organic compounds
S/2R,3S/3R)-3-hydroxy-2-phenylchroman-4-one
of (2aUnité de Recherche de Chimie de l'Environnement et Moléculaire Structurale, CHEMS, Université Constantine1, 25000 , Algeria, and bDépartement Sciences de la Matière, Faculté des Sciences Exactes et Sciences de la Nature et de la Vie, Université Oum El Bouaghi, Algeria
*Correspondence e-mail: bouacida_sofiane@yahoo.fr
In the title molecule, C15H12O3, the C atoms bearing the hydroxy group and the phenyl ring are disordered over two sets of sites with refined occupancies of 0.573 (7) and 0.427 (7). There is also disorder of the phenyl ring but the hydroxy group was refined as ordered. The dihedral angles between the benzene ring of the chromane ring system and the phenyl ring are 89.7 (2)° for the major component of disorder and 72.1 (3)° for the minor component. Both disorder components of the the dihydropyran ring are in a half-chair conformation. In the crystal, molecules are linked by pairs of O—H⋯O hydrogen bonds, forming inversion dimers with an R22(10) graph-set motif. Weak C—H⋯π interactions link these dimers into ladders along [001].
Keywords: crystal structure; flavone derivative; hydrogen bonds; C—H⋯π interactions.
CCDC reference: 1044756
1. Related literature
For the synthesis and applications of flavone derivatives, see: Gaspar et al. (2014); Huang et al. (2007); Yu et al. (2003); Phosrithong et al. (2012); Harborne & Williams (2000); Tanaka & Sugino (2001); Saxena et al. (1985). For the synthesis of the title compound, see: Juvale et al. (2013). For a related structure, see: Piaskowska et al. (2013).
2. Experimental
2.1. Crystal data
|
2.3. Refinement
|
Data collection: APEX2 (Bruker, 2011); cell SAINT (Bruker, 2011); data reduction: SAINT; program(s) used to solve structure: SIR2002 (Burla et al., 2005); program(s) used to refine structure: SHELXL97 (Sheldrick, 2015); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: WinGX (Farrugia, 2012).
Supporting information
CCDC reference: 1044756
10.1107/S2056989015001346/lh5747sup1.cif
contains datablock I. DOI:Structure factors: contains datablock I. DOI: 10.1107/S2056989015001346/lh5747Isup2.hkl
Supporting information file. DOI: 10.1107/S2056989015001346/lh5747Isup3.cml
The title compound was obtained by subjecting the (E)-1-(2-hydroxyphenyl)-3-phenylprop-2-en-1-one to Algar-Flynn-Oymanda (AFO) conditions using aqueous hydrogen peroxide in the presence of sodium hydroxide. Colorless crystals of the title compound I with melting point: 449–251 K (yield: 52%) were grown by slow evaporation of a solution of the title compound in diethylether. The 1H NMR spectra is in full agreement with the proposed structure (Tanaka & Sugino, 2001). The relative position of the hydroxyl and phenyl ring on the new heterocyclic ring could not be determined efficiently by NMR spectroscopy (J H2—H3 ≈ 12.4 Hz). However, the X-ray revealed a trans-configuration.
Hydrogen atoms were located in differnce Fourier maps but introduced in calculated positions and treated as riding on their parent atom (C) with C—H = 0.93 and 0.98 Å and Uiso(H) = 1.2Ueq(C). The hydrogen atom of the hydroxy group was located in a difference map and refined isotropically with an O—H distance restraint of 0.85 (2) Å. The DELU and SADI commands in SHELXL (Sheldrick, 2008) were used in the refinment the disorder.
Data collection: APEX2 (Bruker, 2011); cell
SAINT (Bruker, 2011); data reduction: SAINT (Bruker, 2011); program(s) used to solve structure: SIR2002 (Burla et al., 2005); program(s) used to refine structure: SHELXL97 (Sheldrick, 2015); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: WinGX (Farrugia, 2012).Fig. 1. The molecule structure of the title compound. Displacement are drawn at the 30% probability level. H atoms are represented as small spheres of arbitrary radius. The minor component of disorder is not shown. | |
Fig. 2. Part of the crystal structure of the title compound with hydrogen bonds shown as dashed lines and C—H···π intectations as green unbroken lines. The minor component of disorder is not shown. |
C15H12O3 | F(000) = 504 |
Mr = 240.25 | Dx = 1.34 Mg m−3 |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -P 2ybc | Cell parameters from 1712 reflections |
a = 5.3068 (3) Å | θ = 2.5–23.2° |
b = 26.7110 (18) Å | µ = 0.09 mm−1 |
c = 9.4679 (6) Å | T = 295 K |
β = 117.431 (3)° | Prism, colorless |
V = 1191.18 (13) Å3 | 0.16 × 0.11 × 0.08 mm |
Z = 4 |
Bruker APEXII diffractometer | 2356 independent reflections |
Radiation source: Enraf Nonius FR590 | 1517 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.031 |
CCD rotation images, thick slices scans | θmax = 26.1°, θmin = 2.9° |
Absorption correction: multi-scan (SADABS; Sheldrick, 2002) | h = −5→6 |
Tmin = 0.615, Tmax = 0.745 | k = −32→31 |
6701 measured reflections | l = −11→11 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.058 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.148 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.06 | w = 1/[σ2(Fo2) + (0.0475P)2 + 0.5327P] where P = (Fo2 + 2Fc2)/3 |
2356 reflections | (Δ/σ)max < 0.001 |
216 parameters | Δρmax = 0.14 e Å−3 |
30 restraints | Δρmin = −0.16 e Å−3 |
C15H12O3 | V = 1191.18 (13) Å3 |
Mr = 240.25 | Z = 4 |
Monoclinic, P21/c | Mo Kα radiation |
a = 5.3068 (3) Å | µ = 0.09 mm−1 |
b = 26.7110 (18) Å | T = 295 K |
c = 9.4679 (6) Å | 0.16 × 0.11 × 0.08 mm |
β = 117.431 (3)° |
Bruker APEXII diffractometer | 2356 independent reflections |
Absorption correction: multi-scan (SADABS; Sheldrick, 2002) | 1517 reflections with I > 2σ(I) |
Tmin = 0.615, Tmax = 0.745 | Rint = 0.031 |
6701 measured reflections |
R[F2 > 2σ(F2)] = 0.058 | 30 restraints |
wR(F2) = 0.148 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.06 | Δρmax = 0.14 e Å−3 |
2356 reflections | Δρmin = −0.16 e Å−3 |
216 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | Occ. (<1) | |
O1 | 0.4498 (4) | 0.85751 (6) | 0.56442 (18) | 0.0538 (5) | |
O2 | 0.8643 (5) | 0.98972 (7) | 0.6185 (2) | 0.0768 (6) | |
O3 | 0.7507 (5) | 0.93216 (8) | 0.3576 (2) | 0.0811 (7) | |
C1 | 0.5095 (5) | 0.88656 (9) | 0.6949 (3) | 0.0487 (6) | |
C2 | 0.4263 (6) | 0.86841 (11) | 0.8046 (3) | 0.0654 (8) | |
H2A | 0.3327 | 0.8379 | 0.7875 | 0.079* | |
C3 | 0.4833 (7) | 0.89589 (12) | 0.9380 (3) | 0.0782 (9) | |
H3A | 0.428 | 0.8837 | 1.0116 | 0.094* | |
C4 | 0.6224 (8) | 0.94163 (13) | 0.9653 (3) | 0.0826 (10) | |
H4A | 0.6623 | 0.9598 | 1.057 | 0.099* | |
C5 | 0.7001 (7) | 0.95974 (11) | 0.8560 (3) | 0.0694 (8) | |
H5A | 0.7888 | 0.9908 | 0.8725 | 0.083* | |
C6 | 0.6481 (5) | 0.93229 (9) | 0.7201 (3) | 0.0504 (6) | |
C7 | 0.7425 (6) | 0.95026 (10) | 0.6059 (3) | 0.0590 (7) | |
C8 | 0.7356 (10) | 0.91069 (15) | 0.4871 (5) | 0.0480 (15) | 0.573 (7) |
H8A | 0.8973 | 0.888 | 0.5412 | 0.058* | 0.573 (7) |
C9 | 0.4642 (10) | 0.88120 (18) | 0.4324 (4) | 0.0440 (14) | 0.573 (7) |
H9A | 0.3063 | 0.905 | 0.386 | 0.053* | 0.573 (7) |
C8A | 0.6023 (12) | 0.9234 (2) | 0.4446 (5) | 0.048 (2) | 0.427 (7) |
H8AA | 0.4052 | 0.9346 | 0.3836 | 0.058* | 0.427 (7) |
C9A | 0.6092 (14) | 0.8684 (2) | 0.4818 (8) | 0.0491 (18) | 0.427 (7) |
H9AA | 0.8071 | 0.859 | 0.5506 | 0.059* | 0.427 (7) |
C10 | 0.4143 (17) | 0.8417 (2) | 0.3093 (6) | 0.0438 (19) | 0.573 (7) |
C11 | 0.1560 (16) | 0.8427 (3) | 0.1717 (8) | 0.066 (2) | 0.573 (7) |
H11A | 0.0207 | 0.8667 | 0.1596 | 0.08* | 0.573 (7) |
C12 | 0.0997 (14) | 0.8077 (3) | 0.0521 (6) | 0.082 (3) | 0.573 (7) |
H12A | −0.0731 | 0.8083 | −0.0399 | 0.099* | 0.573 (7) |
C13 | 0.3018 (18) | 0.7718 (3) | 0.0702 (8) | 0.075 (4) | 0.573 (7) |
H13A | 0.2642 | 0.7484 | −0.0098 | 0.09* | 0.573 (7) |
C14 | 0.5602 (16) | 0.7708 (3) | 0.2078 (9) | 0.0589 (19) | 0.573 (7) |
H14A | 0.6954 | 0.7468 | 0.2199 | 0.071* | 0.573 (7) |
C15 | 0.6165 (13) | 0.8058 (3) | 0.3273 (7) | 0.0531 (19) | 0.573 (7) |
H15A | 0.7893 | 0.8052 | 0.4194 | 0.064* | 0.573 (7) |
C10A | 0.499 (2) | 0.8360 (4) | 0.3363 (9) | 0.054 (3) | 0.427 (7) |
C11A | 0.212 (2) | 0.8324 (3) | 0.2302 (10) | 0.053 (2) | 0.427 (7) |
H11B | 0.0805 | 0.8519 | 0.2447 | 0.063* | 0.427 (7) |
C12A | 0.1204 (18) | 0.7995 (4) | 0.1023 (10) | 0.063 (3) | 0.427 (7) |
H12B | −0.0718 | 0.797 | 0.0313 | 0.076* | 0.427 (7) |
C13A | 0.317 (3) | 0.7703 (3) | 0.0806 (11) | 0.063 (5) | 0.427 (7) |
H13B | 0.2555 | 0.7482 | −0.005 | 0.076* | 0.427 (7) |
C14A | 0.604 (2) | 0.7739 (5) | 0.1867 (13) | 0.081 (4) | 0.427 (7) |
H14B | 0.735 | 0.7544 | 0.1721 | 0.097* | 0.427 (7) |
C15A | 0.6950 (16) | 0.8068 (5) | 0.3145 (11) | 0.066 (3) | 0.427 (7) |
H15B | 0.8872 | 0.8093 | 0.3855 | 0.079* | 0.427 (7) |
H3O | 0.843 (9) | 0.9610 (11) | 0.382 (5) | 0.160 (18)* |
U11 | U22 | U33 | U12 | U13 | U23 | |
O1 | 0.0702 (11) | 0.0484 (10) | 0.0507 (10) | −0.0118 (8) | 0.0346 (9) | −0.0009 (7) |
O2 | 0.0990 (16) | 0.0637 (12) | 0.0829 (14) | −0.0364 (11) | 0.0548 (13) | −0.0229 (10) |
O3 | 0.1237 (19) | 0.0708 (14) | 0.0775 (13) | −0.0378 (13) | 0.0709 (14) | −0.0188 (11) |
C1 | 0.0544 (14) | 0.0501 (14) | 0.0424 (12) | 0.0046 (12) | 0.0229 (11) | 0.0071 (11) |
C2 | 0.085 (2) | 0.0643 (17) | 0.0572 (16) | 0.0026 (15) | 0.0411 (16) | 0.0131 (13) |
C3 | 0.110 (3) | 0.082 (2) | 0.0583 (18) | 0.0144 (19) | 0.0524 (18) | 0.0184 (16) |
C4 | 0.124 (3) | 0.080 (2) | 0.0492 (16) | 0.016 (2) | 0.0449 (19) | 0.0012 (15) |
C5 | 0.092 (2) | 0.0647 (18) | 0.0500 (15) | −0.0016 (15) | 0.0312 (15) | −0.0051 (13) |
C6 | 0.0578 (15) | 0.0511 (15) | 0.0414 (12) | 0.0033 (12) | 0.0220 (12) | 0.0015 (11) |
C7 | 0.0714 (17) | 0.0544 (16) | 0.0567 (16) | −0.0152 (14) | 0.0340 (14) | −0.0079 (12) |
C8 | 0.046 (3) | 0.052 (3) | 0.049 (3) | −0.006 (2) | 0.024 (2) | 0.003 (2) |
C9 | 0.049 (3) | 0.045 (3) | 0.046 (3) | −0.008 (2) | 0.029 (2) | −0.003 (2) |
C8A | 0.067 (5) | 0.040 (4) | 0.044 (4) | 0.003 (3) | 0.030 (4) | 0.005 (3) |
C9A | 0.040 (4) | 0.053 (4) | 0.053 (4) | −0.001 (3) | 0.021 (3) | −0.001 (3) |
C10 | 0.046 (5) | 0.046 (4) | 0.053 (4) | −0.013 (3) | 0.034 (4) | −0.005 (3) |
C11 | 0.050 (3) | 0.058 (5) | 0.073 (5) | 0.002 (3) | 0.013 (4) | −0.007 (4) |
C12 | 0.067 (5) | 0.085 (6) | 0.075 (5) | 0.000 (4) | 0.016 (4) | −0.021 (4) |
C13 | 0.062 (6) | 0.088 (9) | 0.080 (8) | −0.031 (5) | 0.038 (6) | −0.027 (6) |
C14 | 0.068 (4) | 0.044 (4) | 0.073 (4) | 0.017 (3) | 0.040 (4) | 0.002 (3) |
C15 | 0.051 (4) | 0.061 (4) | 0.044 (3) | 0.001 (4) | 0.018 (3) | 0.000 (3) |
C10A | 0.053 (7) | 0.051 (6) | 0.061 (5) | −0.012 (4) | 0.029 (4) | −0.005 (4) |
C11A | 0.052 (6) | 0.045 (5) | 0.067 (7) | 0.014 (4) | 0.032 (6) | 0.002 (4) |
C12A | 0.052 (5) | 0.063 (5) | 0.058 (5) | −0.013 (4) | 0.011 (4) | −0.014 (5) |
C13A | 0.101 (11) | 0.022 (6) | 0.064 (9) | 0.011 (6) | 0.036 (8) | −0.008 (5) |
C14A | 0.090 (7) | 0.078 (8) | 0.084 (8) | −0.001 (6) | 0.050 (6) | −0.012 (6) |
C15A | 0.059 (5) | 0.078 (6) | 0.076 (5) | −0.002 (5) | 0.045 (5) | −0.004 (4) |
O1—C1 | 1.367 (3) | C8A—H8AA | 0.98 |
O1—C9A | 1.422 (4) | C9A—C10A | 1.498 (4) |
O1—C9 | 1.434 (4) | C9A—H9AA | 0.98 |
O2—C7 | 1.213 (3) | C10—C11 | 1.39 |
O3—C8 | 1.389 (4) | C10—C15 | 1.39 |
O3—C8A | 1.396 (4) | C11—C12 | 1.39 |
O3—H3O | 0.885 (19) | C11—H11A | 0.93 |
C1—C6 | 1.388 (3) | C12—C13 | 1.39 |
C1—C2 | 1.390 (3) | C12—H12A | 0.93 |
C2—C3 | 1.369 (4) | C13—C14 | 1.39 |
C2—H2A | 0.93 | C13—H13A | 0.93 |
C3—C4 | 1.389 (4) | C14—C15 | 1.39 |
C3—H3A | 0.93 | C14—H14A | 0.93 |
C4—C5 | 1.367 (4) | C15—H15A | 0.93 |
C4—H4A | 0.93 | C10A—C11A | 1.39 |
C5—C6 | 1.394 (3) | C10A—C15A | 1.39 |
C5—H5A | 0.93 | C11A—C12A | 1.39 |
C6—C7 | 1.466 (3) | C11A—H11B | 0.93 |
C7—C8 | 1.532 (4) | C12A—C13A | 1.39 |
C7—C8A | 1.534 (5) | C12A—H12B | 0.93 |
C8—C9 | 1.509 (4) | C13A—C14A | 1.39 |
C8—H8A | 0.98 | C13A—H13B | 0.93 |
C9—C10 | 1.502 (4) | C14A—C15A | 1.39 |
C9—H9A | 0.98 | C14A—H14B | 0.93 |
C8A—C9A | 1.507 (5) | C15A—H15B | 0.93 |
C1—O1—C9A | 115.6 (3) | O3—C8A—H8AA | 109.9 |
C1—O1—C9 | 117.0 (2) | C9A—C8A—H8AA | 109.9 |
C9A—O1—C9 | 31.3 (2) | C7—C8A—H8AA | 109.9 |
C8—O3—C8A | 29.9 (3) | O1—C9A—C10A | 107.9 (5) |
C8—O3—H3O | 113 (3) | O1—C9A—C8A | 111.8 (4) |
C8A—O3—H3O | 113 (3) | C10A—C9A—C8A | 113.0 (6) |
O1—C1—C6 | 122.6 (2) | O1—C9A—H9AA | 108 |
O1—C1—C2 | 117.1 (2) | C10A—C9A—H9AA | 108 |
C6—C1—C2 | 120.3 (2) | C8A—C9A—H9AA | 108 |
C3—C2—C1 | 119.4 (3) | C11—C10—C15 | 120 |
C3—C2—H2A | 120.3 | C11—C10—C9 | 117.4 (5) |
C1—C2—H2A | 120.3 | C15—C10—C9 | 122.6 (5) |
C2—C3—C4 | 121.0 (3) | C12—C11—C10 | 120 |
C2—C3—H3A | 119.5 | C12—C11—H11A | 120 |
C4—C3—H3A | 119.5 | C10—C11—H11A | 120 |
C5—C4—C3 | 119.4 (3) | C11—C12—C13 | 120 |
C5—C4—H4A | 120.3 | C11—C12—H12A | 120 |
C3—C4—H4A | 120.3 | C13—C12—H12A | 120 |
C4—C5—C6 | 120.8 (3) | C14—C13—C12 | 120 |
C4—C5—H5A | 119.6 | C14—C13—H13A | 120 |
C6—C5—H5A | 119.6 | C12—C13—H13A | 120 |
C1—C6—C5 | 119.0 (2) | C13—C14—C15 | 120 |
C1—C6—C7 | 119.7 (2) | C13—C14—H14A | 120 |
C5—C6—C7 | 121.3 (2) | C15—C14—H14A | 120 |
O2—C7—C6 | 124.0 (2) | C14—C15—C10 | 120 |
O2—C7—C8 | 120.2 (2) | C14—C15—H15A | 120 |
C6—C7—C8 | 114.5 (2) | C10—C15—H15A | 120 |
O2—C7—C8A | 119.7 (3) | C11A—C10A—C15A | 120 |
C6—C7—C8A | 114.0 (3) | C11A—C10A—C9A | 122.6 (8) |
C8—C7—C8A | 27.1 (2) | C15A—C10A—C9A | 117.3 (8) |
O3—C8—C9 | 110.3 (3) | C12A—C11A—C10A | 120 |
O3—C8—C7 | 111.8 (3) | C12A—C11A—H11B | 120 |
C9—C8—C7 | 107.9 (3) | C10A—C11A—H11B | 120 |
O3—C8—H8A | 108.9 | C11A—C12A—C13A | 120 |
C9—C8—H8A | 108.9 | C11A—C12A—H12B | 120 |
C7—C8—H8A | 108.9 | C13A—C12A—H12B | 120 |
O1—C9—C10 | 107.8 (4) | C12A—C13A—C14A | 120 |
O1—C9—C8 | 110.9 (3) | C12A—C13A—H13B | 120 |
C10—C9—C8 | 115.6 (5) | C14A—C13A—H13B | 120 |
O1—C9—H9A | 107.4 | C15A—C14A—C13A | 120 |
C10—C9—H9A | 107.4 | C15A—C14A—H14B | 120 |
C8—C9—H9A | 107.4 | C13A—C14A—H14B | 120 |
O3—C8A—C9A | 109.9 (4) | C14A—C15A—C10A | 120 |
O3—C8A—C7 | 111.2 (3) | C14A—C15A—H15B | 120 |
C9A—C8A—C7 | 105.9 (4) | C10A—C15A—H15B | 120 |
C9A—O1—C1—C6 | 18.5 (4) | O2—C7—C8A—O3 | 32.0 (6) |
C9—O1—C1—C6 | −16.6 (4) | C6—C7—C8A—O3 | −164.2 (3) |
C9A—O1—C1—C2 | −161.2 (4) | C8—C7—C8A—O3 | −67.0 (5) |
C9—O1—C1—C2 | 163.7 (3) | O2—C7—C8A—C9A | 151.4 (4) |
O1—C1—C2—C3 | 179.4 (2) | C6—C7—C8A—C9A | −44.8 (5) |
C6—C1—C2—C3 | −0.3 (4) | C8—C7—C8A—C9A | 52.5 (5) |
C1—C2—C3—C4 | 0.1 (5) | C1—O1—C9A—C10A | −175.4 (5) |
C2—C3—C4—C5 | 0.9 (5) | C9—O1—C9A—C10A | −75.0 (9) |
C3—C4—C5—C6 | −1.7 (5) | C1—O1—C9A—C8A | −50.5 (6) |
O1—C1—C6—C5 | 179.8 (2) | C9—O1—C9A—C8A | 49.9 (5) |
C2—C1—C6—C5 | −0.5 (4) | O3—C8A—C9A—O1 | −177.4 (4) |
O1—C1—C6—C7 | −1.6 (4) | C7—C8A—C9A—O1 | 62.3 (6) |
C2—C1—C6—C7 | 178.1 (2) | O3—C8A—C9A—C10A | −55.4 (7) |
C4—C5—C6—C1 | 1.5 (4) | C7—C8A—C9A—C10A | −175.7 (5) |
C4—C5—C6—C7 | −177.1 (3) | O1—C9—C10—C11 | 107.8 (5) |
C1—C6—C7—O2 | 179.8 (3) | C8—C9—C10—C11 | −127.5 (4) |
C5—C6—C7—O2 | −1.6 (4) | O1—C9—C10—C15 | −73.4 (6) |
C1—C6—C7—C8 | −13.0 (4) | C8—C9—C10—C15 | 51.3 (6) |
C5—C6—C7—C8 | 165.6 (3) | C15—C10—C11—C12 | 0 |
C1—C6—C7—C8A | 16.8 (4) | C9—C10—C11—C12 | 178.8 (6) |
C5—C6—C7—C8A | −164.6 (3) | C10—C11—C12—C13 | 0 |
C8A—O3—C8—C9 | 51.2 (5) | C11—C12—C13—C14 | 0 |
C8A—O3—C8—C7 | −68.9 (4) | C12—C13—C14—C15 | 0 |
O2—C7—C8—O3 | −28.7 (5) | C13—C14—C15—C10 | 0 |
C6—C7—C8—O3 | 163.6 (3) | C11—C10—C15—C14 | 0 |
C8A—C7—C8—O3 | 68.3 (4) | C9—C10—C15—C14 | −178.7 (6) |
O2—C7—C8—C9 | −150.2 (3) | O1—C9A—C10A—C11A | 50.0 (9) |
C6—C7—C8—C9 | 42.1 (4) | C8A—C9A—C10A—C11A | −74.2 (8) |
C8A—C7—C8—C9 | −53.2 (5) | O1—C9A—C10A—C15A | −126.3 (6) |
C1—O1—C9—C10 | 175.6 (4) | C8A—C9A—C10A—C15A | 109.5 (6) |
C9A—O1—C9—C10 | 80.1 (8) | C15A—C10A—C11A—C12A | 0 |
C1—O1—C9—C8 | 48.1 (5) | C9A—C10A—C11A—C12A | −176.2 (9) |
C9A—O1—C9—C8 | −47.4 (5) | C10A—C11A—C12A—C13A | 0 |
O3—C8—C9—O1 | 178.2 (3) | C11A—C12A—C13A—C14A | 0 |
C7—C8—C9—O1 | −59.4 (5) | C12A—C13A—C14A—C15A | 0 |
O3—C8—C9—C10 | 55.1 (5) | C13A—C14A—C15A—C10A | 0 |
C7—C8—C9—C10 | 177.6 (4) | C11A—C10A—C15A—C14A | 0 |
C8—O3—C8A—C9A | −48.9 (5) | C9A—C10A—C15A—C14A | 176.4 (9) |
C8—O3—C8A—C7 | 68.1 (5) |
Cg1 and Cg2 are the centroids of the C10–C15 and C10A–C15A rings, respectively. |
D—H···A | D—H | H···A | D···A | D—H···A |
O3—H3O···O2i | 0.89 (4) | 2.04 (4) | 2.856 (3) | 153 (4) |
C3—H3A···Cg1ii | 0.93 | 2.74 | 3.596 (5) | 153 |
C3—H3A···Cg2ii | 0.93 | 2.92 | 3.756 (5) | 151 |
Symmetry codes: (i) −x+2, −y+2, −z+1; (ii) x, y, z+1. |
Cg1 and Cg2 are the centroids of the C10–C15 and C10A–C15A rings, respectively. |
D—H···A | D—H | H···A | D···A | D—H···A |
O3—H3O···O2i | 0.89 (4) | 2.04 (4) | 2.856 (3) | 153 (4) |
C3—H3A···Cg1ii | 0.9300 | 2.7400 | 3.596 (5) | 153.00 |
C3—H3A···Cg2ii | 0.9300 | 2.9200 | 3.756 (5) | 151.00 |
Symmetry codes: (i) −x+2, −y+2, −z+1; (ii) x, y, z+1. |
Acknowledgements
Thanks are due to MESRS and the DG–RSDT (Ministére de l'Enseignement Supérieur et de la Recherche Scientifique et la Direction Générale de la Recherche - Algérie) for financial support.
References
Bruker (2011). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Burla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G. & Spagna, R. (2005). J. Appl. Cryst. 38, 381–388. Web of Science CrossRef CAS IUCr Journals Google Scholar
Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854. Web of Science CrossRef CAS IUCr Journals Google Scholar
Gaspar, A., Matos, M. J., Garrido, J., Uriarte, E. & Borges, F. (2014). Chem. Rev. 119, 4960–4992. Google Scholar
Harborne, J. B. & Williams, C. A. (2000). Phytochemistry, 55, 481–504. Web of Science CrossRef PubMed CAS Google Scholar
Huang, W., Liu, M.-Z., Li, Y., Tan, Y. & Yang, G.-F. (2007). Bioorg. Med. Chem. 15, 5191–5197. Google Scholar
Juvale, K., Stefan, K. & Wiese, M. (2013). Eur. J. Med. Chem. 67, 115–126. Web of Science CrossRef CAS PubMed Google Scholar
Phosrithong, N., Samee, W., Nunthanavanit, P. & Ungwitayatorn, J. (2012). Chem. Biol. Drug Des. 79, 981–989. Google Scholar
Piaskowska, A., Hodorowicz, M. & Nitek, W. (2013). Acta Cryst. E69, o271. Google Scholar
Saxena, S., Makrandi, J. K. & Grover, S. K. (1985). Synthesis, pp. 110–111. Google Scholar
Sheldrick, G. M. (2002). SADABS. University of Göttingen, Germany. Google Scholar
Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Tanaka, K. & Sugino, T. (2001). Green Chem. 3, 133–134. Google Scholar
Yu, D., Brossi, A., Kilgore, N., Wild, C., Allaway, G. & Lee, K.-H. (2003). Bioorg. Med. Chem. Lett. 13, 1575–1576. Web of Science CrossRef PubMed CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Flavonoids are natural products derived from secondary metabolism of plants and play an important role in various biological processes (Harborne & Williams, 2000). All classes of flavonoids exhibit a variety of biological activities (Gaspar et al., 2014; Huang et al., 2007; Yu et al., 2003; Phosrithong et al., 2012). On the other hand, the Algar, Flynn and Oyamada (AFO) oxidation of substituted 2'-hydroxychalcones with alkaline hydrogen peroxide give flavonol derivatives (Juvale et al., 2013). Dihydroflavonol was also obtained by this reaction (Saxena et al., 1985; Tanaka & Sugino (2001). In this paper, we report the structure determination of the title compound resulting from the oxidation of 2'-hydroxychalcone using AFO reaction conditions.
The molecular structure of the title compound is shown in Fig. 1. The carbon atoms [C8 and C9] bearing the hydroxy group and the phenyl ring are disordered over two sets of sites with refined occupancies 0.573 (7) and 0.427 (7). This causes disorder of the phenyl ring [C10–C15] but the hydroxy group was refined as ordered. Atom O3 and the attached hydrogen atom occupy a single site. The dihedral angles between the benzene ring of the chromane ring system [C1–C6] and the phenyl ring are 89.7 (2)° for the major component of disorder [C10–C15] and 72.1 (3) for the minor component of disorder [C10A–C15A]. Both disorder components of the the dihydropyran are ring in a half-chair conformation. This type of geometry is comparable a published structure with a similar type of disorder (Piaskowska et al., 2013).
In the crystal, pairs of molecules are linked by O—H···O hydrogen bonds (Table 1), forming inversion dimers with R22(10) graph set motif. Weak C—H···pi interactions link these dimers into ladders along [001] (Fig. 2).