metal-organic compounds
κN)bis(quinolin-2-olato-κ2N,O)copper(II) monohydrate
of (pyridine-aDepartment of Chemistry and Biochemistry, Worcester Polytechnic Institute, 100 Institute Road, Worcester, Massachusetts 01609-2280, USA
*Correspondence e-mail: scburdette@wpi.edu
The title complex, [Cu(C9H6NO)2(C5H4N)]·H2O, adopts a slightly distorted square-pyramidal geometry in which the axial pyridine ligand exhibits a long Cu—N bond of 2.305 (3) Å. The pyridine ligand forms dihedral angles of 79.5 (5) and 88.0 (1)° with the planes of the two quinolin-2-olate ligands, while the dihedral angle between the quinoline groups of 9.0 (3)° indicates near planarity. The water molecule connects adjacent copper complexes through O—H⋯O hydrogen bonds to phenolate O atoms, forming a network interconnecting all the complexes in the crystal lattice.
Keywords: crystal structure; copper(II); quinolin-8-ol; pyridine; hydrogen bonding.
CCDC reference: 1044628
1. Related literature
For the biological activity of clioquinol, see: Di Vaira et al. (2004). For the use of clioquinol in the treatment of Alzheimer's disease, see: Bareggi & Cornelli (2012). For crystal structures of copper(II) complexes with 8-hydroxyquinoline (8-HQ) derivatives and the metal in a five-coordinate environment, see: Deraeve et al. (2008). For [Cu(8-HQ)2(H2O)2] with six-coordinate Cu(II), see: Okabe & Saishu (2001). For copper(II), zinc(II) and iron(III) crystalline complexes with 8-HQ, see: Palenik (1964); Najafi et al. (2011); Jian et al. (2001). For EPR studies performed on a putative [Cu(8-HQ)2(pyridine)] complex, see: Marov et al. (1975, 1978).
2. Experimental
2.1. Crystal data
|
2.3. Refinement
|
|
|
Data collection: APEX2 (Bruker, 2002); cell SAINT (Bruker, 2002); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2015); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL and publCIF (Westrip, 2010).
Supporting information
CCDC reference: 1044628
10.1107/S2056989015001279/jj2192sup1.cif
contains datablock I. DOI:Structure factors: contains datablock I. DOI: 10.1107/S2056989015001279/jj2192Isup2.hkl
Supporting information file. DOI: 10.1107/S2056989015001279/jj2192Isup3.cdx
Clioquinol is a 8-hydroxyquinoline (8-HQ) derivative that has been used for the treatment of Alzheimer's disease (Bareggi & Cornelli, 2012). The coordination chemistry of clioquinol plays a critical role in its biological activity (Di Vaira et al., 2004). Copper(II), zinc(II) and iron(III) readily form crystalline complexes with 8-HQ and its derivatives (Palenik, 1964; Najafi, 2011; Jian et al., 2001). Two bidentate ligands chelate a single metal ion in the square planar [Cu(8—HQ)2] cupric complex (Palenik, 1964) that is structurally analogous to [Cu(clioquinol)2] (Di Vaira et al., 2004). Very few X-ray structures of five-coordinate cooper(II) complexes with 8-HQ derivatives have been reported (Deraeve et al., 2008); however, a 6-coordinate complexe of [Cu(8—HQ)2(H2O)2] has been structurally characterized (Okabe & Saishu, 2001). EPR studies were performed on a putative [Cu(8—HQ)2(pyridine)] complex nearly 40 years ago (Marov et al., 1975; Marov et al., 1978).
The reaction of [Cu(OAc)2]·H2O with 8-hydroxyquinoline yields the well known [Cu(C9H6NO)2] moiety where each 8-hydroxyquionline group serves as a bidentate chelator coordinated through the oxygen and nitrogen atoms. When recrystallized from a mixture of pyridine and H2O, the title complex is isolated. Herein, we report the
of [Cu(C9H6NO)2(C5H4N]·H2O, the first confirmation that the 5-coordinate complex can exist in the solid state. The pyridine ligand forms dihedral angles with the two quinolin-2-olate ligands of 79.5 (5)° and 88.0 (1)°, while the dihedral angle between the quinoline groups of 9.0 (3)° indicates near planarity. The Cu—N bond appears to be weak as the crystals readily decompose as they dry, presumably due to loss of the pyridine ligand.[Cu(OAc)2]·H2O (0.258 g, 1.29 mmol) and 8-hydroxyquinoline (0.375 g, 2.58 mol) were separately dissolved in minimal quantities of acetic acid (ca. 2.5 mL). Upon mixing the solutions, a light green precipitate (0.486 g) formed immediately. The precipitate was isolated by filtration and dissolved in pyridine. Green blocks of [Cu(C9H6NO)2(C5H4N]·H2O were isolated by slow evaporation in a diffusion chamber containing water and subsequentally used for
analysis.H18 and H19 were located by a difference map and refined isotropically. All of the remaining H atoms were placed in calculated positions and refined using a riding model with atom–H lengths of 0.93 Å (CH). Isotropic displacement parameters for these atoms were set to 1.2 (CH) times Ueq of the parent atom.
Data collection: APEX2 (Bruker, 2002); cell
SAINT (Bruker, 2002); data reduction: SAINT (Bruker, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2015); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and publCIF (Westrip, 2010).[Cu(C9H6NO)2(C5H5N)]·H2O | F(000) = 1848 |
Mr = 448.95 | Dx = 1.482 Mg m−3 |
Orthorhombic, Pbca | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -P 2ac 2ab | Cell parameters from 2855 reflections |
a = 8.9129 (4) Å | θ = 2.6–25.1° |
b = 13.9987 (7) Å | µ = 1.12 mm−1 |
c = 32.2568 (16) Å | T = 296 K |
V = 4024.6 (3) Å3 | Block, green |
Z = 8 | 0.21 × 0.11 × 0.08 mm |
Bruker APEXII CCD diffractometer | 3542 independent reflections |
Radiation source: fine-focus sealed tube | 2301 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.050 |
Detector resolution: 10.00 pixels mm-1 | θmax = 25.0°, θmin = 2.6° |
ϕ and ω scans | h = −10→9 |
Absorption correction: multi-scan (SADABS; Bruker, 2002) | k = −14→16 |
Tmin = 0.800, Tmax = 0.916 | l = −27→38 |
15390 measured reflections |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.038 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.093 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.01 | w = 1/[σ2(Fo2) + (0.0441P)2 + 0.2191P] where P = (Fo2 + 2Fc2)/3 |
3542 reflections | (Δ/σ)max = 0.001 |
279 parameters | Δρmax = 0.24 e Å−3 |
0 restraints | Δρmin = −0.27 e Å−3 |
[Cu(C9H6NO)2(C5H5N)]·H2O | V = 4024.6 (3) Å3 |
Mr = 448.95 | Z = 8 |
Orthorhombic, Pbca | Mo Kα radiation |
a = 8.9129 (4) Å | µ = 1.12 mm−1 |
b = 13.9987 (7) Å | T = 296 K |
c = 32.2568 (16) Å | 0.21 × 0.11 × 0.08 mm |
Bruker APEXII CCD diffractometer | 3542 independent reflections |
Absorption correction: multi-scan (SADABS; Bruker, 2002) | 2301 reflections with I > 2σ(I) |
Tmin = 0.800, Tmax = 0.916 | Rint = 0.050 |
15390 measured reflections |
R[F2 > 2σ(F2)] = 0.038 | 0 restraints |
wR(F2) = 0.093 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.01 | Δρmax = 0.24 e Å−3 |
3542 reflections | Δρmin = −0.27 e Å−3 |
279 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Cu1 | 0.16872 (4) | 0.91228 (3) | 0.376062 (11) | 0.03289 (14) | |
O1 | 0.0393 (2) | 0.81502 (16) | 0.39962 (6) | 0.0436 (6) | |
O2 | 0.2691 (2) | 1.02164 (15) | 0.35011 (6) | 0.0415 (6) | |
N1 | 0.1945 (3) | 0.9539 (2) | 0.43529 (8) | 0.0393 (7) | |
N2 | 0.0918 (3) | 0.88951 (18) | 0.31826 (8) | 0.0346 (6) | |
N3 | 0.3873 (3) | 0.82435 (19) | 0.37496 (8) | 0.0362 (6) | |
C1 | 0.2740 (4) | 1.0222 (3) | 0.45151 (10) | 0.0498 (9) | |
H1 | 0.3242 | 1.0640 | 0.4339 | 0.060* | |
C2 | 0.2872 (4) | 1.0353 (3) | 0.49500 (11) | 0.0630 (11) | |
H6 | 0.3453 | 1.0847 | 0.5057 | 0.076* | |
C3 | 0.2132 (4) | 0.9742 (3) | 0.52092 (11) | 0.0573 (10) | |
H2 | 0.2213 | 0.9815 | 0.5495 | 0.069* | |
C4 | 0.1255 (4) | 0.9008 (3) | 0.50465 (10) | 0.0438 (9) | |
C5 | 0.0420 (4) | 0.8341 (3) | 0.52762 (11) | 0.0592 (11) | |
H5 | 0.0434 | 0.8369 | 0.5564 | 0.071* | |
C6 | −0.0403 (5) | 0.7661 (3) | 0.50858 (12) | 0.0646 (12) | |
H4 | −0.0964 | 0.7241 | 0.5246 | 0.078* | |
C7 | −0.0436 (4) | 0.7570 (3) | 0.46570 (11) | 0.0524 (10) | |
H3 | −0.1001 | 0.7086 | 0.4537 | 0.063* | |
C8 | 0.0358 (4) | 0.8188 (2) | 0.44086 (9) | 0.0383 (8) | |
C9 | 0.1197 (4) | 0.8923 (2) | 0.46062 (10) | 0.0360 (8) | |
C10 | 0.0008 (4) | 0.8235 (2) | 0.30402 (10) | 0.0429 (9) | |
H7 | −0.0425 | 0.7807 | 0.3225 | 0.051* | |
C11 | −0.0332 (4) | 0.8157 (3) | 0.26144 (11) | 0.0534 (10) | |
H12 | −0.0974 | 0.7680 | 0.2521 | 0.064* | |
C12 | 0.0284 (4) | 0.8783 (3) | 0.23423 (11) | 0.0505 (10) | |
H11 | 0.0063 | 0.8733 | 0.2061 | 0.061* | |
C13 | 0.1255 (4) | 0.9507 (2) | 0.24823 (9) | 0.0385 (8) | |
C14 | 0.1537 (3) | 0.9534 (2) | 0.29164 (9) | 0.0340 (8) | |
C15 | 0.2494 (4) | 1.0239 (2) | 0.30931 (9) | 0.0335 (8) | |
C16 | 0.3130 (4) | 1.0896 (2) | 0.28342 (11) | 0.0495 (9) | |
H10 | 0.3749 | 1.1369 | 0.2943 | 0.059* | |
C17 | 0.2858 (5) | 1.0865 (3) | 0.24070 (11) | 0.0569 (11) | |
H9 | 0.3312 | 1.1317 | 0.2237 | 0.068* | |
C18 | 0.1952 (4) | 1.0196 (3) | 0.22332 (10) | 0.0542 (10) | |
H8 | 0.1794 | 1.0196 | 0.1948 | 0.065* | |
C19 | 0.3876 (4) | 0.7353 (2) | 0.36165 (10) | 0.0418 (9) | |
H17 | 0.2954 | 0.7070 | 0.3560 | 0.050* | |
C20 | 0.5146 (4) | 0.6814 (3) | 0.35556 (10) | 0.0475 (9) | |
H16 | 0.5084 | 0.6191 | 0.3457 | 0.057* | |
C21 | 0.6507 (4) | 0.7222 (3) | 0.36438 (10) | 0.0512 (10) | |
H15 | 0.7393 | 0.6881 | 0.3607 | 0.061* | |
C22 | 0.6536 (4) | 0.8152 (3) | 0.37883 (10) | 0.0515 (9) | |
H14 | 0.7441 | 0.8448 | 0.3852 | 0.062* | |
C23 | 0.5208 (4) | 0.8629 (3) | 0.38358 (10) | 0.0433 (9) | |
H13 | 0.5236 | 0.9254 | 0.3933 | 0.052* | |
O3 | −0.0217 (4) | 0.6211 (2) | 0.37607 (10) | 0.0597 (8) | |
H19 | 0.006 (4) | 0.671 (3) | 0.3806 (12) | 0.058 (15)* | |
H18 | 0.054 (5) | 0.595 (3) | 0.3664 (13) | 0.083 (17)* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Cu1 | 0.0354 (2) | 0.0357 (2) | 0.0275 (2) | −0.00361 (19) | 0.00111 (18) | −0.00006 (17) |
O1 | 0.0458 (14) | 0.0499 (14) | 0.0351 (12) | −0.0102 (12) | 0.0018 (11) | 0.0002 (11) |
O2 | 0.0508 (14) | 0.0390 (13) | 0.0348 (12) | −0.0096 (12) | 0.0002 (11) | 0.0031 (10) |
N1 | 0.0405 (17) | 0.0416 (17) | 0.0357 (14) | −0.0023 (15) | 0.0023 (13) | −0.0040 (13) |
N2 | 0.0335 (16) | 0.0333 (16) | 0.0369 (15) | 0.0002 (14) | −0.0009 (13) | −0.0004 (12) |
N3 | 0.0314 (16) | 0.0397 (16) | 0.0374 (14) | 0.0014 (13) | 0.0003 (13) | −0.0009 (13) |
C1 | 0.055 (2) | 0.051 (2) | 0.044 (2) | −0.006 (2) | 0.0066 (19) | −0.0045 (18) |
C2 | 0.063 (3) | 0.069 (3) | 0.058 (2) | −0.008 (2) | −0.010 (2) | −0.022 (2) |
C3 | 0.064 (3) | 0.069 (3) | 0.039 (2) | 0.006 (2) | −0.005 (2) | −0.009 (2) |
C4 | 0.045 (2) | 0.055 (2) | 0.0315 (17) | 0.0112 (19) | 0.0017 (16) | −0.0007 (17) |
C5 | 0.068 (3) | 0.077 (3) | 0.0323 (19) | 0.012 (2) | 0.006 (2) | 0.012 (2) |
C6 | 0.075 (3) | 0.069 (3) | 0.049 (2) | −0.007 (2) | 0.016 (2) | 0.015 (2) |
C7 | 0.053 (3) | 0.054 (3) | 0.050 (2) | −0.0042 (19) | 0.009 (2) | 0.0111 (18) |
C8 | 0.035 (2) | 0.046 (2) | 0.0330 (17) | 0.0102 (18) | 0.0003 (15) | 0.0004 (16) |
C9 | 0.0291 (19) | 0.043 (2) | 0.0363 (17) | 0.0119 (16) | 0.0047 (15) | 0.0055 (15) |
C10 | 0.039 (2) | 0.041 (2) | 0.049 (2) | −0.0005 (19) | −0.0002 (17) | 0.0042 (17) |
C11 | 0.050 (2) | 0.050 (2) | 0.060 (2) | −0.001 (2) | −0.018 (2) | −0.012 (2) |
C12 | 0.056 (3) | 0.061 (3) | 0.0341 (18) | 0.009 (2) | −0.0086 (19) | −0.0006 (18) |
C13 | 0.041 (2) | 0.0435 (19) | 0.0304 (16) | 0.0115 (18) | −0.0014 (16) | 0.0001 (16) |
C14 | 0.034 (2) | 0.0360 (18) | 0.0324 (16) | 0.0095 (17) | 0.0033 (15) | −0.0001 (15) |
C15 | 0.037 (2) | 0.0334 (18) | 0.0302 (16) | 0.0038 (16) | 0.0040 (16) | −0.0008 (15) |
C16 | 0.057 (2) | 0.039 (2) | 0.053 (2) | −0.0053 (19) | 0.0119 (19) | 0.0004 (17) |
C17 | 0.071 (3) | 0.054 (2) | 0.046 (2) | 0.003 (2) | 0.015 (2) | 0.0144 (19) |
C18 | 0.063 (3) | 0.063 (3) | 0.0360 (19) | 0.012 (2) | 0.0049 (19) | 0.0081 (19) |
C19 | 0.033 (2) | 0.050 (2) | 0.0422 (19) | −0.0021 (19) | −0.0001 (15) | −0.0027 (17) |
C20 | 0.045 (2) | 0.044 (2) | 0.053 (2) | 0.005 (2) | 0.0072 (19) | −0.0028 (17) |
C21 | 0.039 (2) | 0.063 (3) | 0.051 (2) | 0.012 (2) | 0.0079 (18) | 0.0066 (19) |
C22 | 0.034 (2) | 0.073 (3) | 0.048 (2) | −0.003 (2) | −0.0066 (18) | 0.005 (2) |
C23 | 0.042 (2) | 0.043 (2) | 0.045 (2) | −0.0025 (19) | −0.0031 (17) | −0.0039 (16) |
O3 | 0.0487 (19) | 0.0478 (19) | 0.083 (2) | 0.0065 (16) | 0.0051 (17) | −0.0096 (17) |
Cu1—O1 | 1.940 (2) | C8—C9 | 1.422 (4) |
Cu1—O2 | 1.961 (2) | C10—C11 | 1.411 (4) |
Cu1—N2 | 2.012 (3) | C10—H7 | 0.9300 |
Cu1—N1 | 2.011 (3) | C11—C12 | 1.356 (5) |
Cu1—N3 | 2.305 (3) | C11—H12 | 0.9300 |
O1—C8 | 1.332 (3) | C12—C13 | 1.408 (5) |
O2—C15 | 1.328 (3) | C12—H11 | 0.9300 |
N1—C1 | 1.299 (4) | C13—C18 | 1.401 (5) |
N1—C9 | 1.363 (4) | C13—C14 | 1.423 (4) |
N2—C10 | 1.312 (4) | C14—C15 | 1.424 (4) |
N2—C14 | 1.357 (4) | C15—C16 | 1.366 (4) |
N3—C19 | 1.318 (4) | C16—C17 | 1.400 (5) |
N3—C23 | 1.336 (4) | C16—H10 | 0.9300 |
C1—C2 | 1.420 (4) | C17—C18 | 1.357 (5) |
C1—H1 | 0.9300 | C17—H9 | 0.9300 |
C2—C3 | 1.366 (5) | C18—H8 | 0.9300 |
C2—H6 | 0.9300 | C19—C20 | 1.375 (4) |
C3—C4 | 1.393 (5) | C19—H17 | 0.9300 |
C3—H2 | 0.9300 | C20—C21 | 1.371 (4) |
C4—C5 | 1.405 (5) | C20—H16 | 0.9300 |
C4—C9 | 1.426 (4) | C21—C22 | 1.383 (5) |
C5—C6 | 1.349 (5) | C21—H15 | 0.9300 |
C5—H5 | 0.9300 | C22—C23 | 1.367 (4) |
C6—C7 | 1.389 (5) | C22—H14 | 0.9300 |
C6—H4 | 0.9300 | C23—H13 | 0.9300 |
C7—C8 | 1.375 (4) | O3—H19 | 0.76 (4) |
C7—H3 | 0.9300 | O3—H18 | 0.83 (5) |
O1—Cu1—O2 | 170.64 (9) | N1—C9—C4 | 121.8 (3) |
O1—Cu1—N2 | 92.81 (10) | C8—C9—C4 | 121.7 (3) |
O2—Cu1—N2 | 83.32 (9) | N2—C10—C11 | 121.8 (3) |
O1—Cu1—N1 | 84.23 (10) | N2—C10—H7 | 119.1 |
O2—Cu1—N1 | 97.30 (10) | C11—C10—H7 | 119.1 |
N2—Cu1—N1 | 164.89 (11) | C12—C11—C10 | 119.6 (3) |
O1—Cu1—N3 | 97.70 (9) | C12—C11—H12 | 120.2 |
O2—Cu1—N3 | 91.41 (9) | C10—C11—H12 | 120.2 |
N2—Cu1—N3 | 100.91 (10) | C11—C12—C13 | 120.4 (3) |
N1—Cu1—N3 | 94.18 (10) | C11—C12—H11 | 119.8 |
C8—O1—Cu1 | 112.2 (2) | C13—C12—H11 | 119.8 |
C15—O2—Cu1 | 112.42 (19) | C18—C13—C12 | 125.8 (3) |
C1—N1—C9 | 119.4 (3) | C18—C13—C14 | 117.9 (3) |
C1—N1—Cu1 | 131.2 (2) | C12—C13—C14 | 116.3 (3) |
C9—N1—Cu1 | 109.3 (2) | N2—C14—C15 | 116.6 (3) |
C10—N2—C14 | 119.6 (3) | N2—C14—C13 | 122.2 (3) |
C10—N2—Cu1 | 130.3 (2) | C15—C14—C13 | 121.2 (3) |
C14—N2—Cu1 | 110.1 (2) | O2—C15—C16 | 124.6 (3) |
C19—N3—C23 | 116.6 (3) | O2—C15—C14 | 117.3 (3) |
C19—N3—Cu1 | 120.8 (2) | C16—C15—C14 | 118.1 (3) |
C23—N3—Cu1 | 122.3 (2) | C15—C16—C17 | 120.6 (3) |
N1—C1—C2 | 122.6 (4) | C15—C16—H10 | 119.7 |
N1—C1—H1 | 118.7 | C17—C16—H10 | 119.7 |
C2—C1—H1 | 118.7 | C18—C17—C16 | 122.1 (3) |
C3—C2—C1 | 118.9 (4) | C18—C17—H9 | 119.0 |
C3—C2—H6 | 120.6 | C16—C17—H9 | 119.0 |
C1—C2—H6 | 120.6 | C17—C18—C13 | 120.1 (3) |
C2—C3—C4 | 120.1 (3) | C17—C18—H8 | 119.9 |
C2—C3—H2 | 119.9 | C13—C18—H8 | 119.9 |
C4—C3—H2 | 119.9 | N3—C19—C20 | 124.5 (3) |
C3—C4—C5 | 126.0 (3) | N3—C19—H17 | 117.7 |
C3—C4—C9 | 117.2 (3) | C20—C19—H17 | 117.7 |
C5—C4—C9 | 116.8 (3) | C21—C20—C19 | 118.1 (3) |
C6—C5—C4 | 121.1 (3) | C21—C20—H16 | 121.0 |
C6—C5—H5 | 119.5 | C19—C20—H16 | 121.0 |
C4—C5—H5 | 119.5 | C20—C21—C22 | 118.6 (3) |
C5—C6—C7 | 122.0 (4) | C20—C21—H15 | 120.7 |
C5—C6—H4 | 119.0 | C22—C21—H15 | 120.7 |
C7—C6—H4 | 119.0 | C23—C22—C21 | 118.8 (3) |
C8—C7—C6 | 120.8 (4) | C23—C22—H14 | 120.6 |
C8—C7—H3 | 119.6 | C21—C22—H14 | 120.6 |
C6—C7—H3 | 119.6 | N3—C23—C22 | 123.4 (3) |
O1—C8—C7 | 124.7 (3) | N3—C23—H13 | 118.3 |
O1—C8—C9 | 117.7 (3) | C22—C23—H13 | 118.3 |
C7—C8—C9 | 117.7 (3) | H19—O3—H18 | 102 (4) |
N1—C9—C8 | 116.5 (3) | ||
N2—Cu1—O1—C8 | −168.2 (2) | Cu1—N1—C9—C8 | −3.6 (3) |
N1—Cu1—O1—C8 | −3.1 (2) | C1—N1—C9—C4 | 0.3 (5) |
N3—Cu1—O1—C8 | 90.4 (2) | Cu1—N1—C9—C4 | 176.2 (2) |
N2—Cu1—O2—C15 | −4.6 (2) | O1—C8—C9—N1 | 1.2 (4) |
N1—Cu1—O2—C15 | −169.4 (2) | C7—C8—C9—N1 | −178.5 (3) |
N3—Cu1—O2—C15 | 96.2 (2) | O1—C8—C9—C4 | −178.6 (3) |
O1—Cu1—N1—C1 | 178.9 (3) | C7—C8—C9—C4 | 1.7 (5) |
O2—Cu1—N1—C1 | −10.4 (3) | C3—C4—C9—N1 | −1.0 (5) |
N2—Cu1—N1—C1 | −101.8 (5) | C5—C4—C9—N1 | 179.0 (3) |
N3—Cu1—N1—C1 | 81.6 (3) | C3—C4—C9—C8 | 178.8 (3) |
O1—Cu1—N1—C9 | 3.6 (2) | C5—C4—C9—C8 | −1.2 (5) |
O2—Cu1—N1—C9 | 174.3 (2) | C14—N2—C10—C11 | 1.1 (5) |
N2—Cu1—N1—C9 | 82.9 (5) | Cu1—N2—C10—C11 | −176.0 (2) |
N3—Cu1—N1—C9 | −93.7 (2) | N2—C10—C11—C12 | −0.5 (5) |
O1—Cu1—N2—C10 | −7.0 (3) | C10—C11—C12—C13 | −0.1 (5) |
O2—Cu1—N2—C10 | −178.4 (3) | C11—C12—C13—C18 | −179.6 (3) |
N1—Cu1—N2—C10 | −85.2 (5) | C11—C12—C13—C14 | 0.1 (5) |
N3—Cu1—N2—C10 | 91.4 (3) | C10—N2—C14—C15 | 179.1 (3) |
O1—Cu1—N2—C14 | 175.7 (2) | Cu1—N2—C14—C15 | −3.3 (3) |
O2—Cu1—N2—C14 | 4.3 (2) | C10—N2—C14—C13 | −1.1 (4) |
N1—Cu1—N2—C14 | 97.5 (5) | Cu1—N2—C14—C13 | 176.5 (2) |
N3—Cu1—N2—C14 | −85.9 (2) | C18—C13—C14—N2 | −179.8 (3) |
O1—Cu1—N3—C19 | 44.9 (2) | C12—C13—C14—N2 | 0.5 (5) |
O2—Cu1—N3—C19 | −133.0 (2) | C18—C13—C14—C15 | 0.1 (5) |
N2—Cu1—N3—C19 | −49.5 (3) | C12—C13—C14—C15 | −179.6 (3) |
N1—Cu1—N3—C19 | 129.6 (2) | Cu1—O2—C15—C16 | −176.7 (3) |
O1—Cu1—N3—C23 | −142.0 (2) | Cu1—O2—C15—C14 | 4.2 (3) |
O2—Cu1—N3—C23 | 40.1 (2) | N2—C14—C15—O2 | −0.5 (4) |
N2—Cu1—N3—C23 | 123.6 (2) | C13—C14—C15—O2 | 179.7 (3) |
N1—Cu1—N3—C23 | −57.3 (2) | N2—C14—C15—C16 | −179.7 (3) |
C9—N1—C1—C2 | 0.3 (5) | C13—C14—C15—C16 | 0.5 (5) |
Cu1—N1—C1—C2 | −174.5 (3) | O2—C15—C16—C17 | −179.9 (3) |
N1—C1—C2—C3 | −0.3 (6) | C14—C15—C16—C17 | −0.8 (5) |
C1—C2—C3—C4 | −0.5 (6) | C15—C16—C17—C18 | 0.6 (6) |
C2—C3—C4—C5 | −178.9 (4) | C16—C17—C18—C13 | 0.0 (6) |
C2—C3—C4—C9 | 1.1 (5) | C12—C13—C18—C17 | 179.4 (3) |
C3—C4—C5—C6 | 179.5 (4) | C14—C13—C18—C17 | −0.3 (5) |
C9—C4—C5—C6 | −0.5 (5) | C23—N3—C19—C20 | −1.1 (5) |
C4—C5—C6—C7 | 1.7 (6) | Cu1—N3—C19—C20 | 172.4 (2) |
C5—C6—C7—C8 | −1.1 (6) | N3—C19—C20—C21 | 0.9 (5) |
Cu1—O1—C8—C7 | −178.3 (3) | C19—C20—C21—C22 | −0.1 (5) |
Cu1—O1—C8—C9 | 2.0 (3) | C20—C21—C22—C23 | −0.3 (5) |
C6—C7—C8—O1 | 179.8 (3) | C19—N3—C23—C22 | 0.7 (5) |
C6—C7—C8—C9 | −0.5 (5) | Cu1—N3—C23—C22 | −172.7 (2) |
C1—N1—C9—C8 | −179.5 (3) | C21—C22—C23—N3 | 0.0 (5) |
D—H···A | D—H | H···A | D···A | D—H···A |
O3—H18···O2i | 0.83 (5) | 1.95 (5) | 2.776 (4) | 173 (4) |
O3—H19···O1 | 0.76 (4) | 2.13 (4) | 2.871 (4) | 168 (4) |
Symmetry code: (i) −x+1/2, y−1/2, z. |
Cu1—O1 | 1.940 (2) | Cu1—N1 | 2.011 (3) |
Cu1—O2 | 1.961 (2) | Cu1—N3 | 2.305 (3) |
Cu1—N2 | 2.012 (3) | ||
O1—Cu1—N2 | 92.81 (10) | O1—Cu1—N3 | 97.70 (9) |
O2—Cu1—N2 | 83.32 (9) | O2—Cu1—N3 | 91.41 (9) |
O1—Cu1—N1 | 84.23 (10) | N2—Cu1—N3 | 100.91 (10) |
O2—Cu1—N1 | 97.30 (10) | N1—Cu1—N3 | 94.18 (10) |
D—H···A | D—H | H···A | D···A | D—H···A |
O3—H18···O2i | 0.83 (5) | 1.95 (5) | 2.776 (4) | 173 (4) |
O3—H19···O1 | 0.76 (4) | 2.13 (4) | 2.871 (4) | 168 (4) |
Symmetry code: (i) −x+1/2, y−1/2, z. |
Acknowledgements
This work was funded by the Department of Chemistry and Biochemistry at Worcester Polytechnic Institute.
References
Bareggi, S. R. & Cornelli, U. (2012). CNS Neurosci. Ther. 18, 41–46. Google Scholar
Bruker (2002). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Deraeve, C., Boldron, C., Maraval, A., Mazarguil, H., Gornitzka, H., Vendier, L., Pitié, M. & Meunier, B. (2008). Chem. Eur. J. 14, 682–696. Google Scholar
Di Vaira, M., Bazzicalupi, C., Orioli, P., Messori, L., Bruni, B. & Zatta, P. (2004). Inorg. Chem. 43, 3795–3797. Web of Science CSD CrossRef PubMed CAS Google Scholar
Jian, F.-F., Wang, Y., Lu, L.-D., Yang, X.-J., Wang, X., Chantrapromma, S., Fun, H.-K. & Razak, I. A. (2001). Acta Cryst. C57, 714–716. Google Scholar
Marov, I. N., Petrukhin, O. M., Zhukov, V. V. & Kalinichenko, N. B. (1978). Russ. J. Inorg. Chem. 23, 2702–2711. Google Scholar
Marov, I. N., Zhukov, V. V., Kalinichenko, N. B. & Petrukhin, O. M. (1975). Russ. J. Coord. Chem. 1, 1046–1053. Google Scholar
Najafi, E., Amini, M. M. & Ng, S. W. (2011). Acta Cryst. E67, m1283. Google Scholar
Okabe, N. & Saishu, H. (2001). Acta Cryst. E57, m251–m252. Web of Science CSD CrossRef IUCr Journals Google Scholar
Palenik, G. J. (1964). Acta Cryst. 17, 687–695. CSD CAS Web of Science Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925. Web of Science CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.