metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 71| Part 2| February 2015| Pages m38-m39

Crystal structure of (pyridine-κN)bis­(quinolin-2-olato-κ2N,O)copper(II) monohydrate

aDepartment of Chemistry and Biochemistry, Worcester Polytechnic Institute, 100 Institute Road, Worcester, Massachusetts 01609-2280, USA
*Correspondence e-mail: scburdette@wpi.edu

Edited by J. Jasinski, Keene State College, USA (Received 23 December 2014; accepted 21 January 2015; online 28 January 2015)

The title complex, [Cu(C9H6NO)2(C5H4N)]·H2O, adopts a slightly distorted square-pyramidal geometry in which the axial pyridine ligand exhibits a long Cu—N bond of 2.305 (3) Å. The pyridine ligand forms dihedral angles of 79.5 (5) and 88.0 (1)° with the planes of the two quinolin-2-olate ligands, while the dihedral angle between the quinoline groups of 9.0 (3)° indicates near planarity. The water mol­ecule connects adjacent copper complexes through O—H⋯O hydrogen bonds to phenolate O atoms, forming a network inter­connecting all the complexes in the crystal lattice.

1. Related literature

For the biological activity of clioquinol, see: Di Vaira et al. (2004[Di Vaira, M., Bazzicalupi, C., Orioli, P., Messori, L., Bruni, B. & Zatta, P. (2004). Inorg. Chem. 43, 3795-3797.]). For the use of clioquinol in the treatment of Alzheimer's disease, see: Bareggi & Cornelli (2012[Bareggi, S. R. & Cornelli, U. (2012). CNS Neurosci. Ther. 18, 41-46.]). For crystal structures of copper(II) complexes with 8-hy­droxy­quinoline (8-HQ) derivatives and the metal in a five-coordinate environment, see: Deraeve et al. (2008[Deraeve, C., Boldron, C., Maraval, A., Mazarguil, H., Gornitzka, H., Vendier, L., Pitié, M. & Meunier, B. (2008). Chem. Eur. J. 14, 682-696.]). For [Cu(8-HQ)2(H2O)2] with six-coordinate Cu(II), see: Okabe & Saishu (2001[Okabe, N. & Saishu, H. (2001). Acta Cryst. E57, m251-m252.]). For copper(II), zinc(II) and iron(III) crystalline complexes with 8-HQ, see: Palenik (1964[Palenik, G. J. (1964). Acta Cryst. 17, 687-695.]); Najafi et al. (2011[Najafi, E., Amini, M. M. & Ng, S. W. (2011). Acta Cryst. E67, m1283.]); Jian et al. (2001[Jian, F.-F., Wang, Y., Lu, L.-D., Yang, X.-J., Wang, X., Chantrapromma, S., Fun, H.-K. & Razak, I. A. (2001). Acta Cryst. C57, 714-716.]). For EPR studies performed on a putative [Cu(8-HQ)2(pyri­dine)] complex, see: Marov et al. (1975[Marov, I. N., Zhukov, V. V., Kalinichenko, N. B. & Petrukhin, O. M. (1975). Russ. J. Coord. Chem. 1, 1046-1053.], 1978[Marov, I. N., Petrukhin, O. M., Zhukov, V. V. & Kalinichenko, N. B. (1978). Russ. J. Inorg. Chem. 23, 2702-2711.]).

[Scheme 1]

2. Experimental

2.1. Crystal data

  • [Cu(C9H6NO)2(C5H5N)]·H2O

  • Mr = 448.95

  • Orthorhombic, P b c a

  • a = 8.9129 (4) Å

  • b = 13.9987 (7) Å

  • c = 32.2568 (16) Å

  • V = 4024.6 (3) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 1.12 mm−1

  • T = 296 K

  • 0.21 × 0.11 × 0.08 mm

2.2. Data collection

  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2002[Bruker (2002). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.800, Tmax = 0.916

  • 15390 measured reflections

  • 3542 independent reflections

  • 2301 reflections with I > 2σ(I)

  • Rint = 0.050

2.3. Refinement

  • R[F2 > 2σ(F2)] = 0.038

  • wR(F2) = 0.093

  • S = 1.01

  • 3542 reflections

  • 279 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.24 e Å−3

  • Δρmin = −0.27 e Å−3

Table 1
Selected geometric parameters (Å, °)

Cu1—O1 1.940 (2)
Cu1—O2 1.961 (2)
Cu1—N2 2.012 (3)
Cu1—N1 2.011 (3)
Cu1—N3 2.305 (3)
O1—Cu1—N2 92.81 (10)
O2—Cu1—N2 83.32 (9)
O1—Cu1—N1 84.23 (10)
O2—Cu1—N1 97.30 (10)
O1—Cu1—N3 97.70 (9)
O2—Cu1—N3 91.41 (9)
N2—Cu1—N3 100.91 (10)
N1—Cu1—N3 94.18 (10)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O3—H18⋯O2i 0.83 (5) 1.95 (5) 2.776 (4) 173 (4)
O3—H19⋯O1 0.76 (4) 2.13 (4) 2.871 (4) 168 (4)
Symmetry code: (i) [-x+{\script{1\over 2}}, y-{\script{1\over 2}}, z].

Data collection: APEX2 (Bruker, 2002[Bruker (2002). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2002[Bruker (2002). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

Clioquinol is a 8-hy­droxy­quinoline (8-HQ) derivative that has been used for the treatment of Alzheimer's disease (Bareggi & Cornelli, 2012). The coordination chemistry of clioquinol plays a critical role in its biological activity (Di Vaira et al., 2004). Copper(II), zinc(II) and iron(III) readily form crystalline complexes with 8-HQ and its derivatives (Palenik, 1964; Najafi, 2011; Jian et al., 2001). Two bidentate ligands chelate a single metal ion in the square planar [Cu(8—HQ)2] cupric complex (Palenik, 1964) that is structurally analogous to [Cu(clioquinol)2] (Di Vaira et al., 2004). Very few X-ray structures of five-coordinate cooper(II) complexes with 8-HQ derivatives have been reported (Deraeve et al., 2008); however, a 6-coordinate complexe of [Cu(8—HQ)2(H2O)2] has been structurally characterized (Okabe & Saishu, 2001). EPR studies were performed on a putative [Cu(8—HQ)2(pyridine)] complex nearly 40 years ago (Marov et al., 1975; Marov et al., 1978).

The reaction of [Cu(OAc)2]·H2O with 8-hy­droxy­quinoline yields the well known [Cu(C9H6NO)2] moiety where each 8-hy­droxy­quionline group serves as a bidentate chelator coordinated through the oxygen and nitro­gen atoms. When recrystallized from a mixture of pyridine and H2O, the title complex is isolated. Herein, we report the crystal structure of [Cu(C9H6NO)2(C5H4N]·H2O, the first confirmation that the 5-coordinate complex can exist in the solid state. The pyridine ligand forms dihedral angles with the two quinolin-2-olate ligands of 79.5 (5)° and 88.0 (1)°, while the dihedral angle between the quinoline groups of 9.0 (3)° indicates near planarity. The Cu—N bond appears to be weak as the crystals readily decompose as they dry, presumably due to loss of the pyridine ligand.

Experimental top

[Cu(OAc)2]·H2O (0.258 g, 1.29 mmol) and 8-hy­droxy­quinoline (0.375 g, 2.58 mol) were separately dissolved in minimal qu­anti­ties of acetic acid (ca. 2.5 mL). Upon mixing the solutions, a light green precipitate (0.486 g) formed immediately. The precipitate was isolated by filtration and dissolved in pyridine. Green blocks of [Cu(C9H6NO)2(C5H4N]·H2O were isolated by slow evaporation in a diffusion chamber containing water and subsequentally used for crystal structure analysis.

Refinement top

H18 and H19 were located by a difference map and refined isotropically. All of the remaining H atoms were placed in calculated positions and refined using a riding model with atom–H lengths of 0.93 Å (CH). Isotropic displacement parameters for these atoms were set to 1.2 (CH) times Ueq of the parent atom.

Related literature top

For the biological activity of clioquinol, see: Di Vaira et al. (2004). For the use of clioquinol in the treatment of Alzheimer's disease, see: Bareggi & Cornelli (2012). For X-ray structures of five-coordinate copper(II) complexes with 8-hydroxyquinoline (8-HQ) derivatives, see: Deraeve et al. (2008). For a six-coordinate complex of [Cu(8-HQ)2(H2O)2], see: Okabe & Saishu (2001). For copper(II), zinc(II) and iron(III) crystalline complexes with 8-HQ, see: Palenik (1964); Najafi et al. (2011); Jian et al. (2001). For EPR studies performed on a putative [Cu(8-HQ)2(pyridine)] complex, see: Marov et al. (1975, 1978).

Computing details top

Data collection: APEX2 (Bruker, 2002); cell refinement: SAINT (Bruker, 2002); data reduction: SAINT (Bruker, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2015); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. ORTEP drawing of [Cu(C9H6NO)2(C5H4N]·H2O. Displacement ellipsoids were drawn at the 50% probability level. The hydrogen atoms have been omitted for clarity.
[Figure 2] Fig. 2. A portion of the molecular packing for [Cu(C9H6NO)2(C5H4N]·H2O viewed along the a axis. Dashed lines indicate O—H···O hydrogen bonds between water hydrogen atoms and hydroxyquinoline oxygen atoms forming continuous chains along the b axis. Displacement ellipsoids were drawn at the 5% probability level. Hydrogen atoms not involved in hydrogen bonds have been omitted for clarity.
(Pyridine-κN)bis(quinolin-2-olato-κ2N,O)copper(II) monohydrate top
Crystal data top
[Cu(C9H6NO)2(C5H5N)]·H2OF(000) = 1848
Mr = 448.95Dx = 1.482 Mg m3
Orthorhombic, PbcaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2abCell parameters from 2855 reflections
a = 8.9129 (4) Åθ = 2.6–25.1°
b = 13.9987 (7) ŵ = 1.12 mm1
c = 32.2568 (16) ÅT = 296 K
V = 4024.6 (3) Å3Block, green
Z = 80.21 × 0.11 × 0.08 mm
Data collection top
Bruker APEXII CCD
diffractometer
3542 independent reflections
Radiation source: fine-focus sealed tube2301 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.050
Detector resolution: 10.00 pixels mm-1θmax = 25.0°, θmin = 2.6°
ϕ and ω scansh = 109
Absorption correction: multi-scan
(SADABS; Bruker, 2002)
k = 1416
Tmin = 0.800, Tmax = 0.916l = 2738
15390 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.038Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.093H atoms treated by a mixture of independent and constrained refinement
S = 1.01 w = 1/[σ2(Fo2) + (0.0441P)2 + 0.2191P]
where P = (Fo2 + 2Fc2)/3
3542 reflections(Δ/σ)max = 0.001
279 parametersΔρmax = 0.24 e Å3
0 restraintsΔρmin = 0.27 e Å3
Crystal data top
[Cu(C9H6NO)2(C5H5N)]·H2OV = 4024.6 (3) Å3
Mr = 448.95Z = 8
Orthorhombic, PbcaMo Kα radiation
a = 8.9129 (4) ŵ = 1.12 mm1
b = 13.9987 (7) ÅT = 296 K
c = 32.2568 (16) Å0.21 × 0.11 × 0.08 mm
Data collection top
Bruker APEXII CCD
diffractometer
3542 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2002)
2301 reflections with I > 2σ(I)
Tmin = 0.800, Tmax = 0.916Rint = 0.050
15390 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0380 restraints
wR(F2) = 0.093H atoms treated by a mixture of independent and constrained refinement
S = 1.01Δρmax = 0.24 e Å3
3542 reflectionsΔρmin = 0.27 e Å3
279 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu10.16872 (4)0.91228 (3)0.376062 (11)0.03289 (14)
O10.0393 (2)0.81502 (16)0.39962 (6)0.0436 (6)
O20.2691 (2)1.02164 (15)0.35011 (6)0.0415 (6)
N10.1945 (3)0.9539 (2)0.43529 (8)0.0393 (7)
N20.0918 (3)0.88951 (18)0.31826 (8)0.0346 (6)
N30.3873 (3)0.82435 (19)0.37496 (8)0.0362 (6)
C10.2740 (4)1.0222 (3)0.45151 (10)0.0498 (9)
H10.32421.06400.43390.060*
C20.2872 (4)1.0353 (3)0.49500 (11)0.0630 (11)
H60.34531.08470.50570.076*
C30.2132 (4)0.9742 (3)0.52092 (11)0.0573 (10)
H20.22130.98150.54950.069*
C40.1255 (4)0.9008 (3)0.50465 (10)0.0438 (9)
C50.0420 (4)0.8341 (3)0.52762 (11)0.0592 (11)
H50.04340.83690.55640.071*
C60.0403 (5)0.7661 (3)0.50858 (12)0.0646 (12)
H40.09640.72410.52460.078*
C70.0436 (4)0.7570 (3)0.46570 (11)0.0524 (10)
H30.10010.70860.45370.063*
C80.0358 (4)0.8188 (2)0.44086 (9)0.0383 (8)
C90.1197 (4)0.8923 (2)0.46062 (10)0.0360 (8)
C100.0008 (4)0.8235 (2)0.30402 (10)0.0429 (9)
H70.04250.78070.32250.051*
C110.0332 (4)0.8157 (3)0.26144 (11)0.0534 (10)
H120.09740.76800.25210.064*
C120.0284 (4)0.8783 (3)0.23423 (11)0.0505 (10)
H110.00630.87330.20610.061*
C130.1255 (4)0.9507 (2)0.24823 (9)0.0385 (8)
C140.1537 (3)0.9534 (2)0.29164 (9)0.0340 (8)
C150.2494 (4)1.0239 (2)0.30931 (9)0.0335 (8)
C160.3130 (4)1.0896 (2)0.28342 (11)0.0495 (9)
H100.37491.13690.29430.059*
C170.2858 (5)1.0865 (3)0.24070 (11)0.0569 (11)
H90.33121.13170.22370.068*
C180.1952 (4)1.0196 (3)0.22332 (10)0.0542 (10)
H80.17941.01960.19480.065*
C190.3876 (4)0.7353 (2)0.36165 (10)0.0418 (9)
H170.29540.70700.35600.050*
C200.5146 (4)0.6814 (3)0.35556 (10)0.0475 (9)
H160.50840.61910.34570.057*
C210.6507 (4)0.7222 (3)0.36438 (10)0.0512 (10)
H150.73930.68810.36070.061*
C220.6536 (4)0.8152 (3)0.37883 (10)0.0515 (9)
H140.74410.84480.38520.062*
C230.5208 (4)0.8629 (3)0.38358 (10)0.0433 (9)
H130.52360.92540.39330.052*
O30.0217 (4)0.6211 (2)0.37607 (10)0.0597 (8)
H190.006 (4)0.671 (3)0.3806 (12)0.058 (15)*
H180.054 (5)0.595 (3)0.3664 (13)0.083 (17)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.0354 (2)0.0357 (2)0.0275 (2)0.00361 (19)0.00111 (18)0.00006 (17)
O10.0458 (14)0.0499 (14)0.0351 (12)0.0102 (12)0.0018 (11)0.0002 (11)
O20.0508 (14)0.0390 (13)0.0348 (12)0.0096 (12)0.0002 (11)0.0031 (10)
N10.0405 (17)0.0416 (17)0.0357 (14)0.0023 (15)0.0023 (13)0.0040 (13)
N20.0335 (16)0.0333 (16)0.0369 (15)0.0002 (14)0.0009 (13)0.0004 (12)
N30.0314 (16)0.0397 (16)0.0374 (14)0.0014 (13)0.0003 (13)0.0009 (13)
C10.055 (2)0.051 (2)0.044 (2)0.006 (2)0.0066 (19)0.0045 (18)
C20.063 (3)0.069 (3)0.058 (2)0.008 (2)0.010 (2)0.022 (2)
C30.064 (3)0.069 (3)0.039 (2)0.006 (2)0.005 (2)0.009 (2)
C40.045 (2)0.055 (2)0.0315 (17)0.0112 (19)0.0017 (16)0.0007 (17)
C50.068 (3)0.077 (3)0.0323 (19)0.012 (2)0.006 (2)0.012 (2)
C60.075 (3)0.069 (3)0.049 (2)0.007 (2)0.016 (2)0.015 (2)
C70.053 (3)0.054 (3)0.050 (2)0.0042 (19)0.009 (2)0.0111 (18)
C80.035 (2)0.046 (2)0.0330 (17)0.0102 (18)0.0003 (15)0.0004 (16)
C90.0291 (19)0.043 (2)0.0363 (17)0.0119 (16)0.0047 (15)0.0055 (15)
C100.039 (2)0.041 (2)0.049 (2)0.0005 (19)0.0002 (17)0.0042 (17)
C110.050 (2)0.050 (2)0.060 (2)0.001 (2)0.018 (2)0.012 (2)
C120.056 (3)0.061 (3)0.0341 (18)0.009 (2)0.0086 (19)0.0006 (18)
C130.041 (2)0.0435 (19)0.0304 (16)0.0115 (18)0.0014 (16)0.0001 (16)
C140.034 (2)0.0360 (18)0.0324 (16)0.0095 (17)0.0033 (15)0.0001 (15)
C150.037 (2)0.0334 (18)0.0302 (16)0.0038 (16)0.0040 (16)0.0008 (15)
C160.057 (2)0.039 (2)0.053 (2)0.0053 (19)0.0119 (19)0.0004 (17)
C170.071 (3)0.054 (2)0.046 (2)0.003 (2)0.015 (2)0.0144 (19)
C180.063 (3)0.063 (3)0.0360 (19)0.012 (2)0.0049 (19)0.0081 (19)
C190.033 (2)0.050 (2)0.0422 (19)0.0021 (19)0.0001 (15)0.0027 (17)
C200.045 (2)0.044 (2)0.053 (2)0.005 (2)0.0072 (19)0.0028 (17)
C210.039 (2)0.063 (3)0.051 (2)0.012 (2)0.0079 (18)0.0066 (19)
C220.034 (2)0.073 (3)0.048 (2)0.003 (2)0.0066 (18)0.005 (2)
C230.042 (2)0.043 (2)0.045 (2)0.0025 (19)0.0031 (17)0.0039 (16)
O30.0487 (19)0.0478 (19)0.083 (2)0.0065 (16)0.0051 (17)0.0096 (17)
Geometric parameters (Å, º) top
Cu1—O11.940 (2)C8—C91.422 (4)
Cu1—O21.961 (2)C10—C111.411 (4)
Cu1—N22.012 (3)C10—H70.9300
Cu1—N12.011 (3)C11—C121.356 (5)
Cu1—N32.305 (3)C11—H120.9300
O1—C81.332 (3)C12—C131.408 (5)
O2—C151.328 (3)C12—H110.9300
N1—C11.299 (4)C13—C181.401 (5)
N1—C91.363 (4)C13—C141.423 (4)
N2—C101.312 (4)C14—C151.424 (4)
N2—C141.357 (4)C15—C161.366 (4)
N3—C191.318 (4)C16—C171.400 (5)
N3—C231.336 (4)C16—H100.9300
C1—C21.420 (4)C17—C181.357 (5)
C1—H10.9300C17—H90.9300
C2—C31.366 (5)C18—H80.9300
C2—H60.9300C19—C201.375 (4)
C3—C41.393 (5)C19—H170.9300
C3—H20.9300C20—C211.371 (4)
C4—C51.405 (5)C20—H160.9300
C4—C91.426 (4)C21—C221.383 (5)
C5—C61.349 (5)C21—H150.9300
C5—H50.9300C22—C231.367 (4)
C6—C71.389 (5)C22—H140.9300
C6—H40.9300C23—H130.9300
C7—C81.375 (4)O3—H190.76 (4)
C7—H30.9300O3—H180.83 (5)
O1—Cu1—O2170.64 (9)N1—C9—C4121.8 (3)
O1—Cu1—N292.81 (10)C8—C9—C4121.7 (3)
O2—Cu1—N283.32 (9)N2—C10—C11121.8 (3)
O1—Cu1—N184.23 (10)N2—C10—H7119.1
O2—Cu1—N197.30 (10)C11—C10—H7119.1
N2—Cu1—N1164.89 (11)C12—C11—C10119.6 (3)
O1—Cu1—N397.70 (9)C12—C11—H12120.2
O2—Cu1—N391.41 (9)C10—C11—H12120.2
N2—Cu1—N3100.91 (10)C11—C12—C13120.4 (3)
N1—Cu1—N394.18 (10)C11—C12—H11119.8
C8—O1—Cu1112.2 (2)C13—C12—H11119.8
C15—O2—Cu1112.42 (19)C18—C13—C12125.8 (3)
C1—N1—C9119.4 (3)C18—C13—C14117.9 (3)
C1—N1—Cu1131.2 (2)C12—C13—C14116.3 (3)
C9—N1—Cu1109.3 (2)N2—C14—C15116.6 (3)
C10—N2—C14119.6 (3)N2—C14—C13122.2 (3)
C10—N2—Cu1130.3 (2)C15—C14—C13121.2 (3)
C14—N2—Cu1110.1 (2)O2—C15—C16124.6 (3)
C19—N3—C23116.6 (3)O2—C15—C14117.3 (3)
C19—N3—Cu1120.8 (2)C16—C15—C14118.1 (3)
C23—N3—Cu1122.3 (2)C15—C16—C17120.6 (3)
N1—C1—C2122.6 (4)C15—C16—H10119.7
N1—C1—H1118.7C17—C16—H10119.7
C2—C1—H1118.7C18—C17—C16122.1 (3)
C3—C2—C1118.9 (4)C18—C17—H9119.0
C3—C2—H6120.6C16—C17—H9119.0
C1—C2—H6120.6C17—C18—C13120.1 (3)
C2—C3—C4120.1 (3)C17—C18—H8119.9
C2—C3—H2119.9C13—C18—H8119.9
C4—C3—H2119.9N3—C19—C20124.5 (3)
C3—C4—C5126.0 (3)N3—C19—H17117.7
C3—C4—C9117.2 (3)C20—C19—H17117.7
C5—C4—C9116.8 (3)C21—C20—C19118.1 (3)
C6—C5—C4121.1 (3)C21—C20—H16121.0
C6—C5—H5119.5C19—C20—H16121.0
C4—C5—H5119.5C20—C21—C22118.6 (3)
C5—C6—C7122.0 (4)C20—C21—H15120.7
C5—C6—H4119.0C22—C21—H15120.7
C7—C6—H4119.0C23—C22—C21118.8 (3)
C8—C7—C6120.8 (4)C23—C22—H14120.6
C8—C7—H3119.6C21—C22—H14120.6
C6—C7—H3119.6N3—C23—C22123.4 (3)
O1—C8—C7124.7 (3)N3—C23—H13118.3
O1—C8—C9117.7 (3)C22—C23—H13118.3
C7—C8—C9117.7 (3)H19—O3—H18102 (4)
N1—C9—C8116.5 (3)
N2—Cu1—O1—C8168.2 (2)Cu1—N1—C9—C83.6 (3)
N1—Cu1—O1—C83.1 (2)C1—N1—C9—C40.3 (5)
N3—Cu1—O1—C890.4 (2)Cu1—N1—C9—C4176.2 (2)
N2—Cu1—O2—C154.6 (2)O1—C8—C9—N11.2 (4)
N1—Cu1—O2—C15169.4 (2)C7—C8—C9—N1178.5 (3)
N3—Cu1—O2—C1596.2 (2)O1—C8—C9—C4178.6 (3)
O1—Cu1—N1—C1178.9 (3)C7—C8—C9—C41.7 (5)
O2—Cu1—N1—C110.4 (3)C3—C4—C9—N11.0 (5)
N2—Cu1—N1—C1101.8 (5)C5—C4—C9—N1179.0 (3)
N3—Cu1—N1—C181.6 (3)C3—C4—C9—C8178.8 (3)
O1—Cu1—N1—C93.6 (2)C5—C4—C9—C81.2 (5)
O2—Cu1—N1—C9174.3 (2)C14—N2—C10—C111.1 (5)
N2—Cu1—N1—C982.9 (5)Cu1—N2—C10—C11176.0 (2)
N3—Cu1—N1—C993.7 (2)N2—C10—C11—C120.5 (5)
O1—Cu1—N2—C107.0 (3)C10—C11—C12—C130.1 (5)
O2—Cu1—N2—C10178.4 (3)C11—C12—C13—C18179.6 (3)
N1—Cu1—N2—C1085.2 (5)C11—C12—C13—C140.1 (5)
N3—Cu1—N2—C1091.4 (3)C10—N2—C14—C15179.1 (3)
O1—Cu1—N2—C14175.7 (2)Cu1—N2—C14—C153.3 (3)
O2—Cu1—N2—C144.3 (2)C10—N2—C14—C131.1 (4)
N1—Cu1—N2—C1497.5 (5)Cu1—N2—C14—C13176.5 (2)
N3—Cu1—N2—C1485.9 (2)C18—C13—C14—N2179.8 (3)
O1—Cu1—N3—C1944.9 (2)C12—C13—C14—N20.5 (5)
O2—Cu1—N3—C19133.0 (2)C18—C13—C14—C150.1 (5)
N2—Cu1—N3—C1949.5 (3)C12—C13—C14—C15179.6 (3)
N1—Cu1—N3—C19129.6 (2)Cu1—O2—C15—C16176.7 (3)
O1—Cu1—N3—C23142.0 (2)Cu1—O2—C15—C144.2 (3)
O2—Cu1—N3—C2340.1 (2)N2—C14—C15—O20.5 (4)
N2—Cu1—N3—C23123.6 (2)C13—C14—C15—O2179.7 (3)
N1—Cu1—N3—C2357.3 (2)N2—C14—C15—C16179.7 (3)
C9—N1—C1—C20.3 (5)C13—C14—C15—C160.5 (5)
Cu1—N1—C1—C2174.5 (3)O2—C15—C16—C17179.9 (3)
N1—C1—C2—C30.3 (6)C14—C15—C16—C170.8 (5)
C1—C2—C3—C40.5 (6)C15—C16—C17—C180.6 (6)
C2—C3—C4—C5178.9 (4)C16—C17—C18—C130.0 (6)
C2—C3—C4—C91.1 (5)C12—C13—C18—C17179.4 (3)
C3—C4—C5—C6179.5 (4)C14—C13—C18—C170.3 (5)
C9—C4—C5—C60.5 (5)C23—N3—C19—C201.1 (5)
C4—C5—C6—C71.7 (6)Cu1—N3—C19—C20172.4 (2)
C5—C6—C7—C81.1 (6)N3—C19—C20—C210.9 (5)
Cu1—O1—C8—C7178.3 (3)C19—C20—C21—C220.1 (5)
Cu1—O1—C8—C92.0 (3)C20—C21—C22—C230.3 (5)
C6—C7—C8—O1179.8 (3)C19—N3—C23—C220.7 (5)
C6—C7—C8—C90.5 (5)Cu1—N3—C23—C22172.7 (2)
C1—N1—C9—C8179.5 (3)C21—C22—C23—N30.0 (5)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H18···O2i0.83 (5)1.95 (5)2.776 (4)173 (4)
O3—H19···O10.76 (4)2.13 (4)2.871 (4)168 (4)
Symmetry code: (i) x+1/2, y1/2, z.
Selected geometric parameters (Å, º) top
Cu1—O11.940 (2)Cu1—N12.011 (3)
Cu1—O21.961 (2)Cu1—N32.305 (3)
Cu1—N22.012 (3)
O1—Cu1—N292.81 (10)O1—Cu1—N397.70 (9)
O2—Cu1—N283.32 (9)O2—Cu1—N391.41 (9)
O1—Cu1—N184.23 (10)N2—Cu1—N3100.91 (10)
O2—Cu1—N197.30 (10)N1—Cu1—N394.18 (10)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H18···O2i0.83 (5)1.95 (5)2.776 (4)173 (4)
O3—H19···O10.76 (4)2.13 (4)2.871 (4)168 (4)
Symmetry code: (i) x+1/2, y1/2, z.
 

Acknowledgements

This work was funded by the Department of Chemistry and Biochemistry at Worcester Polytechnic Institute.

References

First citationBareggi, S. R. & Cornelli, U. (2012). CNS Neurosci. Ther. 18, 41–46.  Google Scholar
First citationBruker (2002). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDeraeve, C., Boldron, C., Maraval, A., Mazarguil, H., Gornitzka, H., Vendier, L., Pitié, M. & Meunier, B. (2008). Chem. Eur. J. 14, 682–696.  Google Scholar
First citationDi Vaira, M., Bazzicalupi, C., Orioli, P., Messori, L., Bruni, B. & Zatta, P. (2004). Inorg. Chem. 43, 3795–3797.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationJian, F.-F., Wang, Y., Lu, L.-D., Yang, X.-J., Wang, X., Chantrapromma, S., Fun, H.-K. & Razak, I. A. (2001). Acta Cryst. C57, 714–716.  Google Scholar
First citationMarov, I. N., Petrukhin, O. M., Zhukov, V. V. & Kalinichenko, N. B. (1978). Russ. J. Inorg. Chem. 23, 2702–2711.  Google Scholar
First citationMarov, I. N., Zhukov, V. V., Kalinichenko, N. B. & Petrukhin, O. M. (1975). Russ. J. Coord. Chem. 1, 1046–1053.  Google Scholar
First citationNajafi, E., Amini, M. M. & Ng, S. W. (2011). Acta Cryst. E67, m1283.  Google Scholar
First citationOkabe, N. & Saishu, H. (2001). Acta Cryst. E57, m251–m252.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationPalenik, G. J. (1964). Acta Cryst. 17, 687–695.  CSD CAS Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 71| Part 2| February 2015| Pages m38-m39
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds