organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 71| Part 2| February 2015| Pages o131-o132

Crystal structure of (2S/2R,3S/3R)-3-hy­droxy-2-phenyl­chroman-4-one

aUnité de Recherche de Chimie de l'Environnement et Moléculaire Structurale, CHEMS, Université Constantine1, 25000 , Algeria, and bDépartement Sciences de la Matière, Faculté des Sciences Exactes et Sciences de la Nature et de la Vie, Université Oum El Bouaghi, Algeria
*Correspondence e-mail: bouacida_sofiane@yahoo.fr

Edited by A. J. Lough, University of Toronto, Canada (Received 3 January 2015; accepted 21 January 2015; online 28 January 2015)

In the title mol­ecule, C15H12O3, the C atoms bearing the hy­droxy group and the phenyl ring are disordered over two sets of sites with refined occupancies of 0.573 (7) and 0.427 (7). There is also disorder of the phenyl ring but the hy­droxy group was refined as ordered. The dihedral angles between the benzene ring of the chromane ring system and the phenyl ring are 89.7 (2)° for the major component of disorder and 72.1 (3)° for the minor component. Both disorder components of the the di­hydro­pyran ring are in a half-chair conformation. In the crystal, mol­ecules are linked by pairs of O—H⋯O hydrogen bonds, forming inversion dimers with an R22(10) graph-set motif. Weak C—H⋯π inter­actions link these dimers into ladders along [001].

1. Related literature

For the synthesis and applications of flavone derivatives, see: Gaspar et al. (2014[Gaspar, A., Matos, M. J., Garrido, J., Uriarte, E. & Borges, F. (2014). Chem. Rev. 119, 4960-4992.]); Huang et al. (2007[Huang, W., Liu, M.-Z., Li, Y., Tan, Y. & Yang, G.-F. (2007). Bioorg. Med. Chem. 15, 5191-5197.]); Yu et al. (2003[Yu, D., Brossi, A., Kilgore, N., Wild, C., Allaway, G. & Lee, K.-H. (2003). Bioorg. Med. Chem. Lett. 13, 1575-1576.]); Phosrithong et al. (2012[Phosrithong, N., Samee, W., Nunthanavanit, P. & Ungwitayatorn, J. (2012). Chem. Biol. Drug Des. 79, 981-989.]); Harborne & Williams (2000[Harborne, J. B. & Williams, C. A. (2000). Phytochemistry, 55, 481-504.]); Tanaka & Sugino (2001[Tanaka, K. & Sugino, T. (2001). Green Chem. 3, 133-134.]); Saxena et al. (1985[Saxena, S., Makrandi, J. K. & Grover, S. K. (1985). Synthesis, pp. 110-111.]). For the synthesis of the title compound, see: Juvale et al. (2013[Juvale, K., Stefan, K. & Wiese, M. (2013). Eur. J. Med. Chem. 67, 115-126.]). For a related structure, see: Piaskowska et al. (2013[Piaskowska, A., Hodorowicz, M. & Nitek, W. (2013). Acta Cryst. E69, o271.]).

[Scheme 1]

2. Experimental

2.1. Crystal data

  • C15H12O3

  • Mr = 240.25

  • Monoclinic, P 21 /c

  • a = 5.3068 (3) Å

  • b = 26.7110 (18) Å

  • c = 9.4679 (6) Å

  • β = 117.431 (3)°

  • V = 1191.18 (13) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 295 K

  • 0.16 × 0.11 × 0.08 mm

2.2. Data collection

  • Bruker APEXII diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2002[Sheldrick, G. M. (2002). SADABS. University of Göttingen, Germany.]) Tmin = 0.615, Tmax = 0.745

  • 6701 measured reflections

  • 2356 independent reflections

  • 1517 reflections with I > 2σ(I)

  • Rint = 0.031

2.3. Refinement

  • R[F2 > 2σ(F2)] = 0.058

  • wR(F2) = 0.148

  • S = 1.06

  • 2356 reflections

  • 216 parameters

  • 30 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.14 e Å−3

  • Δρmin = −0.16 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 and Cg2 are the centroids of the C10–C15 and C10A–C15A rings, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
O3—H3O⋯O2i 0.89 (4) 2.04 (4) 2.856 (3) 153 (4)
C3—H3ACg1ii 0.93 2.74 3.596 (5) 153
C3—H3ACg2ii 0.93 2.92 3.756 (5) 151
Symmetry codes: (i) -x+2, -y+2, -z+1; (ii) x, y, z+1.

Data collection: APEX2 (Bruker, 2011[Bruker (2011). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2011[Bruker (2011). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SIR2002 (Burla et al., 2005[Burla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G. & Spagna, R. (2005). J. Appl. Cryst. 38, 381-388.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]); software used to prepare material for publication: WinGX (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]).

Supporting information


Comment top

Flavonoids are natural products derived from secondary metabolism of plants and play an important role in various biological processes (Harborne & Williams, 2000). All classes of flavonoids exhibit a variety of biological activities (Gaspar et al., 2014; Huang et al., 2007; Yu et al., 2003; Phosrithong et al., 2012). On the other hand, the Algar, Flynn and Oyamada (AFO) oxidation of substituted 2'-hydroxychalcones with alkaline hydrogen peroxide give flavonol derivatives (Juvale et al., 2013). Dihydroflavonol was also obtained by this reaction (Saxena et al., 1985; Tanaka & Sugino (2001). In this paper, we report the structure determination of the title compound resulting from the oxidation of 2'-hydroxychalcone using AFO reaction conditions.

The molecular structure of the title compound is shown in Fig. 1. The carbon atoms [C8 and C9] bearing the hydroxy group and the phenyl ring are disordered over two sets of sites with refined occupancies 0.573 (7) and 0.427 (7). This causes disorder of the phenyl ring [C10–C15] but the hydroxy group was refined as ordered. Atom O3 and the attached hydrogen atom occupy a single site. The dihedral angles between the benzene ring of the chromane ring system [C1–C6] and the phenyl ring are 89.7 (2)° for the major component of disorder [C10–C15] and 72.1 (3) for the minor component of disorder [C10A–C15A]. Both disorder components of the the dihydropyran are ring in a half-chair conformation. This type of geometry is comparable a published structure with a similar type of disorder (Piaskowska et al., 2013).

In the crystal, pairs of molecules are linked by O—H···O hydrogen bonds (Table 1), forming inversion dimers with R22(10) graph set motif. Weak C—H···pi interactions link these dimers into ladders along [001] (Fig. 2).

Related literature top

For the synthesis and applications of flavone derivatives, see: Gaspar et al. (2014); Huang et al. (2007); Yu et al. (2003); Phosrithong et al. (2012); Harborne & Williams (2000); Tanaka & Sugino (2001); Saxena et al. (1985). For the synthesis of the title compound, see: Juvale et al. (2013). For a related structure, see: Piaskowska et al. (2013).

Experimental top

The title compound was obtained by subjecting the (E)-1-(2-hydroxyphenyl)-3-phenylprop-2-en-1-one to Algar-Flynn-Oymanda (AFO) conditions using aqueous hydrogen peroxide in the presence of sodium hydroxide. Colorless crystals of the title compound I with melting point: 449–251 K (yield: 52%) were grown by slow evaporation of a solution of the title compound in diethylether. The 1H NMR spectra is in full agreement with the proposed structure (Tanaka & Sugino, 2001). The relative position of the hydroxyl and phenyl ring on the new heterocyclic ring could not be determined efficiently by NMR spectroscopy (J H2—H3 12.4 Hz). However, the X-ray structure determination revealed a trans-configuration.

Refinement top

Hydrogen atoms were located in differnce Fourier maps but introduced in calculated positions and treated as riding on their parent atom (C) with C—H = 0.93 and 0.98 Å and Uiso(H) = 1.2Ueq(C). The hydrogen atom of the hydroxy group was located in a difference map and refined isotropically with an O—H distance restraint of 0.85 (2) Å. The DELU and SADI commands in SHELXL (Sheldrick, 2008) were used in the refinment the disorder.

Computing details top

Data collection: APEX2 (Bruker, 2011); cell refinement: SAINT (Bruker, 2011); data reduction: SAINT (Bruker, 2011); program(s) used to solve structure: SIR2002 (Burla et al., 2005); program(s) used to refine structure: SHELXL97 (Sheldrick, 2015); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: WinGX (Farrugia, 2012).

Figures top
[Figure 1] Fig. 1. The molecule structure of the title compound. Displacement are drawn at the 30% probability level. H atoms are represented as small spheres of arbitrary radius. The minor component of disorder is not shown.
[Figure 2] Fig. 2. Part of the crystal structure of the title compound with hydrogen bonds shown as dashed lines and C—H···π intectations as green unbroken lines. The minor component of disorder is not shown.
3-Hydroxy-2-phenylchroman-4-one top
Crystal data top
C15H12O3F(000) = 504
Mr = 240.25Dx = 1.34 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 1712 reflections
a = 5.3068 (3) Åθ = 2.5–23.2°
b = 26.7110 (18) ŵ = 0.09 mm1
c = 9.4679 (6) ÅT = 295 K
β = 117.431 (3)°Prism, colorless
V = 1191.18 (13) Å30.16 × 0.11 × 0.08 mm
Z = 4
Data collection top
Bruker APEXII
diffractometer
2356 independent reflections
Radiation source: Enraf Nonius FR5901517 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.031
CCD rotation images, thick slices scansθmax = 26.1°, θmin = 2.9°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2002)
h = 56
Tmin = 0.615, Tmax = 0.745k = 3231
6701 measured reflectionsl = 1111
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.058Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.148H atoms treated by a mixture of independent and constrained refinement
S = 1.06 w = 1/[σ2(Fo2) + (0.0475P)2 + 0.5327P]
where P = (Fo2 + 2Fc2)/3
2356 reflections(Δ/σ)max < 0.001
216 parametersΔρmax = 0.14 e Å3
30 restraintsΔρmin = 0.16 e Å3
Crystal data top
C15H12O3V = 1191.18 (13) Å3
Mr = 240.25Z = 4
Monoclinic, P21/cMo Kα radiation
a = 5.3068 (3) ŵ = 0.09 mm1
b = 26.7110 (18) ÅT = 295 K
c = 9.4679 (6) Å0.16 × 0.11 × 0.08 mm
β = 117.431 (3)°
Data collection top
Bruker APEXII
diffractometer
2356 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2002)
1517 reflections with I > 2σ(I)
Tmin = 0.615, Tmax = 0.745Rint = 0.031
6701 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.05830 restraints
wR(F2) = 0.148H atoms treated by a mixture of independent and constrained refinement
S = 1.06Δρmax = 0.14 e Å3
2356 reflectionsΔρmin = 0.16 e Å3
216 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
O10.4498 (4)0.85751 (6)0.56442 (18)0.0538 (5)
O20.8643 (5)0.98972 (7)0.6185 (2)0.0768 (6)
O30.7507 (5)0.93216 (8)0.3576 (2)0.0811 (7)
C10.5095 (5)0.88656 (9)0.6949 (3)0.0487 (6)
C20.4263 (6)0.86841 (11)0.8046 (3)0.0654 (8)
H2A0.33270.83790.78750.079*
C30.4833 (7)0.89589 (12)0.9380 (3)0.0782 (9)
H3A0.4280.88371.01160.094*
C40.6224 (8)0.94163 (13)0.9653 (3)0.0826 (10)
H4A0.66230.95981.0570.099*
C50.7001 (7)0.95974 (11)0.8560 (3)0.0694 (8)
H5A0.78880.99080.87250.083*
C60.6481 (5)0.93229 (9)0.7201 (3)0.0504 (6)
C70.7425 (6)0.95026 (10)0.6059 (3)0.0590 (7)
C80.7356 (10)0.91069 (15)0.4871 (5)0.0480 (15)0.573 (7)
H8A0.89730.8880.54120.058*0.573 (7)
C90.4642 (10)0.88120 (18)0.4324 (4)0.0440 (14)0.573 (7)
H9A0.30630.9050.3860.053*0.573 (7)
C8A0.6023 (12)0.9234 (2)0.4446 (5)0.048 (2)0.427 (7)
H8AA0.40520.93460.38360.058*0.427 (7)
C9A0.6092 (14)0.8684 (2)0.4818 (8)0.0491 (18)0.427 (7)
H9AA0.80710.8590.55060.059*0.427 (7)
C100.4143 (17)0.8417 (2)0.3093 (6)0.0438 (19)0.573 (7)
C110.1560 (16)0.8427 (3)0.1717 (8)0.066 (2)0.573 (7)
H11A0.02070.86670.15960.08*0.573 (7)
C120.0997 (14)0.8077 (3)0.0521 (6)0.082 (3)0.573 (7)
H12A0.07310.80830.03990.099*0.573 (7)
C130.3018 (18)0.7718 (3)0.0702 (8)0.075 (4)0.573 (7)
H13A0.26420.74840.00980.09*0.573 (7)
C140.5602 (16)0.7708 (3)0.2078 (9)0.0589 (19)0.573 (7)
H14A0.69540.74680.21990.071*0.573 (7)
C150.6165 (13)0.8058 (3)0.3273 (7)0.0531 (19)0.573 (7)
H15A0.78930.80520.41940.064*0.573 (7)
C10A0.499 (2)0.8360 (4)0.3363 (9)0.054 (3)0.427 (7)
C11A0.212 (2)0.8324 (3)0.2302 (10)0.053 (2)0.427 (7)
H11B0.08050.85190.24470.063*0.427 (7)
C12A0.1204 (18)0.7995 (4)0.1023 (10)0.063 (3)0.427 (7)
H12B0.07180.7970.03130.076*0.427 (7)
C13A0.317 (3)0.7703 (3)0.0806 (11)0.063 (5)0.427 (7)
H13B0.25550.74820.0050.076*0.427 (7)
C14A0.604 (2)0.7739 (5)0.1867 (13)0.081 (4)0.427 (7)
H14B0.7350.75440.17210.097*0.427 (7)
C15A0.6950 (16)0.8068 (5)0.3145 (11)0.066 (3)0.427 (7)
H15B0.88720.80930.38550.079*0.427 (7)
H3O0.843 (9)0.9610 (11)0.382 (5)0.160 (18)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0702 (11)0.0484 (10)0.0507 (10)0.0118 (8)0.0346 (9)0.0009 (7)
O20.0990 (16)0.0637 (12)0.0829 (14)0.0364 (11)0.0548 (13)0.0229 (10)
O30.1237 (19)0.0708 (14)0.0775 (13)0.0378 (13)0.0709 (14)0.0188 (11)
C10.0544 (14)0.0501 (14)0.0424 (12)0.0046 (12)0.0229 (11)0.0071 (11)
C20.085 (2)0.0643 (17)0.0572 (16)0.0026 (15)0.0411 (16)0.0131 (13)
C30.110 (3)0.082 (2)0.0583 (18)0.0144 (19)0.0524 (18)0.0184 (16)
C40.124 (3)0.080 (2)0.0492 (16)0.016 (2)0.0449 (19)0.0012 (15)
C50.092 (2)0.0647 (18)0.0500 (15)0.0016 (15)0.0312 (15)0.0051 (13)
C60.0578 (15)0.0511 (15)0.0414 (12)0.0033 (12)0.0220 (12)0.0015 (11)
C70.0714 (17)0.0544 (16)0.0567 (16)0.0152 (14)0.0340 (14)0.0079 (12)
C80.046 (3)0.052 (3)0.049 (3)0.006 (2)0.024 (2)0.003 (2)
C90.049 (3)0.045 (3)0.046 (3)0.008 (2)0.029 (2)0.003 (2)
C8A0.067 (5)0.040 (4)0.044 (4)0.003 (3)0.030 (4)0.005 (3)
C9A0.040 (4)0.053 (4)0.053 (4)0.001 (3)0.021 (3)0.001 (3)
C100.046 (5)0.046 (4)0.053 (4)0.013 (3)0.034 (4)0.005 (3)
C110.050 (3)0.058 (5)0.073 (5)0.002 (3)0.013 (4)0.007 (4)
C120.067 (5)0.085 (6)0.075 (5)0.000 (4)0.016 (4)0.021 (4)
C130.062 (6)0.088 (9)0.080 (8)0.031 (5)0.038 (6)0.027 (6)
C140.068 (4)0.044 (4)0.073 (4)0.017 (3)0.040 (4)0.002 (3)
C150.051 (4)0.061 (4)0.044 (3)0.001 (4)0.018 (3)0.000 (3)
C10A0.053 (7)0.051 (6)0.061 (5)0.012 (4)0.029 (4)0.005 (4)
C11A0.052 (6)0.045 (5)0.067 (7)0.014 (4)0.032 (6)0.002 (4)
C12A0.052 (5)0.063 (5)0.058 (5)0.013 (4)0.011 (4)0.014 (5)
C13A0.101 (11)0.022 (6)0.064 (9)0.011 (6)0.036 (8)0.008 (5)
C14A0.090 (7)0.078 (8)0.084 (8)0.001 (6)0.050 (6)0.012 (6)
C15A0.059 (5)0.078 (6)0.076 (5)0.002 (5)0.045 (5)0.004 (4)
Geometric parameters (Å, º) top
O1—C11.367 (3)C8A—H8AA0.98
O1—C9A1.422 (4)C9A—C10A1.498 (4)
O1—C91.434 (4)C9A—H9AA0.98
O2—C71.213 (3)C10—C111.39
O3—C81.389 (4)C10—C151.39
O3—C8A1.396 (4)C11—C121.39
O3—H3O0.885 (19)C11—H11A0.93
C1—C61.388 (3)C12—C131.39
C1—C21.390 (3)C12—H12A0.93
C2—C31.369 (4)C13—C141.39
C2—H2A0.93C13—H13A0.93
C3—C41.389 (4)C14—C151.39
C3—H3A0.93C14—H14A0.93
C4—C51.367 (4)C15—H15A0.93
C4—H4A0.93C10A—C11A1.39
C5—C61.394 (3)C10A—C15A1.39
C5—H5A0.93C11A—C12A1.39
C6—C71.466 (3)C11A—H11B0.93
C7—C81.532 (4)C12A—C13A1.39
C7—C8A1.534 (5)C12A—H12B0.93
C8—C91.509 (4)C13A—C14A1.39
C8—H8A0.98C13A—H13B0.93
C9—C101.502 (4)C14A—C15A1.39
C9—H9A0.98C14A—H14B0.93
C8A—C9A1.507 (5)C15A—H15B0.93
C1—O1—C9A115.6 (3)O3—C8A—H8AA109.9
C1—O1—C9117.0 (2)C9A—C8A—H8AA109.9
C9A—O1—C931.3 (2)C7—C8A—H8AA109.9
C8—O3—C8A29.9 (3)O1—C9A—C10A107.9 (5)
C8—O3—H3O113 (3)O1—C9A—C8A111.8 (4)
C8A—O3—H3O113 (3)C10A—C9A—C8A113.0 (6)
O1—C1—C6122.6 (2)O1—C9A—H9AA108
O1—C1—C2117.1 (2)C10A—C9A—H9AA108
C6—C1—C2120.3 (2)C8A—C9A—H9AA108
C3—C2—C1119.4 (3)C11—C10—C15120
C3—C2—H2A120.3C11—C10—C9117.4 (5)
C1—C2—H2A120.3C15—C10—C9122.6 (5)
C2—C3—C4121.0 (3)C12—C11—C10120
C2—C3—H3A119.5C12—C11—H11A120
C4—C3—H3A119.5C10—C11—H11A120
C5—C4—C3119.4 (3)C11—C12—C13120
C5—C4—H4A120.3C11—C12—H12A120
C3—C4—H4A120.3C13—C12—H12A120
C4—C5—C6120.8 (3)C14—C13—C12120
C4—C5—H5A119.6C14—C13—H13A120
C6—C5—H5A119.6C12—C13—H13A120
C1—C6—C5119.0 (2)C13—C14—C15120
C1—C6—C7119.7 (2)C13—C14—H14A120
C5—C6—C7121.3 (2)C15—C14—H14A120
O2—C7—C6124.0 (2)C14—C15—C10120
O2—C7—C8120.2 (2)C14—C15—H15A120
C6—C7—C8114.5 (2)C10—C15—H15A120
O2—C7—C8A119.7 (3)C11A—C10A—C15A120
C6—C7—C8A114.0 (3)C11A—C10A—C9A122.6 (8)
C8—C7—C8A27.1 (2)C15A—C10A—C9A117.3 (8)
O3—C8—C9110.3 (3)C12A—C11A—C10A120
O3—C8—C7111.8 (3)C12A—C11A—H11B120
C9—C8—C7107.9 (3)C10A—C11A—H11B120
O3—C8—H8A108.9C11A—C12A—C13A120
C9—C8—H8A108.9C11A—C12A—H12B120
C7—C8—H8A108.9C13A—C12A—H12B120
O1—C9—C10107.8 (4)C12A—C13A—C14A120
O1—C9—C8110.9 (3)C12A—C13A—H13B120
C10—C9—C8115.6 (5)C14A—C13A—H13B120
O1—C9—H9A107.4C15A—C14A—C13A120
C10—C9—H9A107.4C15A—C14A—H14B120
C8—C9—H9A107.4C13A—C14A—H14B120
O3—C8A—C9A109.9 (4)C14A—C15A—C10A120
O3—C8A—C7111.2 (3)C14A—C15A—H15B120
C9A—C8A—C7105.9 (4)C10A—C15A—H15B120
C9A—O1—C1—C618.5 (4)O2—C7—C8A—O332.0 (6)
C9—O1—C1—C616.6 (4)C6—C7—C8A—O3164.2 (3)
C9A—O1—C1—C2161.2 (4)C8—C7—C8A—O367.0 (5)
C9—O1—C1—C2163.7 (3)O2—C7—C8A—C9A151.4 (4)
O1—C1—C2—C3179.4 (2)C6—C7—C8A—C9A44.8 (5)
C6—C1—C2—C30.3 (4)C8—C7—C8A—C9A52.5 (5)
C1—C2—C3—C40.1 (5)C1—O1—C9A—C10A175.4 (5)
C2—C3—C4—C50.9 (5)C9—O1—C9A—C10A75.0 (9)
C3—C4—C5—C61.7 (5)C1—O1—C9A—C8A50.5 (6)
O1—C1—C6—C5179.8 (2)C9—O1—C9A—C8A49.9 (5)
C2—C1—C6—C50.5 (4)O3—C8A—C9A—O1177.4 (4)
O1—C1—C6—C71.6 (4)C7—C8A—C9A—O162.3 (6)
C2—C1—C6—C7178.1 (2)O3—C8A—C9A—C10A55.4 (7)
C4—C5—C6—C11.5 (4)C7—C8A—C9A—C10A175.7 (5)
C4—C5—C6—C7177.1 (3)O1—C9—C10—C11107.8 (5)
C1—C6—C7—O2179.8 (3)C8—C9—C10—C11127.5 (4)
C5—C6—C7—O21.6 (4)O1—C9—C10—C1573.4 (6)
C1—C6—C7—C813.0 (4)C8—C9—C10—C1551.3 (6)
C5—C6—C7—C8165.6 (3)C15—C10—C11—C120
C1—C6—C7—C8A16.8 (4)C9—C10—C11—C12178.8 (6)
C5—C6—C7—C8A164.6 (3)C10—C11—C12—C130
C8A—O3—C8—C951.2 (5)C11—C12—C13—C140
C8A—O3—C8—C768.9 (4)C12—C13—C14—C150
O2—C7—C8—O328.7 (5)C13—C14—C15—C100
C6—C7—C8—O3163.6 (3)C11—C10—C15—C140
C8A—C7—C8—O368.3 (4)C9—C10—C15—C14178.7 (6)
O2—C7—C8—C9150.2 (3)O1—C9A—C10A—C11A50.0 (9)
C6—C7—C8—C942.1 (4)C8A—C9A—C10A—C11A74.2 (8)
C8A—C7—C8—C953.2 (5)O1—C9A—C10A—C15A126.3 (6)
C1—O1—C9—C10175.6 (4)C8A—C9A—C10A—C15A109.5 (6)
C9A—O1—C9—C1080.1 (8)C15A—C10A—C11A—C12A0
C1—O1—C9—C848.1 (5)C9A—C10A—C11A—C12A176.2 (9)
C9A—O1—C9—C847.4 (5)C10A—C11A—C12A—C13A0
O3—C8—C9—O1178.2 (3)C11A—C12A—C13A—C14A0
C7—C8—C9—O159.4 (5)C12A—C13A—C14A—C15A0
O3—C8—C9—C1055.1 (5)C13A—C14A—C15A—C10A0
C7—C8—C9—C10177.6 (4)C11A—C10A—C15A—C14A0
C8—O3—C8A—C9A48.9 (5)C9A—C10A—C15A—C14A176.4 (9)
C8—O3—C8A—C768.1 (5)
Hydrogen-bond geometry (Å, º) top
Cg1 and Cg2 are the centroids of the C10–C15 and C10A–C15A rings, respectively.
D—H···AD—HH···AD···AD—H···A
O3—H3O···O2i0.89 (4)2.04 (4)2.856 (3)153 (4)
C3—H3A···Cg1ii0.932.743.596 (5)153
C3—H3A···Cg2ii0.932.923.756 (5)151
Symmetry codes: (i) x+2, y+2, z+1; (ii) x, y, z+1.
Hydrogen-bond geometry (Å, º) top
Cg1 and Cg2 are the centroids of the C10–C15 and C10A–C15A rings, respectively.
D—H···AD—HH···AD···AD—H···A
O3—H3O···O2i0.89 (4)2.04 (4)2.856 (3)153 (4)
C3—H3A···Cg1ii0.93002.74003.596 (5)153.00
C3—H3A···Cg2ii0.93002.92003.756 (5)151.00
Symmetry codes: (i) x+2, y+2, z+1; (ii) x, y, z+1.
 

Acknowledgements

Thanks are due to MESRS and the DG–RSDT (Ministére de l'Enseignement Supérieur et de la Recherche Scientifique et la Direction Générale de la Recherche - Algérie) for financial support.

References

First citationBruker (2011). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBurla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G. & Spagna, R. (2005). J. Appl. Cryst. 38, 381–388.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGaspar, A., Matos, M. J., Garrido, J., Uriarte, E. & Borges, F. (2014). Chem. Rev. 119, 4960–4992.  Google Scholar
First citationHarborne, J. B. & Williams, C. A. (2000). Phytochemistry, 55, 481–504.  Web of Science CrossRef PubMed CAS Google Scholar
First citationHuang, W., Liu, M.-Z., Li, Y., Tan, Y. & Yang, G.-F. (2007). Bioorg. Med. Chem. 15, 5191–5197.  Google Scholar
First citationJuvale, K., Stefan, K. & Wiese, M. (2013). Eur. J. Med. Chem. 67, 115–126.  Web of Science CrossRef CAS PubMed Google Scholar
First citationPhosrithong, N., Samee, W., Nunthanavanit, P. & Ungwitayatorn, J. (2012). Chem. Biol. Drug Des. 79, 981–989.  Google Scholar
First citationPiaskowska, A., Hodorowicz, M. & Nitek, W. (2013). Acta Cryst. E69, o271.  Google Scholar
First citationSaxena, S., Makrandi, J. K. & Grover, S. K. (1985). Synthesis, pp. 110–111.  Google Scholar
First citationSheldrick, G. M. (2002). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationTanaka, K. & Sugino, T. (2001). Green Chem. 3, 133–134.  Google Scholar
First citationYu, D., Brossi, A., Kilgore, N., Wild, C., Allaway, G. & Lee, K.-H. (2003). Bioorg. Med. Chem. Lett. 13, 1575–1576.  Web of Science CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 71| Part 2| February 2015| Pages o131-o132
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds