Acta Cryst. E69, o1802–o1803.  CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 71| Part 2| February 2015| Pages 133-135
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds